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LPXRFa and kisspeptin systems
in the brain-pituitary axis of
half-smooth tongue sole
(Cynoglossus semilaevis)

Bin Wang1,2, Aijun Cui1,2, Yongjiang Xu1,2*, Yaxing Zhang1,
Yan Jiang1,2 and Xuezhou Liu1,2
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Qingdao, China, 2Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for
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LPXRFa, also known as gonadotropin-inhibitory hormone (GnIH), and kisspeptin

(Kiss) are two major hypothalamic peptides that modulate the reproductive axis

of vertebrates, including teleosts. However, little information is available

regarding the actions of nutritional status on the regulation of these two

neuroendocrine systems in fish. Herein, we assessed the effects of starvation

and refeeding on the expression of lpxrfa, kiss2 and their receptors (lpxrfa-r and

kiss2r respectively) at the brain-pituitary level of half-smooth tongue sole

(Cynoglossus semilaevis). Food deprivation for 4 weeks induced a rise in brain

lpxrfa as well as brain and pituitary lpxrfa-r mRNA levels, and refeeding restored

brain lpxrfa and lpxrfa-r expression back to normal. However, pituitary lpxrfa-r

mRNA levels still remained high after 1 week of refeeding. Neither lpxrfa nor kiss2

transcripts in the pituitary were altered by fasting, but their mRNA levels

increased significantly after 1 week of refeeding, and declined back to the

control levels after 2 weeks of refeeding. None of brain kiss2 and kiss2r along

with pituitary kiss2r transcripts were modified by the nutritional status. In

summary, our results revealed an interaction between energy status and the

elements of LPXRFa and Kiss systems in the brain-pituitary axis of half-smooth

tongue sole. Food deprivation and refeeding differentially regulated the two

systems, which provided additional evidence for the involvement of the LPXRFa

and Kiss systems in the regulation of reproduction by energy balance in non-

mammalian species.
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1 Introduction

In 2000, a novel hypothalamic neuropeptide was discovered in

the Japanese quail, and was termed gonadotropin-inhibitory

hormone (GnIH) based on its ability to inhibit gonadotropin

release (1). Subsequently, its homologues have been identified in

various vertebrates, including fish, amphibians, reptiles, birds and

mammals (2–4). GnIH is also called LPXRFa in teleosts or

RFamide-related peptide (RFRP) in mammals, and its precursor

encompasses two, three or four putative/mature peptides depending

on the species, which generally possess a common C-terminal

LPXRFamide (X = L or Q) motif (3–5). There is compelling

evidence that GnIH exerts an inhibitory effect on each level of the

brain-pituitary-gonadal axis via its cognate receptor GPR147

(namely GnIH-R or LPXRFa-R), and it also participates in stress

response, biological rhythms and social behaviors (6–8). Three

different GPR147 types are found in some Cypriniform species,

but only one exists in other vertebrates investigated so far (4). The

molecular mechanisms of GnIH actions have been investigated in

mammals (9–12), chicken (13), Nile tilapia (14), orange-spotted

grouper (15), zebrafish (16), half-smooth tongue sole (17), chub

mackerel (18), and European sea bass (19). It is of note that

activation of GnIH receptor can interfere with signaling pathways

induced by other neuroendocrine factors (9–13, 16, 19–21).

Following the discovery of GnIH, another hypothalamic

neuropeptide kisspeptin (Kiss) has been recognized as an essential

stimulator of reproduction in mammals (22, 23). In contrast to

most mammals in which only one kiss and one receptor genes have

been characterized, up to three kiss genes (kiss1, kiss2 and kiss3) and

four receptor genes (kissr1, kissr2, kissr3 and kissr4) have been

identified in non-mammalian species (24), which increases the

complexity of the Kiss/KissR systems involved in the control of

reproduction (25, 26). In most teleost species, both kiss1 and kiss2

along with kissr2 and kissr3 genes have been reported, whereas only

the kiss2/kissr2 system was identified in other fish species, including

half-smooth tongue sole (26, 27). There is considerable evidence

supporting that Kiss exerts a stimulatory action on teleost

reproduction, as in mammals (26–28). However, recent studies on

gene knockout of kiss and/or kissr in zebrafish and medaka revealed

that the Kiss/KissR system is dispensable for normal reproduction

(29–32). Thus, much more mutant studies in various fish species are

still required to clarify the reproductive role of the Kiss/KissR

system in teleost.

