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School, University of South China, Hengyang, Hunan, China, 2Department of Clinical Laboratory
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Hyperglycemia, which can be caused by either an insulin deficit and/or insulin

resistance, is the main symptom of Type 2 diabetes, a significant endocrine

metabolic illness. Conventional medications, including insulin and oral

antidiabetic medicines, can alleviate the signs of diabetes but cannot restore

insulin release in a physiologically normal amount. The liver detects and reacts to

shifts in the nutritional condition that occur under a wide variety of metabolic

situations, making it an essential organ for maintaining energy homeostasis. It

also performs a crucial function in glucolipid metabolism through the secretion

of hepatokines. Emerging research shows that feeding induces hepatokines

release, which regulates glucose and lipid metabolism. Notably, these feeding-

induced hepatokines act on multiple organs to regulate glucolipotoxicity and

thus influence the development of T2DM. In this review, we focus on describing

how feeding-induced cross-talk between hepatokines, including Adropin, Manf,

Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose

tissue) affects metabolic disorders, thus revealing a novel approach for both

controlling and managing of Type 2 diabetes as a promising medication.

KEYWORDS

type 2 diabetes, insulin resistance, glucolipid metabolism, feeding-induced
hepatokines, multi-organ
1 Introduction

Diabetes is a major illness worldwide that is reaching an epidemic stage (1).

Approximately 500 million individuals across the globe are living with diabetes, and it is

anticipated that this figure will rise by 25% by the year 2030, and by 51% (roughly 700

million people) by the year 2045 (2). As a result, ensuring that the disease is avoided and
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effectively treated is an ultimate importance to public health. Most

cases of type 2 diabetes mellitus (T2DM) are caused by modifiable

risk factors such as diet (3). Epidemiological surveys have found

that the incidence of eating disorders in individuals with type 2

diabetes ranges from 1.2% to 14%, mainly manifesting as over-

eating (4). Prior research has declared that nutritional behavior is

mainly related to neural regulation in the brain (5). However, recent

studies have shown that the liver maintains systemic metabolic

homeostasis by transcriptionally controlling the expression of open

organ factors in response to external signals such as feeding

behavior (6).

In T2DM, when insulin secretion is insufficient, it first causes

impaired glucose metabolism. Glycogen synthesis is reduced, and

catabolism is increased, tissues’ ability to take up and use glucose is

reduced, which triggers fasting and postprandial hyperglycemia (7).

The malfunction of glucose oxidation and the enhancement of

lipolysis metabolism result in an elevation in free fatty acids in the

blood, which enter the liver and promote synthesis and release of

triglycerides and very-low-density lipoproteins (VLDL), resulting in

disorders of lipid metabolism (8). Therefore, it is essential to

regulate the metabolism of glucose and lipid in diabetic patients

and to understand the treatment mechanism of diabetes, thus

improving T2DM patients’ life quality.

The liver is a vital organ in the modulation of energy

homeostasis because it detects and reacts to shifts in the

nutritional condition that occur in response to a wide range of

metabolic circumstances (9). The majority of the attribution for the

liver’s function in the modulation of systemic glucolipid

metabolism goes to the release of hepatokines that maintain

metabolic homeostasis through autocrine, paracrine and

endocrine pathways that regulate the connections between the

liver and other organs (10). Of note, feeding can induce the

release of hepatokines, which can act on other organs to influence

the development of diabetes. Mechanistically, based on the available

literature, these feeding-induced hepatokines act through one

or more of the following metabolic organs (1) improving
Frontiers in Endocrinology 02
pancreatic b-cell cholesterol accumulation, reducing endoplasmic

reticulum stress, (2) reducing white adipose tissue inflammation

and inhibiting lipid accumulation, (3) inhibiting the brain feeding

center and regulating energy homeostasis (Supplemental Table 1).

In this review, We focus on the feeding-induced hepatokines,

including Adropin, Manf, Leap2 and Pcsk9, Which participate in

the occurrence and development of diabetes. We also highlight the

potential mechanisms by which these hepatokines mediate crosstalk

between the liver and other organs (brain, heart, adipose tissue, and

pancreas) and the possibility of using them as new treatments for

T2DM (Figure 1).
2 Adropin

Adropin was originally thought to be a liver-derived peptide

implicated in both the homeostasis of energy and the metabolism of

glucolipids. The energy homeostasis-related (ENHO) gene encodes

a 43-amino acid polypeptide (residues 34-76) that is used to

produce this factor (11). There is a possibility that adropin

functions as a secretory product of the hepatic biological clock,

coordinating metabolic and circadian rhythms and responding to a

large number of nutrients and energy balances in the diet.

According to preliminary studies, sufficient energy is required for

adropin expression in the liver (12). DIO decreased adropin levels

in the serum, which were elevated in the nutritional condition (12,

13). As per the current work, the highest expression of Adropin in

mice was associated with transcriptional stimulation by RORa/g,
while the minimum expression was associated with Re-verb

transcription. Small molecules influencing Rev-erb blocking

ability and transcriptional stimulation by RORa/g quickly

modified the expression of ENHO in human HepG2 cells (14).

Impressively, it was observed that a high-fat diet that enhances

hepatic Adropin expression also elevates liver ROR expression (15).

Participation in these nuclear receptors also appears to offer a

feasible mechanism for nutritional sensing in the modulation of
FIGURE 1

Mechanisms of feeding-induced hepatokines amelioration of Type 2 diabetes in target tissues. The liver plays a central role in regulating systemic metabolic
homeostasis by sensing nutrient availability and altering metabolite and energy production for use by various organ systems. The act of feeding induces the
liver to release hepatokines, which regulate glucolipid metabolism and maintain energy balance by affecting multiple metabolic organs, including the brain,
adipose tissue, pancreas and heart, thereby improving type 2 diabete.↑ increase, ↓ decrease. Graphics from http://Biorender.com.
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Adropin expression. Although the link between plasma Adropin

levels, nutrition, and mealtime is lesser understood in people,

plasma Adropin levels in nonhuman primates (constant

monkeys) have also peaked at feeding times in available studies

(15). In addition, levels of serum Adropin were decreased in

patients with T2DM, and elevated circulating Adropin values are

related to a decreased hazard of diabetes-related complications (16–

18). Here, we summarize the crosstalk of feeding-induced

hepatokines on multiple extra-liver organs (i.e., adipose tissue,

pancreas, brain, and heart). We hypothesize that it is participated

in the mechanisms of reduced obesity, insulin resistance, and

glucolipid metabolism, thereby alleviating T2DM glycolipotoxicity.
2.1 Impact of Adropin on
energy metabolism

