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Introduction: Diabetic nephropathy is the leading cause of end-stage renal

disease, which imposes a huge economic burden on individuals and society, but

effective and reliable diagnostic markers are still not available.

Methods: Differentially expressed genes (DEGs) were characterized and functional

enrichment analysis was performed in DN patients. Meanwhile, a weighted gene

co-expression network (WGCNA) was also constructed. For further, algorithms

Lasso and SVM-RFE were applied to screening the DN core secreted genes. Lastly,

WB, IHC, IF, and Elias experiments were applied to demonstrate the hub gene

expression in DN, and the research results were confirmed in mouse models and

clinical specimens.

Results: 17 hub secretion genes were identified in this research by analyzing the

DEGs, the important module genes in WGCNA, and the secretion genes. 6 hub

secretory genes (APOC1, CCL21, INHBA, RNASE6, TGFBI, VEGFC) were obtained

by Lasso and SVM-RFE algorithms. APOC1 was discovered to exhibit elevated

expression in renal tissue of a DN mouse model, and APOC1 is probably a core

secretory gene in DN. Clinical data demonstrate that APOC1 expression is

associated significantly with proteinuria and GFR in DN patients. APOC1

expression in the serum of DN patients was 1.358±0.1292mg/ml, compared to

0.3683±0.08119mg/ml in the healthy population. APOC1 was significantly elevated

in the sera of DN patients and the difference was statistical significant (P > 0.001).

The ROC curve of APOC1 in DN gave an AUC = 92.5%, sensitivity = 95%, and

specificity = 97% (P < 0.001).

Conclusions: Our research indicates that APOC1 might be a novel diagnostic

biomarker for diabetic nephropathy for the first time and suggest that APOC1 may

be available as a candidate intervention target for DN.
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1 Introduction

Diabetic nephropathy (DN) is one of the most serious

complications of diabetes and 45% of DN patients will progress to

end-stage renal disease (ESRD) (1), which affects the quality of life

and causes a substantial economic burden to society (2). The gold

standard for diabetic kidney diagnosis remains renal pathology, but

renal puncture biopsy methods are invasive for DN patients. In recent

years, some biological signatures have been detected for the diagnosis

of DN, such as KIM-1, NGAL, suPAR, YKL-40, and so on (3–5).

However, there are no valid and reliable biological markers for the

diagnosis of DN.

GEO Database is a database established by the National Centre

or Biotechnology Information (NCBI) to determine the critical

genes and underlying molecular mechanisms for disease

pathogenesis and progression (6). Recently, bioinformatics and

machine learning methods extensively employed in biomarker

screening by using the GEO database (7–9). What’s more,

secreted proteins have significance in course of biological activity,

specifically in the diagnosis of diseases and future target therapies

(10, 11). This provides the opportunity to detect novel plasma

markers for the recognition of patients with DN.

The research aims to reveal potential predictor plasma

biomarkers of DN by data mining, which will generate novel

insights into the mechanisms of DN pathogenesis and provide

directions for future research into alternative therapies. If the

potential predictor plasma biomarkers accurately predict the

probability of DN occurring, the disease may be treated with

prevention and intervention at an early stage.
2 Materials and methods

2.1 DEGs data processing

Expression profiles of GSE96804 mRNA were obtained from the

GEO database (GPL17586 platform, Affymetrix Human

Transcriptome Array 2.0) (12). In total, 61 tissue biopsies, 41 tissue

samples from DN tissue samples and 20 from the normal, were

obtained from the National Clinical Research Center of Kidney

Diseases, Jinling Hospital, Nanjing University School of Medicine.
“Limma” packaged (13) in R software was used to process data and the

“ggplot2” (14), “Pheatmap” packages for drawing of figures. DEGs

were identified with |log Fold Change | ≥1 & adj P Val < 0.05.
2.2 GO and KEGG enrichment analysis

GO analysis was conducted using the ‘cluster Profiler’ (15), ‘GO

plot’, and ‘ggplot2’ packages for up- and down-regulated DEGs

with altered DN and normal kidney tissue. The KEGG pathway

enrichment analysis was completed by DEGs, and the figures were

generated with the packages “ggplot2” and “enrich plot”.
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2.3 WGCNA network construction and
data analysis

Gene co-expression networks of DN patients were constructed

based on the GSE96804 microarray dataset by the “WGCNA”

package (16). The soft-thresholding power was five when 0.9 was

used as the correlation coefficient threshold, and 50 was chosen as the

minimum number of genes in modules. To merge possible similar

modules, we defined 0.25 as the threshold for cutting height. A

heatmap between the correlation between modules and DN was

drawn, and the ME-brown gene module was the most related to DN.
2.4 Secreted genes download