A close association between energy balance and reproduction

has been documented, and various hypothalamic neuropeptides are

involved in the regulation of these two critical physiological

processes, either directly or indirectly (33, 34). For example,

LPXRFa stimulated food intake in chicks (35), Pekin ducks (36),

sheep (37), mice (37), rats (38), jerboa (39), and cynomolgus

monkeys (37). Conversely, Kiss reduced appetite in rats (40),

mice (41, 42) and jerboa (39). Such comparative studies have not

yet been performed in teleosts. In addition, hypothalamic lpxrfa

mRNA levels were increased during depressed food intake in heat-
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exposed chicks (43). However, food deprivation resulted in a

decrease in the number of LPXRFa-immunoreactive neurons in

the hypothalamus of a female songbird, the zebra finch (44). Fasting

had no effect on the number of hypothalamic LPXRFa-

immunoreactive cell bodies or lpxrfa mRNA expression in zebra

finch males (45). Gonadal lpxrfa mRNA levels did not differ

between fasted and control males, either (45). Similarly, no

changes in hypothalamic lpxrfa transcripts were noticed in hens

maintained on a diet restricted to 50% of ad libitum feeding,

compared to control hens allowed free access to food for 7 days

(46). To the best of our knowledge, only one report is available in

fish regarding the effect of feeding status on the LPXRFa/LPXRFa-R

system (47), in which fasting increased lpxrfa mRNA levels in the

brains of wild-type zebrafish females and Casper zebrafish

males, respectively.

In addition, Kiss has emerged as a molecular switch between

reproduction and energy homeostasis in vertebrates. Fasting

induced a decline in kiss1 and kissr1 mRNA levels in the

hypothalamus of mice (48). Interestingly, food deprivation led to

a concomitant increase in hypothalamic kissr1 and decrease in kiss1

mRNA levels in prepubertal rats (49). On the contrary, starvation

stimulated hypothalamic mRNA levels of kiss2 and kissr2 in

Senegalese sole (Solea senegalensis) (50), and up-regulated kiss2

and kissr2_v1 expression in the hypothalamus of pejerrey

(Odontesthes bonariensis) (51). Taken together, the molecular

mechanisms mediating the effects of negative energy balance on

reproduction may differ among various species, which merits

further studies (26, 52).

Using the half-smooth tongue sole (Cynoglossus semilaevis) as a

model, we have previously cloned the full-length cDNA sequences

of lpxrfa, lpxrfa-r, kiss2 and kiss2r (also called kissr2), and provided

evidence for their implication in the control of reproduction and the

possible signaling pathways elicited by LPXRFa and Kiss2 peptides

as well as their interaction on cell signaling (17, 20, 21, 53–56).

Given that the way energy balance affects the reproductive axis is

still poorly understood in fish, this study aimed to evaluate the

effects of nutritional status on the transcript levels of both LPXRFa/

LPXRFa-R and Kiss2/Kiss2R systems at the brain-pituitary levels of

half-smooth tongue sole.
2 Materials and methods

2.1 Animals

Approximately 2-year-old female half-smooth tongue soles

were purchased from a local fishery (Qingdao, China), and

maintained in an indoor concrete tank with recirculating seawater

(dissolved oxygen > 5 mg/L, pH 7.8–8.2, salinity 27–31 ppt, and

water temperature 24–26°C). Fish were exposed to a cyclical

photoperiod (12L:12D) and fed to satiation twice daily as

described in detail previously (57).
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2.2 Starvation and refeeding experiment

In order to investigate the effects of nutritional status on mRNA

levels of lpxrfa, kiss2 and their receptors, we compared two groups

of half-smooth tongue sole, one under normal feeding condition,

and the other submitted to starvation followed by refeeding. The

experiment was previously performed (57) where half-smooth

tongue sole females with an average body weight of 530 g were

divided into two groups: one (control group) was fed to satiation

twice daily as mentioned above, and the other (starved group) was

fasted for 4 weeks and then refed to satiation twice daily for 2 weeks.

Brain and pituitary were collected from each group at 2, 4, 5 and 6

weeks, respectively, frozen in liquid nitrogen and stored in -80°C

freezer. The same cDNA samples, which were used to detect spx2

gene in our previous study (57), were used to analyze lpxrfa, lpxrfa-

r, kiss2, and kiss2r mRNA levels in the present study.
2.3 RNA isolation and RT-qPCR assay

Total RNA from the brain and pituitary was isolated and reverse

transcribed to cDNAs which were used as templates for qPCR

analysis of lpxrfa, lpxrfa-r, kiss2 and kiss2r in this study. The PCR

amplification was carried out on Mastercycler® ep realplex Real-

time PCR System (Eppendorf), and the thermal cycling parameters

were as follows: 95°C for 30 s, and 40 cycles of 95°C for 5 s and 60°C

for 20 s. Data were calculated by the comparative Ct method using

18s as a reference gene (20). The specific primers and amplification

size values for each gene are shown in Table 1.
2.4 Statistical analysis

The results were analyzed by Student’s t-test using SPSS17.0,

and are presented as mean ± SEM. Differences were considered

statistically significant when p < 0.05.
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3 Results