The heart of diabetic patients relies more on the oxidation of fatty

acids for producing energy and exhibits impaired glucose uptake and

insulin signaling. These changes in cardiac metabolic activity of

energy play a part in heart illness intensity (19, 20). Adropin

induces significant alterations in cardiac energy metabolic activity

via boosting glucose metabolism and inhibiting fatty acid oxidation

while inhibiting the JNK/IRS-1 S307 phosphorylation axis improves

insulin sensitivity, hence boosting metabolic statuses and cardiac

efficiency (21). Adropin is hypothesized to have an insulin-sensitizing

action to reduce the downregulation of pyruvate dehydrogenase

(PDH) negative regulator PDK4 expression levels through MAPKs

and FOXO1 signaling mechanisms (21, 22) or modulates the

expression of the mitochondrial acetyltransferase GCN5L1, which

alters the acetylation condition and the energy activities of the

metabolizing enzymes to promote glucose oxidation (23). It also

inhibits fatty acid uptake in muscle membranes and mitochondria at

the transcriptional level by reducing the protein levels of fatty acid

transporter CD36 and carnitine palmitoyltransferase 1 (CPTI) (24,

25). These findings show that adropin plays a significant part in

modulating the preference for cardiac energy substrates. In clinical

practice, low levels of the serum protein Adropin are connected with

many cardiovascular diseases like endothelial malfunction (26–28),

heart failure (29, 30), acute myocardial infarction (31), coronary

atherosclerosis (32–34), and type X heart syndrome (35). Low levels

of Adropin also serve as a separate threat variable and indicator for

most illnesses. As a result, there is a good chance of a connection

between the levels of Adropin and diabetes-related cardiovascular

illness and energy metabolism. This connection needs to be

fully investigated.
2.2 Effect of Adropin on lipid metabolism

Previous studies demonstrated that adropin could be

participated in the control of adipose tissue function. Adrpin

overexpression delayed weight gain in mice fed high-fat meals

compared with wild-type animals (11). In vitro, through ERK1/2

and AKT-dependent signaling, adropin stimulates the growth of

3T3-L1 cells and mice preadipocytes. Additionally, adropin reduces
Frontiers in Endocrinology 03
the lipid deposition and expression of lipogenic genes in these cells.

(Pparg, Fabp4, C/ebpa), bringing about a final reduction in their

differentiating process to mature adipocytes (36). Similarly, adropin

stimulated brown adipose tissue (BAT) preadipocyte proliferation

in Wistar rats through an AKT-dependent pathway, but inhibited

preadipocyte maturation by downregulating lipogenic genes (C/

ebpa, C/ebpb, Pgc1a, Pparg, and Prdm16). Additionally, this study

found that adropin decreased lipid accumulation in BAT and

increased glycerol and free fatty acid release. It also promoted

hormone-sensitive lipase (HSL) activity (37). Of note, the

hormone network is complex, and in addition to acting directly

on the liver, hormones can interact with other hormones to regulate

metabolic homeostasis. Recent studies have shown that adropin

slightly promotes lipolysis in rat adipocytes and 3T3-L1 cells but

does not affect glucose uptake. In addition, adropin may exert an

ameliorative insulin resistance and anti-inflammatory effect by

upregulating the expression of adiponectin and inhibiting the

expression of resistin and visfatin (38, 39). Overall, Adropin

inhibits adipogenesis as well as intracellular lipid accumulation,

suggesting that it may improve diabetes by regulating lipid

metabolism in adipose tissue as well as modulating the release of

other adipokines. Although to further understand the function of

Adropin in regulating adipose metabolic mechanism and the

development of adipose tissues in vivo, additional research

is required.
2.3 Effect of Adropin on
glycolipid homeostasis

Adropin depletion is linked to higher intensity of glucose

homeostasis imbalance as well as abnormalities of lipid metabolic

activities when observed in vivo. A functional investigation of

Adropin knockout (AdrKO) was carried out in C57BL/6J mice by

Chen et al. The findings demonstrated that WT mice had normal

blood glucose levels significantly lower than those of AdrKO mice

when given a conventional diet for one year (P < 0.0001). It is

interesting to note that after 30 weeks, almost all AdrKO mice

developed T2DM when subjected to a high-fat initiation and

impaired glycosphingolipid biosynthesis. In addition, a significant

number of adipocytes infiltrated the pancreas, a hallmark of a fatty

pancreas (FP) (40). Furthermore, the serum levels of Adropin were

shown to be significantly reduced in individuals with FP and T2DM

compared with healthy individuals, and the levels of relative

modulatory T cells (Treg) were also found to be significantly

lower and positively connected with Adropin levels (r=0.7220,

P=0.0001) (40). Furthermore, the serum levels of Adropin were

shown to be significantly reduced in individuals with FP and T2DM

compared with healthy individuals, and the levels of relative

modulatory T cells (Treg) were also found to be significantly

lower and positively connected with Adropin levels (r=0.7220,

P=0.0001) (40). Treg functions as a negative modulator of the

inflammatory condition of adipocytes and were discovered to

minimize IR, thereby controlling insulin sensitivity (41). In a

model animal with IR caused by a high-fat diet, Adropin can

reduce insulin mRNA expression and secretion by affecting the
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synthesis of cyclic adenosine monophosphate (cAMP) in pancreatic

cells without affecting b-cell viability or proliferation (42). Overall,

these findings point to the possibility that Adropin enhances insulin

sensitivity and reduces IR by altering Treg number or function and

modulating insulin secretion.
3 Manf

Although midbrain astrocyte-derived neurotrophic factor

(Manf) was basically classified as a neurotrophic indicator, the

protein does not structurally or functionally resemble a true

neurotrophic factor. Neurotrophic factors act by the interaction

with similar receptors found in the plasma membrane, although no

cell surface receptors for Manf were identified (43). Recently Wu

et al. demonstrated that RNA sequencing investigation of the livers

of mice that were fasted and then fed revealed that Manf is a

feeding-induced hepatokine. Manf, which is generated from

hepatocytes, raises the body’s rate of energy consumption, which

combats diet-induced obesity. It would indicate that Manf is

directly responsible for the browning of white adipose tissue

(WAT) in the groin13. Under typical circumstances, the protein

Manf can be found in the lumen of the endoplasmic reticulum (44).