729 secreted genes are available for the HPA database (https://

www.proteinatlas.org). Venn diagram (https://bioinfogp.cnb.csic.es/

tools/venny/index.html) demonstrates the genes which are

commonly associated with the 3 datasets (DEGs, WCANA, and

secreted to blood genes). In the common genes, we further filtered

the core secretory genes by using different machine algorithms (Lasso

and SVM-RFE algorithm).
2.5 Lasso algorithm and SVM-RFE algorithm
data analysis

Lasso logistic regression is a machine learning process that

determines covariates by seeking the l value that minimizes the

classification error (17). The “glmnet” package was utilized to

structure the LASSO model. Meanwhile, With SVM-RFE, an

approach for building machine training on support vector

machines, we detect the optimal variables by decimating the feature

vectors created by svm (18). Recursive features of differential genes

were acquired and erased by running the “e1071 package”, and the

research was conducted by applying the Lapply function to sort all the

features of the training set. Ultimately, the error rate is minimized and

the hub gene is eventually obtained.
2.6 Presentation of hub genes

The common genes derived from these two machine algorithms

are demonstrated by the Venn diagram, heat maps, line plots, and

deviation plots.
2.7 Biomarker expression validation and
clinical relevance

As illustrated in our previous research, the expression of

biomarkers was confirmed by using the Nephroseq database

(https://www.nephroseq.org/resource/main.html) (19). Meanwhile,

by using the database, biomarker expression and renal function

data were analyzed for correlation.
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2.8 Animal experiments

The STZ-induced DN mouse model was elucidated in detail in

our previous research (19), and among them, there were 5 mice in

the control group (Ctrl) and 5 mice in the diabetic nephropathy

group (DN). Following the successful construction of the DN

mouse model, we conduct the collection of experimental animals.

The research was approved by the Ethics Committee of Qilu

Hospital, Shandong University (Approval No: KYLL-2020

(KS)-030).
2.9 Western blot

The experimental operation of Western Blot was as described

(20). The main antibodies are described as follows: APOC1(1:2000,

Abcam, USA), GAPDH (1:4000; Proteintech Group, China).
2.10 IHC and IF

Immunohistochemistry and immunofluorescence of kidney tissue

sections as previously described (21) The main antibodies are

described as follows: APOC1(1:200, Abcam, USA), Goat anti-Rabbit

IgG Dy-Light 488 (1:500; Abbkine Scientific Company, USA).
2.11 ELISA experiment

We have collected serum specimens from DN patients and

healthy. Detection of biomarkers in serum with commercial Elisa

kits, ELISA method, in DN patients and healthy. Follow the

experimental steps in the Elisa kit instructions to detect the

expression level of the marker in the serum (Apolipoprotein CI

ELISA kit, Abcam, ab108808, USA).
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2.12 ROC

The “PROC” package was used to construct Receiver Operating

Characteristic (ROC) curves to characterise hub gene to evaluate the

diagnostic value of DN, as previously described (19).
2.13 Statistical analyses

Data are expressed as mean ± SEM. Software R4.1.2 was used to

draw the research Figures. GraphPad Prism 6.01 software was used in

statistical data analysis. Between the two groups, Student’s t-test was

used if the data matched the normal distribution, and the Kruskal-

Wallis test was used for non-normally distributed data. For statistical

analysis of the correlation between the two characters, the Spearman

test was applied. Statistical significance was set at P < 0.05, *P < 0.05,

**P < 0.01, ***P < 0.001.
3 Results

3.1 Characterisation of genes for DN using
GSE96804 microarray data

The experimental design was illustrated in Figure 1. Compared

to transcripts of controls, 504 DEGs were identified by patients,

respectively. Our analysis of the results is summarized in the

volcano plots, which reflect that 257 genes are up-regulated in DN

and 247 genes are down-regulated in DN (Figure 2A). In the

illustration, red represents up-regulated and green indicates

down-regulated genes. Results demonstrated two clusterings of

this data, namely the clusters Control and DN which represents

the control group and the DN patients in the heatmap (Figure 2B).