3.1 Effects of nutritional status on brain-
pituitary lpxrfa mRNA levels

As shown in Figure 1A, there was no significant changes in the

brain lpxrfa mRNA levels after 2 weeks of food deprivation when

compared to the control group. However, evident increase in the

brain lpxrfa expression was observed after 4 weeks of starvation

(Figure 1A). The brain lpxrfa mRNA levels of starved fish were not

significantly different from the corresponding controls during the

refeeding period (Figure 1A). The pituitary lpxrfa gene in fish that

fasted for 2-4 weeks displayed similar expression profiles compared

with normal fed animals (Figure 1B). The pituitary lpxrfa

transcripts displayed an evident increase at 5 weeks (1 week after

refeeding), and dropped back to the levels of the control fish at 6

weeks (Figure 1B).
3.2 Effects of nutritional status on
brain-pituitary lpxrfa-r mRNA levels

Fasting for 4 weeks promoted brain lpxrfa-r mRNA levels, and

brain lpxrfa-r expression returned to basal levels after refeeding for

1 week and 2 weeks (Figure 2A). In the pituitary (Figure 2B), lpxrfa-

r mRNA levels increased markedly after starvation for 4 weeks, still

keeping high at 5 weeks, and declined to the levels of control group

at 6 weeks (2 weeks after refeeding).
3.3 Effects of nutritional status on brain-
pituitary kiss2 mRNA levels

As shown in Figure 3A, neither food deprivation nor refeeding

altered brain kiss2 mRNA levels. Similarly, pituitary kiss2 mRNA

levels did not show any significant changes after fasting for 2 weeks

or 4 weeks. However, pituitary kiss2 transcripts increased markedly
TABLE 1 List of primers used in this study.

Primer name Primer sequence (5'-3') Amplicon size (bp) GenBank accession No.

lpxrfa-F GGAAATCAGCCTACAGTGACAAAA 120 KU612223

lpxrfa-R GCCTCTCCAAGTCCAAACTCC

lpxrfar-F GCTTTTCATGTTGTCCTGGTTG 147 KX839491

lpxrfar-R GGGTTGATGCTTGAGTTGGAG

kiss2-F GGCAACTGCTGTGCAACGA 133 KX090946

kiss2-R AAGACAGAAAGCGGGGAGAAC

kiss2r-F AGTTGTGATCGTCCTCCTCTTTG 92 KX685668

kiss2r-R AGTTGGGTTGGTATTTGGGATG

18s F GGTCTGTGATGCCCTTAGATGTC 107 GQ426786

18s R AGTGGGGTTCAGCGGGTTAC
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after 1 week of refeeding, and there were no significant differences

between the two groups after 2 weeks of refeeding (Figure 3B).
3.4 Effects of nutritional status on
brain-pituitary kiss2r mRNA levels

No apparent differences between the two groups in the

expression of brain kiss2r were observed during the starvation

and refeeding periods (Figure 4A). Similar results were obtained

for pituitary kiss2r transcripts, although a tendency of increase was

noticed at 4 weeks and 5 weeks with their mean values not

statistically different from the corresponding controls (Figure 4B).
4 Discussion

Reproduction is tightly coupled to metabolic status, and food

restriction disturbs the reproductive axis by altering the signaling of

some hormones or neuropeptides (34, 58, 59). It has been well

demonstrated that both LPXRFa and Kiss peptides play a key role in

the regulation of reproductive axis at multiple levels in vertebrates,

including fish. However, the link between energy balance and

reproduction via these two neuropeptides is still largely unknown

(2, 26, 27, 52, 60). In the current study, we evaluated the effects of

nutritional status on the transcript levels of the elements of both
A

B

FIGURE 3

Effects of nutritional status on the brain (A) and pituitary (B) kiss2
mRNA levels in half-smooth tongue sole. Data were normalized
against 18s transcripts and are presented as mean ± SEM (n = 4). A
star indicates significant difference between fed and starved/refed
groups (p < 0.05).
A

B

FIGURE 2

Effects of nutritional status on the brain (A) and pituitary (B) lpxrfa-r
mRNA levels in half-smooth tongue sole. Data were normalized
against 18s transcripts and are presented as mean ± SEM (n = 4). A
star indicates significant difference between fed and starved/refed
groups (p < 0.05).
A

B

FIGURE 1

Effects of nutritional status on the brain (A) and pituitary (B) lpxrfa
mRNA levels in half-smooth tongue sole. Data were normalized
against 18s transcripts and are presented as mean ± SEM (n = 4). A
star indicates significant difference between fed and starved/refed
groups (p < 0.05).
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LPXRFa/LPXRFa-R and Kiss2/Kiss2R systems at the brain-pituitary

levels of half-smooth tongue sole.