Endoplasmic reticulum stress (ERS) can increase its expression in

different cells and tissues (44–46). The aggregation of unfolded or

misfolded proteins in the endoplasmic reticulum causes ER-stress

(47). It does this by activating a cellular defensive reaction known as

the unfolded protein response (UPR). This response is a signaling

cascade that restore endoplasmic reticulum stability (48). It is

interesting to note that Apostolou et al. confirmed that Manf is a

UPR gene that is able to reduce the amount of apoptosis caused by

endoplasmic reticulum stress (46). Moreover, the serum levels of

Manf were shown to be lower in patients who had T2DM and had a

correlation with the metabolism of lipids and glucose (49). Here, we

hypothesize that Manf may mitigate the progression of T2DM by

modulating lipid metabolism, inflammation, apoptosis, and

proliferation in the liver, adipose, and pancreatic tissues.
3.1 Effect of Manf on glucose metabolism

Increasing evidence suggests that if endoplasmic reticulum

stress is not resolved, the UPR transitions from an adaptive (A-

UPR) response to a prolonged unresolved UPR, which ultimately

results in enhanced inflammatory signaling and autophagy, and

apoptosis (50, 51). This is the main cause of b-cell malfunction and

death in T2D (52). In T2DM, b-cells are subjected to local

environmental parameters, including glycolipotoxicity and

inflammatory cytokines, which results in impaired insulin

synthesis and increased free fatty acid production, as well as

unresolved cell endoplasmic reticulum stress and b-cell death (53,

54). The stimulation of the UPR, which is connected to the buildup

of lipid metabolites, is also connected, in a pathological manner,

with IR in specific tissues (54). Of interest, most of the literature

suggests that the IRE1/XBP1 and ATF6 pathways are involved in

the key function of Manf in attenuating the negative modulation of
Frontiers in Endocrinology 04
UPR by endoplasmic reticulum stress (45, 55–57). The latest

research demonstrated that hepatocyte-derived MANF plays a

crucial role in increasing insulin sensitivity and that the systemic

injection of MANF protein greatly enhanced insulin sensitivity in

mice exhibiting obesity (58). Besides insulin sensitivity, Manf

promotes insulin secretion by maintaining the number of

pancreaticb-cell. Ablation of MANF in mouse embryos, both

overall and in the pancreas, leads to early onset and severe

diabetes mell i tus . This is because in Manf -/- mice,

phosphorylation of eIF2a inhibits the translation of cyclin D1

and the cell cycle is subsequently arrested in the G1 and G2/M

phases, ultimately leading to reduced b-cell proliferation and

increased apoptosis (59, 60). MANF overexpression promotes the

growth of primary b-cells in humans and mice having diabetes, as

well as protection of people and mouse b-cells from the death

induced by endoplasmic reticulum stress in b-cells to some extent

(61–63). The protective and proliferative effects of MANF on b-cells
were correlated with the suppression of NF-kB signaling pathway

and amelioration of endoplasmic reticulum stress as well as

blocking BH3-only proteins BIM-dependent triggering of

mitochondrial apoptotic pathway (64). Chen et al. found that

MANF can interact with the DNA binding domain of p65

through its C-terminal SAP-like structural domain and is a key

target gene for inhibiting NF-kB signaling pathway (65). Later, Yagi

et al. reported that Neuroplastin (NPTN) is a plasma membrane

receptor for MANF. The binding of MANF to NPTN attenuates the

inflammatory reaction and cell death by inhibiting the NF-kB
signaling pathway (66). Another study showed that MANF

attenuates endoplasmic reticulum stress by suppressing the IRE1-

caspase 12-caspase 3 cell death pathway and has a protective effect

against pancreatic alveolar cell injury (67). These results are

potential mechanisms for the protective and proliferative

influences of MANF on b-cells, which perform important

implications for the modulation of insulin production and

improvement of glucose metabolism. Notably, Montaser et al.

identified the MANF pure-hybrid loss-of-function mutation as a

novel gene causing diabetes and neurodevelopmental disorders in

children (68). In conclusion, these data further support that MANF

performs a crucial part that helps pancreatic b-cell s to survive and

proliferate and hence could provide a possible therapy for

T2DM patients.
3.2 Effect of Manf on lipid metabolism

Manf differs from any known nerve growth factor in that its N-

terminal structural domain is saposin-like lipid conjugation domain

(69). SAPLIPs (saposin-like proteins) are a family of lipid-

interacting proteins that vary in size and activity and have a wide

variety of cellular functions (70). Bai et al. proposed that Manf binds

to lipid sulfolipids, which are called 3-O-sulfogalactosyl ceramides,

a lipid that exists in the outer leaflet of serum and cell membranes

(71).Thus, Manf can bind lipids. Notably, Sousa-Victor et al.

identified Manf as a stress response protein that is released and

has immunomodulatory effects, as well as being part of an

evolutionarily conserved system and a controller of the hepatic
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metabolic homeostasis in particular (72). Manf heterozygous mice

showed an inflammatory phenotype in multiple tissues, and

hepatocellular steatosis and fibrosis, besides developing hepatic

bone disease at a faster rate than control mice (72).

Overexpression of Manf was able to rescue HepG2 cells from the

steatosis that was caused by free fatty acids (FFAs). This was

accomplished by inhibiting the synthesis and uptake of fatty

acids, as well as suppressing the synthesis of cholesterol. Thus,

Manf inhibited lipid deposition in HepG2 human hepatocytes (73).

Furthermore, an increase in the levels of the autophagy markers

LC3-II and Atg5 was responsible for the attenuation of hepatic

steatosis in mice that had Manf overexpressed, which is liver-

specific. In addition to this, Manf was responsible for a rise in the

phosphorylation of Stat3 as well as its nuclear localization (74).

Therefore, Manf influences the metabolism of hepatic lipids by

controlling autophagy. The overexpression of genes linked to lipid

metabolism, in particular G0/G1 Switch gene 2 (G0S2), appears to

be associated with the negative effect of diminished Manf expression

in the liver. G0S2 is an important modulator of lipid metabolism

and act as a suppressor of lipolysis. It was demonstrated that

knocking down Manf causes higher levels of G0S2, which in turn

causes hepatic steatosis as well as a pro-inflammatory state in

macrophages (72, 75). Knockdown of Manf resulted in an

increase in the production of TNF-a, IL-1a, and IL-6 (76). In

addition, the increased expression of Manf, which is liver-specific

prevented obesity in mice caused by a high-fat diet and accelerated

browning of white adipocytes through activating the P38 MAPK

pathway. Elevating the expression of key lipolytic proteins

(phosphorylated hormone-sensitive lipase (HSL) and adipose

triglyceride lipase (ATGL)) is how Manf impedes the expression

of M1-type macrophage polarization indicators in mouse eWAT.

This assists in decreasing adipose inflammation and improving

insulin sensitivity and lipid deposition in high-fat-fed mice (58). In

conclusion, these data further support that MANF can improve

lipid metabolism in T2DM by a down-modulating inflammatory

reaction and lipid deposition in the liver and adipose tissues.
3.3 Effect of Manf on energy metabolism

MANF influences food intake and energy balance by regulating

hypothalamic insulin signaling, suggesting that MANF-mediated

neuronal activity plays an important role in maintaining energy

homeostasis. Furthermore, MANF is enriched in different nuclei of

the mouse hypothalamus and critically regulates energy intake, but

energy expenditure seems to be unaffected (77). It has been shown

that high levels of MANF expression in the rat hypothalamus persist

into adulthood (78), raising the possibility that MANF plays an

important role in the mature hypothalamus. It is known that ER

stress in the hypothalamus leads to leptin resistance and hyperphagia

(79), whereas MANF overexpression in Hypothalamic pro-

opimelanocortin (POMC) attenuates ER stress and leads to

increased thermogenesis in the BAT by improving leptin signaling

in the hypothalamus and regulating sympathetic innervation and

activity in it (80). These results suggest thatMANF overexpression in

the hypothalamic nucleus leads to severe hyperphagia and obesity.
Frontiers in Endocrinology 05
However, MANF can properly regulate energy homeostasis through

POMC neurons. Furthermore, MANF appears to have multifaceted

and cell type-specific functions, as recombinant human MANF was

recently found to promote corneal epithelial wound healing and

nerve regeneration in diabetic patients by attenuating

hyperglycemia-induced endoplasmic reticulum stress through the

Akt signaling pathway (81). MANF may be a useful therapeutic

modality in the treatment of diabetic keratopathy (DK). A recent

study showed that strong expression of MANF was also observed in

the mouse pituitary, thyroid, and adrenal glands, all tissues involved

in the neuroendocrine axis, and important for the regulation of

feeding, stress, growth, and development. Interestingly, compared to

wild-typemice,MANF-deficientmice have smaller anterior pituitary

lobes and reduced numbers of cells producing growth hormone (GH)

(82). GH has also been described as a diabetogenic agent with the

ability to reduce insulin sensitivity (83). In the brain, GH activates the

expression of AgRP neurons, increasing food intake while decreasing

energy expenditure (84, 85). These results suggest that MANF plays

an essential role in highly hormone-secreting cells within the

hypothalamic-pituitary-thyroid/adrenal/gonadal axis and that

proper regulation of MANF expression in the brain and other

endocrine organs is vital to meet metabolic demands.
4 Leap2

Liver expresses antimicrobial peptide 2 (Leap2), a bicyclic

cationic polypeptide (86). As a feeding-induced hepatokine, it is

highly expressed in the liver, and its release is inhibited by stopping

feeding and returns to baseline levels after subsequent feeding (87).

Ghrelin is a hormone that stimulates hunger and is released by the

stomach. Ghrelin’s function is modulated by binding to the growth

hormone secretagogue receptor (GHSR) (88). The ghrelin-GHSR

system is implicated in a wide range of biological activities,

including the enhancement of growth hormone (GH) production,

enhanced hunger and food consumption, control of glucose

homeostasis, and cardiovascular function (89–92). According to

the most recent findings, Leap2 and Ghrelin are paired with other

factors in a competing way with GHSR (93). Thus, Leap2 is a

competitive antagonist of GHSR, rather than a non-competitive

antagonist as previously reported (94). Leap2 prevents the principal

activities of Ghrelin in vivo, such as food consumption, GH release,

and the control of survivable blood glucose levels throughout

periods of calorie reduction or fasting. On the other hand,

inhibiting Leap2 has the effect of amplifying the actions of ghrelin

(94, 95). As a result, it appears that Leap2 may perform a significant

part in metabolic illnesses by acting as a modulator of the ghrelin-

GHSR system. In addition, patients who have T2DM had lower

serum levels of ghrelin and higher serum levels of Leap2. It’s

possible that the interaction between Ghrelin and Leap2 performs

a significant part in the progression of T2DM. There is some

speculation that the ghrelin-Leap2 axis could be a viable

therapeutic target for T2D (96). In conclusion, we came to the

view that Leap2 has the possibility to be an applicable treatment for

the control of T2DM. This is because the ghrelin-GHSR system,
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which modulates energy metabolism in the brain, also modulates

glucose metabolism in pancreatic tissue.
4.1 Effect of Leap2 on energy metabolism