Our results showed that starvation stimulated mRNA levels of

lpxrfa and lpxrfa-r in the brain along with pituitary lpxrfa-r, with no

effects on pituitary lpxrfa expression in half-smooth tongue sole.

Interestingly, fasting increased the brain lpxrfa transcripts in wild-

type zebrafish females, but not in males (47). However, brain lpxrfa

expression was higher in fasted Casper zebrafish males, but not in

females (47). To our knowledge, brain and pituitary lpxrfa-r

expression has not been investigated in fish under fasting

conditions. Increased brain lpxrfa expression levels or LPXRFa-

immunoreactive cell number in response to food deprivation was

also observed in other species, including chicks (43, 61), Pekin

ducks (36) and Syrian hamsters (62). Considering the orexigenic

role of LPXRFa in birds and mammals (63), it is reasonable to

assume that elevation of LPXRFa in the brain under fasting

condition is sufficient to induce feeding behavior. Fasting did not

alter lpxrfa expression in the hypothalamus of zebra finch males, in

both mRNA and immunoreactivity levels (45). However, the

number of LPXRFa-immunoreactive cells declined significantly in

zebra finch females, showing sexual dimorphism of LPXRFa

changes in response to nutritional stress (44). In addition,
Frontiers in Endocrinology 05
hypothalamic lpxrfa-r expression was lower in fasted chicks,

perhaps due to receptor down-regulation in response to increased

lpxrfa expression (61). Taken together, complex regulation of the

LPXRFa/LPXRFa-R system exists in various species during negative

metabolic state.

Similarly, the actions of negative nutritional status on the Kiss/

KissR system are controversial. In the current study, neither kiss2

nor kiss2r were altered in the brain and pituitary after starvation for

2 or 4 weeks, although an evident increase in pituitary kiss2

expression was observed at the first week after refeeding. In

another flatfish species, the Senegalese sole, fasting increased

mRNA levels of kiss2 and kiss2r in the hypothalamus, without

any effects in the stomach (50). Interestingly, in wild-type zebrafish,

fasting increased the brain expressions of kiss1 in females and kiss2

in males, respectively (47). However, neither kiss1 nor kiss2

transcripts were affected by fasting in Casper zebrafish (47). In

male European sea bass, hypothalamic kiss1, kiss2, kiss1r and kiss2r

transcripts were elevated after a prolonged period of food restriction

(64). Food deprivation also resulted in a significant increase in

hypothalamic kiss2 and kissr2_v1 mRNA levels in adult pejerrey

males, without affecting kissr2_v1 and kissr2_v2 expression in the

testis and habenula (51). By contrast, starvation decreased kiss1 and

kissr1 expression in the hypothalamus of rhesus monkeys and mice

(48, 65). Fasting also reduced brain kiss1 expression in rats (66),

lambs (67), and monkeys (68). Interestingly, a decrease in

hypothalamic kiss1 with a concomitant rise in kissr1 mRNA levels

was noticed in fasted rats (49). Altogether, kisspeptin signaling also

mediates energy balance effects on the reproductive axis in fish, but

the neuroendocrine mechanisms underlying the actions of

undernutrition and low energy availability on the reproductive

axis may differ between mammals and teleosts (69).

In summary, food deprivation differentially modulates gene

expression of the components of LPXRFa and Kiss systems in

half-smooth tongue sole. Combined with results from previous

studies, differences of LPXRFa and Kiss in response to starvation

could occur because of variations in species, sex, reproductive

status, tissue and the elapsed time after treatment, indicating that

LPXRFa and Kiss may provide a molecular switch between

reproduction and appetite in vertebrates. The nature of

starvation-elicited metabolic signals that alter LPXRFa and Kiss

signaling is yet not well known, especially in teleosts (34, 59), and

further studies are urgently needed to clarify how multiple signals

work in concert to control reproduction during negative

energy balance.
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FIGURE 4

Effects of nutritional status on the brain (A) and pituitary (B) kiss2r
mRNA levels in half-smooth tongue sole. Data were normalized
against 18s transcripts and are presented as mean ± SEM (n = 4). A
star indicates significant difference between fed and starved/refed
groups (p < 0.05).
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