Furthermore, the N-terminal region alone delivers binding and

activation to the Leap2 receptor. Leap2 and its N-terminal part were

discovered to act as an inverse agonist of GHSR and also a competing

antagonist of Ghrelin-induced phosphatidylinositol production and

calcium mobility. Both inverse agonists and antagonists act on the

agonist but interact with the receptor in different ways. The inverse

agonist binds to the same receptor as the agonist but brings about the

opposite response to the agonist, while the antagonist binds to the

receptor and disrupts the interaction and function of the agonist and

counter-agonist at the receptor (97). LEAP2 is both an inverse agonist

of GHSR, which downregulates the constitutive activity of GHSR, and

a competitive antagonist, which impairs gastrin-induced activation of

GHSR. Thus, Leap2 exerts its inhibitory effect on the ghrelin-GHSR

system through its N-terminal region (95). On the one hand, Ghrelin

signals are transmitted via the vagus nerve to the hypothalamus, which

is the modulatory center of nutritional behavior (90). Islam et al.

declared that intracerebroventricular (i.c.v.) injection of Leap2 into

mice was shown to suppress central Ghrelin function, such as

hypothalamus nucleus Fos expression, promoted feeding, elevated

blood glucose, and lowered body temperature. However,

intraperitoneal (i.p.) leap2 administration showed no reduction in

neuropeptide Y (NPY)-induced food consumption or des-acyl ghrelin-

induced inhibition in body temperature, demonstrating that Leap2’s

suppressing activity is specific to the GHSR (98). In contrast, GHSR

was strongly expressed in the arcuate nucleus of the hypothalamus

(ARC), the dorsal medial nucleus of the hypothalamus (DMH), the

ventral medial nucleus of the hypothalamus (VMH), and the lateral

hypothalamic nucleus (LH) (99). GHSR governs essential

physiological activities such as hunger, neuroendocrine axis,

autonomic nervous system activities, and sophisticated mental

processes like reward-related attitudes (100). Therefore, the primary

function of GHSR is the modulation of neuronal activities (101). The

voltage-gated calcium channel 2.2 (Cav2.2) is a prominent GHSR

target in neurons. Heterologous expression systems and membrane

clamp recordings suggest that the N-terminal region of Leap2 binds

GHSR, thereby impairing the ghrelin-dependent (GQ protein

signaling) and ghrelin-independent modes of GHSR action (Gi/o

protein activation) on the suppression of Cav2.2 currents (102). In

addition, the N-terminal region of Leap2 also affects the inhibitory

modulation of Cav2.2 currents by the heterodimer of GHSR-the

dopamine 2 receptor (D2R)-and its coupling to G proteins (103).

Cornejo et al. declared that intracerebroventricular (i.c.v.) injection of

C57BL/6J mice with an N-terminal Leap2 fragment diminished

overeating in mice on a high-fat diet (104). Taken together, The N-

terminus of Leap2 inhibits the ghrelin-GHSR pathway in the central

nervous system. Contrarily, the elimination of the LEAP2 gene raised

weight gain, food consumption, lean body mass, and liver adipose

tissues in HFD-fed female rats. This is a result of less energy
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consumption, decreased physical exercise, and increased food

consumption (105). Furthermore, the Ghrelin-AMPK-SREBP1

pathway may modulate the expression level of Leap2 in the liver.

Through the hepatic-gastric-brain axis (98), Leap2 may impact eating

and energy balance. Latest research demonstrated that Leap2 also

mediates the outcomes of food consumption and energy metabolism

through the endogenous cannabinoid system (eCBome)-gut

microbiome (mBIome) axis (106). In summary, LEAP2 can improve

diabetes by inhibiting brain intake-related energy metabolism.
4.2 Effect of Leap2 on glucose metabolism

One of the main features of Ghrelin and LEAP-2 is that they

have opposite effects on GH secretion (107). A recent study using

two animal models of GH deficiency found a significant inhibitory

effect of LEAP2 on Ghrelin-induced food intake but no change in

glucose levels. This suggests that the opposite effect between LEAP-

2 and Ghrelin is not dependent on GH levels. The effect of LEAP2

on glucose levels was only observed in obese animals, which may be

due to the fact that obese animals exhibit a state of hyperglycemia

and insulin resistance, and therefore have a higher setting to trigger

a counter-regulatory response to prevent hypoglycemia after LEAP-

2 administration (108).On the one hand, GHSR increased

expression in peptide cells of people and mice pancreatic islets

(109). On the other hand, many studies have shown that both

endogenous and exogenous Ghrelin can inhibit insulin production

in mice, rats, and humans (110–113). Bayle et al. confronted

isolated islets of Langerhans from rat pancreas to glucose with or

without LEAP2 and ghrelin, and showed by measuring insulin

production that Leap2 exerts modulation of insulin by blocking the

insulin-inhibitory effect of Ghrelin (114). Similarly, M’Kadmi et al.

demonstrated that N-terminal Leap2 21-12 blocked the inhibitory

effect of Ghrelin on insulin secretion in rat pancreatic islet cells

cultured in vitro (95). Furthermore, overexpression of Leap2 in

mice reduced blood glucose levels (94). Thus, circulating levels of

Leap2 may influence glycemic control by blocking Ghrelin function

to modulate insulin secretion. Recent studies have found that Leap2

38-47 exhibits insulin-promoting properties in cultured human

pancreatic islet cells. The insulin-promoting properties are

consistent with the LEAP2 fragment (Leap2 38-47) acting as a

reverse Ghrelin receptor agonist (115). These impacts of Ghrelin

are mediated at least in part by direct GHSR interactions that are

differentially localized in a-cells, b-cells, d-cells secreting growth

inhibitory hormone (SST), and g-cells of the pancreas expressing

pancreatic polypeptide (pp) (109). In vitro, pharmacological and

genetic inhibition of islet-derived ghrelin significantly enhances

glucose-induced insulin response. In mice with modest obesity

brought on by a high-fat diet, ghrelin deprivation increased

insulin release and prevented decreased glucose tolerance (116).

Leap2 thereby inhibits the insulin-suppressing and glucose-

increasing actions of the ghrelin-GHSR pathway and might offer

a therapeutic application for the control of T2DM.
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5 Pcsk9

Pcsk9 (proprotein convertase subtilisin/kexin), has just come to

light as one of the most important hepatokines, which induces the

breakdown of hepatic low-density lipoprotein receptor (LDL-R) via

the ribosomal/lysosomal pathway, thereby increasing circulating

low-density lipoprotein cholesterol (LDL-C) levels (117, 118). It is

expressed to a much lesser extent in the pancreas, adipose cells, gut,

and kidney than it is in the liver, which has a high expression of it

(119). According to the findings of a clinical investigation, a high-

fructose diet elevated plasma Pcsk9 concentrations by 28% in

healthy subjects and by 34% in the progeny of patients with

T2DM who were more likely to be insulin resistant (120). As a

result, decreasing plasma levels of PCSK9 presents itself as an

intriguing possible treatment target for dyslipidemia in diabetic

patients. Interestingly, feeding induced an increase in hepatic

PCSK9 levels. Due to the increased insulin levels during feeding,

it leads to the activation of Pcsk9 transcription by SREBP-1c (121).

Given this characteristic, Pcsk9 is also referred to as feeding-

induced hepatokine. Thus, we suggest that feeding-induced

hepatokine Pcsk9 plays a role in T2DM. In this chapter, we

describe in detail the impact of feeding-induced hepatokine Pcsk9

on the development of T2DM by acting on adipose tissue and the

pancreas to improve glucolipid metabolism.
5.1 Effect of Pcsk9 on lipid metabolism

WAT malfunction and IR are thought to contribute

significantly in the development of T2D, which delays clearance

of triglyceride-rich lipoproteins (TRL), promotes elevated plasma

TG and NEFA and flow to other peripheral tissues, leading to apoB

overproduction, systemic lipotoxicity, inflammation, IR, and

hyperinsulinemia (122–124). Upregulation of LDL-R uptake is

associated with abnormal adipocyte metabolic function and risk

of diabetes mellitus. Subjects who had normal cholesterol levels but

had lower plasma levels of PCSK9 and higher levels of LDL-R and

CD36 on the surface of their WAT also exhibited higher levels of

WAT NLRP3 inflammasome activity and T2D-related hazard

indicators (125). It’s possible that this is because LDL causes a

reduction in adipocyte activity. Consistently, native LDL reduced

WAT function and inhibited preadipocyte differentiation and

function in mice (126). Others have reported that oxidized low-

density lipoprotein (OxLDL) inhibits adipocyte differentiation

(127). however, this effect is dependent on CD36 (a native

scavenger receptor for VLDL and LDL, oxLDL, and NEFA) (128,

129). Of note, NLRP3/IL-1b inflammatory pathway stimulation

promotes WAT malfunction and T2D and is controlled by LDL-R

and CD36. It was revealed that oxLDL in CD36-internalized

macrophages (130) and oxLDL and native LDL in endothelial

cells (131) enhance the NLRP3 inflammasome, resulting in the

release of the pro-inflammatory cytokine white IL-1b, which
impedes insulin signaling in multiple cells, including adipocytes,

b-cells, and hepatocytes (132, 133). Demers et al. declared that

Pcsk9 stimulates the breakdown of CD36 in the acidic compartment
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behind the endoplasmic reticulum through a proteasome-sensitive

mechanism that contributes to reducing the uptake of fatty acids

and the deposition of triglyceride in tissues (134). Furthermore,

Pcsk9 also limits visceral adipogenesis by degrading adipose tissue

VLDL-R and LDL-R (135, 136). In some populations, elevated

Plasma apolipoprotein B (apo B) plasma counts can predict the

incidence of T2D 3-10 years prior to the onset of T2D

independently of traditional risk factors (137, 138). ApoB plasma

level indicates the quantity of small, dense LDL particles (137).

Higher plasma apoB/pcsk9 levels are related with risk indicators for

WAT malfunct ion and T2D, inc luding postprandia l

hypertriglyceridemia, IR, hyperinsulinemia, and increased plasma

interleukin 1 receptor antagonist (IL-1ra), according to multiple

research (139, 140). Recently, we discovered that this ratio was

indeed linked to high expression of LDL-R and CD36 on the WAT

surface as well as WAT malfunction, inflammation, and IR (141).

Therefore, Pcsk9 may be beneficial in improving WAT

malfunction, inflammation, and IR, thereby reducing the hazard

of T2DM.
5.2 Impact of Pcsk9 on
glucose metabolism

In pancreatic b-cells, cholesterol is an integral part of the cell

membrane and is involved in controlling the physical properties of

the cell membrane, thus influencing the distribution and the

functionality of membrane proteins, as well as the formation and

fusion of vesicles (142). Whereas cholesterol accumulation is mainly

via LDL-R, Cholesterol overload in b-cell s is a mechanism that

limits or destroys glucose-stimulated insulin secretion (GSIS) (143),

and it is related to any genetic or pharmacological treatment that

raises LDL-R expression. It is believed that factors that influence the

homeostasis of cellular cholesterol metabolism can have an effect on

the beta-cell activity as well as the development of diabetes (144). In

contrast, Roehrich et al. showed that human lipoproteins play an

important role in modulating the survivability of b-cells. Purified
human VLDL and LDL induced increased apoptosis and decreased

insulin transcript levels. Conversely, HDL effectively counteracts

cell death through mechanisms such as stimulation of Akt/protein

kinase B (Akt/protein kinase B) and inhibition of caspase-3 cleavage

(145). These findings point to the possibility that changes in

lipoproteins are linked to the beta-cell malfunction that is seen

throughout the advancement of T2DM. Similarly, Cnop et al. found

a series of lipid abnormalities in individuals having T2DM that

associated with the accumulation of cholesterol and fatty acids in

pancreatic b-cell s and may lead to islet degeneration (146). It has

been shown that Pcsk9 reduces LDL-R, which in turn reduces

cholesterol accumulation in pancreatic b-cells and promotes

increased glucose-dependent insulin secretion (GSIS) (147).

Furthermore, Mbikay et al. reported that male mice with Pcsk9

deletion above four months old had more LDL-R while having

lesser insulin in their pancreas and showed hypoinsulinemia,

hyperglycemia, and glucose intolerance (148). Thus, Pcsk9

prevents islet degeneration and promotes insulin secretion by
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limiting pancreatic b-cell cholesterol accumulation. Notably,

circulating/liver-derived (the primary target of monoclonal

antibodies) does not affect the b-cell function and insulin

secretion (147). Ramin et al. found that neither exogenous

PCSK9, Alirocumab, nor PCSK9 silencing significantly affected

glucose-stimulated insulin secretion (GSIS) from pancreatic b-
cells (149). Similarly, Peyot et al. demonstrated that Pcsk9

deficiency did not have any toxic effects on b-cell activity and

glucose homeostasis in either the whole-body KO or bKO mouse

models (150). According to these findings, anti-PCSK9

medications, which primarily target circulating Pcsk9, have only a

minimal influence on the malfunction of b-cell s and the prevalence
of diabetes. In conclusion, Pcsk9 improves T2DM by limiting

pancreatic b-cell cholesterol overload, maintaining glucose

metabolic homeostasis, and preventing b-cell malfunction.
6 Clinical consideration of feeding-
induced hepatokines in T2DM

Plasma levels of adropin are lower in individuals diagnosed with

T2DM, particularly those who are obese or overweight (151). Recently,

Adropin has also been increasingly studied in relation to diabetes-

related complications. In addition to its function as a marker of

malfunctional endothelium cells, adropin also has a preventative

effect on the occurrence and advancement of cardiovascular diseases

(26, 27, 152). Elevated plasma adropin concentrations in male

individuals with T2DM patients and those showing obesity who

were treated with liraglutide can partially explain the cardiovascular

benefits and protective effects (153). Adropin, as a potential anti-

inflammatory factor (154), emerges as a potential biomarker for

predicting the development of MAFLD in patients with T2DM (155)

and diabetic kidney disease (DKD) (156). In addition, the therapeutic

potential of adropin for T2DM is demonstrated by its effects on the

activity of various elements of the endocrine system, including the

adrenal cortex. It has been shown that adropin inhibits steroidogenesis

and secretion of adrenocorticotropic hormones (e.g., cortisol and

aldosterone) in HAC15 cells by binding to the GPR19 receptor and

activating the TGF-b-dependent pathway (157). Cortisol, a

glucocorticoid that raises blood sugar and reduces insulin secretion

(158), has been shown in a clinical study to increase insulin resistance

in patients with T2D when the HPA axis loses its ability to lower

cortisol levels during hyperglycemia (159). Similarly, aldosterone has

been associated with glucose intolerance and insulin resistance, and

drugs related to mineralocorticoid receptor (MRs) antagonists have

been used to improve insulin resistance and endothelial dysfunction

(160). Furthermore, the CNS effects of adropin inhibition of drinking

water were also associated with the expression of GPR19 receptors

(161). Perhaps adropin plays an important act in the control of water

content in the body by modulating the CNS, with a pivotal role in

preventing the intake of additional fluids. This could have a positive

effect in relieving renal load in patients with diabetic nephropathy. The

current study did not identify the adropin receptor(s), and clarifying

the receptor(s) for adropin has potential implications for the treatment

of type 2 diabetes. Some researchers have suggested that the biological

effects of adropin are obtained by direct binding to the G protein-
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coupled receptor GPR19 (22, 161, 162), but the study by Foster et al.

failed to confirm that adropin interacts with GPR19 (163). However, it

has been shown that Adropin is a meningeal-binding protein that

interacts with NB-3. Adropinmay be important for NB-3 recruitment,

concentration, andNotch1 receptor binding, which in turn contributes

to cerebellar development (164). In addition, adropin may exert its

physiological effects by acting directly on neurons in the PVN (165).

PVN is a key autonomic control center that plays an important role in

the regulation of fluid balance (166), energy homeostasis (167), and

cardiovascular regulation (168). These findings further solidify that

Adropin has an endocrine function as a hepatokine and provide the

framework needed to link its peripheral effects to its role in the central

nervous system.

Recent studies suggest thatMANF performs a crucial part in food

consumption aswell as energy homeostasis (169) and its involvement

in the modulation of metabolic disorders. Multiple clinical research

declared that there is an association between T2DM and circulating

MANF levels. SerumMANF levels were elevated in newly diagnosed

prediabetic and T2DM patients than in non-diabetic controls (170),

while circulating MANF levels were significantly diminished in

T2DM patients (49). This is because early in patients with T2DM,

IR in the liver, skeletal muscle, and adipose tissue causes endoplasmic

reticulum stress in these tissues, inducing MANF expression. The

compensatory increase in MANFmay act as a protective mechanism

against endoplasmic reticulum stress-induced cellular damage

against disease progression, but as the disease progresses,

accompanied by prolonged glucotoxicity and/or lipotoxicity,

MANF expression decreases, thereby exacerbating the illness.

Additionally, the negative correlation of MANF with FBG and

HbA1c was confirmed by the results (49). Therefore, MANF may

be a new therapeutic candidate to protect the organism from

lipotoxicity and glucotoxicity-induced endoplasmic reticulum stress.

Through its interaction with the growth hormone secretagogue

receptor (GHSR), the hormone ghrelin is able to control not only

the amount of food that is consumed but also the level of glucose in

the blood (171). A recently discovered endogenous ligand of the

GHSR is known as Leap2 (172). The reduction in serum ghrelin

levels and the elevation of Leap2 levels in individuals with type 2

diabetes may represent a physiological compensation as a response

to a positive energy balance to maintain a normal energy balance.

Lowering the Ghrelin/Leap2 ratio in individuals with T2DM may

lower the overactivation of the GHSR in obese patients, which in

turn may restore normal energy homeostasis (96). This viewpoint is

reinforced by a paper that showed improvements in obesity and

diabetes when levels of acyl ghrelin were reduced, levels of Leap2

were increased, or GHSR activity was blocked (173). A recent

clinical study has shown that exogenous LEAP2 reduces

postprandial glucose and suppresses appetite in healthy men, and

these effects may be mediated through the GHSR (174). Thus the

discovery of the endogenous inverse agonist LEAP2 may reveal

potential therapeutic targets for gastric hunger-related diseases,

including type 2 diabetes and obesity, as it interacts with gastric

hunger and is expressed at elevated levels after RYGB surgery (115).

Notably, many gastrin/gastrinase targeted drugs, such as anti-

gastrin L-RNA inducers (anti-gastrin vaccines), GHSR

antagonists, GHSR inverse agonists, GOAT inhibitors, cyclized
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deacetyl-gastrin analogs, none of which have entered late-stage

clinical trials for the treatment of obesity or type 2 diabetes due

to uncertainty about their safety and/or efficacy in humans (175–

178). Therefore, further studies are needed to confirm the safety of

LEAP-2 based compounds.

PCSK9, an endogenous suppressor of the LDLR pathway, works

by guiding the breakdown of LDLR to the lysosome (179). PCSK9 is

thought to be a factor suggesting increased cardiovascular risk in

T2DM (180). Therefore, commercially available PCSK9 inhibitors

can lower circulating LDL-C, thereby treating dyslipidemia in

T2DM (181, 182). Recent studies have shown that Patients who

have prodromal diabetes but not yet T2DM lack plasma PCSK9

levels that can forecast their likelihood of developing T2DM (183).

Circulating levels of PCSK9 are linked to dyslipidemia in T2DM,

which we suggest is due to its unique physiological functions related

to lipid metabolism, but its beneficial effects on metabolic organs

cannot be ignored, and anti-PCSK9 treatments that focus on

circulating PCSK9 have a minimal effect on the organs that are

being targeted. To date, up to nine PCSK9 inhibition strategies have

been or are being developed to either block it’s binding to LDLR or

prevent its maturation, secretion, or synthesis (184). These

therapies include the use of anti-PCSK9 monoclonal antibodies

(e.g., two FDA-approved drugs: alirocumab and evolocumab) (185),

antisense oligonucleotides (ASO), small interfering RNAs

(siRNAs), vaccines and small molecules (186). In patients with

type 2 diabetes and hypercholesterolemia or mixed dyslipidemia

treated with statins, PCSK9 inhibitors significantly reduced LDL-C,

non-HDL-C and apoB levels. In addition, favorable changes were

observed in postprandial levels of celiac disease, VLDL-C, and LDL-

C (187, 188). Therefore, inhibition of PCSK9 is a promising new

way to improve dyslipidemia in patients with T2DM to prevent

cardiovascular disease. It should be noted, however, that completed

clinical trials have not shown adverse effects of PCSK9 inhibitors on

the risk of diabetes, but the safety of the inhibitors should be

validated in long-term randomized trials (189).
7 Conclusion and future perspective

The liver is a vital organ in the body’s reaction to alterations in

nutritional condition because it performs a crucial part in glucose

and lipid metabolism. This review summarizes the crosstalk of some

feeding-induced hepatokines Adropin, Manf, Leap2, and Pcsk9 in

the liver and extrahepatic tissues such as brain, adipose, heart, and

pancreatic tissues, and by targeting these feeding-induced

hepatokines is expected to be a possible therapy for T2DM to

help in control and treatment.

Many recent studies have demonstrated the high sensitivity of the

liver to metabolic changes during fasting and refeeding, and here we

discuss the important role played by other hepatokines regulated

during the feeding-fasting-refeeding cycle concerning energy and

glucolipid metabolism. For instance, refeeding signals during

intermittent fasting (IF) induce the liver to produce a release of
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pregnancy band protein (PZP), and circulating PZP binds to GRP78

on the cell surface via the p38 MAPK-ATF2 signaling pathway,

increasing UCP1 expression in BAT. PZP acts as a key hepatokine

regulating IF, triggering energy homeostasis via the liver/BAT axis

(190). Another feeding-induced hepatokine Tsukushi (TSK), is also

involved in regulating energy metabolism through the liver/BAT axis.

TSK ablation enhances thermogenic gene expression in BAT and

suppresses obesity-associated inflammation in the liver and adipose

tissue. Meanwhile, TSK acts as a metabolic signal from the liver,

balancing the activation of hypothalamic melanocortin circuits during

feeding (191). Angptl8 is a key regulator of the liver clock in response to

food. angptl8 is regulated by nutritional and hormonal factors, and

feeding induces an increase in its levels (192). It has been reported that

ANGPTL8 not only induces the expression of brown adipocyte

markers (193) but also promotes subcutaneous white adipose tissue

(SAT) browning under acute and chronic hypothermic conditions

(194). Fibroblast growth factor 21 (FGF21) is known to be a hepatokine

induced by fasting and is being pursued as a therapeutic target for

diabetes and obesity due to its rapid and effective action in improving

insulin sensitivity (195). However, several studies have also

demonstrated that FGF21 maintains a presence and functional role

even during feeding. The expression of the FGF21 gene is paradoxically

regulated by fasting and feeding signals. On the one hand, two fasting

signals, including PPARa and glucagon-PKA, increase the expression

of FGF21 gene. On the other hand, glucose and xylitol, which are

feeding signals, also induced FGF21 expression through ChREBP

activation (196). Overall, expression of the human FGF21 gene is

paradoxically independently regulated by fasting and feeding signals.

These regulatory mechanisms suggest that FGF21 increases in

response to nutritional crises, including starvation and overfeeding.

Therefore, FGF21 levels are likely to be usefulmarkers for determining

our nutritional status. Additionally, recent studies have identified a

novel fasting-induced hepatokine orosomucoid (ORM) 2 as a key

regulator of hepatic de novo lipogenesis (DNL) production. ORM2

plays an important role in inhibiting lipogenesis and maintaining

hepatic and systemic lipid homeostasis. Therefore, ORM2 and its

analogs may provide a potential pharmacological treatment for

dyslipidemia (197). All in all, most of the regulatory responses to

diet initially occur in the liver, and hepatokines play a key role in

maintaining nutritional homeostasis by regulating the metabolism of

other organs as signal messengers from the liver.

Given the interaction between these feeding-induced

hepatokines and multiple organs, further in vivo experiments are

needed to investigate their relationship with glucolipid metabolism,

energy homeostasis, and inflammation, thus presenting novel

approaches for the clinical management of diabetes in the years

to come. Important areas of future research include (1)

understanding how preclinical evidence of feeding-induced

hepatokines translates to human studies, (2) determining the

mechanisms by which feeding-induced hepatokines and other

secreted factors integrate to modulate metabolism through

interorgan interactions, (3) determining the pathology of these

hepatokines in the development of diabetes physiology, will help

to improve the prevention and even the treatment of this disease.
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We hope that this will systematize the knowledge of feeding-

induced hepatokines and help establish new lines of research

regarding their role in metabolic organs.
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