Analysis of GO in DEGs determined shared GO terms linked to

organic acid catabolic processes, and extracellular matrix

organization (Figure 2C). Enrichment pathways to KEGG are
FIGURE 1

Research flow chart.
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associated with the following: Arginine and proline metabolism,

Glycine, serine and threonine metabolism, and Protein digestion

and absorption (Figure 2D).
3.2 Hub gene screening for DN by WGCNA

The network topologies for the analysis of various soft threshold

powers were identified and the choice of 11 to structure the joint

expression network was considered reasonable (Figure 3A). The

similarity in gene expression is ascertained by pair-weighting

correlation metrics, and clustering is performed using topological

overlapping metrics. Gene modules are marked with color at the

bottom (Figure 3B). Pearson correlation coefficients for ME and

disease were calculated for all modules demonstrating the intimate

characteristics of the modules with DN. ME-brown (R = 0.53, P = 1e-

05) potentially represented particular features of DN patients

(Figure 3C). Furthermore, we observed that the correlation

coefficient between the GS of DN and the module members was

high in brown modules (R = 0.47, = 3.1e-21, Figure 3D). There was

potential biological relevance to heightened co-expression of the

genes in the ME-brown module.
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3.3 Screening of hub secretory genes for DN
by machine algorithms

Venn diagram illustrating common genes across algorithms,

filtering for 17 potential secretory genes that may be functionally

essential in DN (Figure 4A). By using 2 machine algorithms, Lasso

and SVM-RFE, to recognize the characteristic genes of DN. The 17

secreted genes are displayed in Figure 4B. By using 2 machine

algorithms, LASSO and SVM-RFE, characteristic genes of the DN

were identified again. The Lasso algorithm filtered out 9 potential hub

genes (Figures 4C, D), while the SVM algorithm filtered out 7

potential hub genes (Figures 4E, F).
3.4 Expression of 6 secretory genes in DN

The Venn diagram illustrates 2 machine algorithms obtained

common 6 hub secretory genes (APOC1, CCL21, INHBA, RNASE6,

TGFBI, VEGFC, Figure 5A). Furthermore, the expression of the six

genes in the GSE96804 cohort is illustrated by heatmap, line graphs,

and deviation plots (Figures 5B–D). The results revealed that 6

secretory gene generators screened for the research were significantly

more over-expressed in the diabetic nephropathy population.
B

C

D

A

FIGURE 2

Gene recognition and function enrichment of DEGs in GSE96804 database. (A) Volcano-map of DEGs (DEGs: |log2FC| > 1, adjusted P<0.05).
(B) Heatmap of the DEGs. (C) Circle map of GO enrichment analysis. (D) Circos map of the KEGG enrichment analysis. DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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3.5 Associated expression of APOC1 in DN

APOC1 expression is elevated in patients with diabetic

nephropathy through multiple cohorts of the experimental GEO

database (GSE96804, GSE47185, GSE30122, and the ERCB
Frontiers in Endocrinology 05
Nephrotic Syndrome Tublnt cohorts in Nephroseq database,

Figures 6A–D). ApoC1 expression was elevated in the kidney tissue

of mice with DN by Western blot (P < 0.05, Figure 6E). What’s more,

we revealed that APOC1 was expressed predominantly in the

glomerulus by immunohistochemistry of mouse kidney tissue
B

C D

A

FIGURE 3

Relationship of hub gene modules and DN phenotypes by WGCNA. (A) Network topology analysis at different soft threshold powers and network
connectivity validation at different weighting factors. (B) Cluster Dendrogram of modules colors were constructed with all the differentially expressed
genes. (C) MEs correlated with diagnosis for DN. (D) Scatterplots of gene significance for DN Module membership in brown module. ME, Module
eigengenes; WGCNA, weighted gene co-expression network analysis.
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(Figure 6F). These measurements were confirmed by tissue

immunofluorescence (Figure 6G).
3.6 Correlation of APOC1 expression with
clinical databases

Correlations between APOC1 and the clinical information were

validated by employing multiple cohorts from the Nephroseq database.

Outcomes demonstrated the APOC1 expression was positively correlated

with proteinuria in Schmid diabetes tubint cohorts (R2 = 0.515, P = 0.013,

Figure 7A). However, associations of APOC1 expression are negatively
Frontiers in Endocrinology 06
correlated with GFR inWoroniecka Diabetes Tublnt cohorts (R2 = 0.552,

P = 0.014, Figure 7B). Additionally, in ERCB Nephrotic Syndrome

Tublnt cohorts, APOC1 expression was positively correlated with

proteinuria (R2 = 0.632, P = 0.018, Figure 7C).
3.7 Plasma expression of APOC1 in DN
patients and ROC curve analysis

Altogether 20 healthy and 20 DN patients were enrolled in the

research, and the Baseline details were presented in Table 1.

Significantly, Elisa results demonstrated that APOC1 expression in
B

C D

E F

A

FIGURE 4

Hub secret genes selection in DN. (A) Venn diagram demonstrating the hub genes for the different algorithms. (DEGs, WCANA, and secreted to blood
genes). (B) 17 characteristically secret genes in DN patients. (C, D)Biomarker secret genes were selected by Lasso algorithm from the 17 potential hub
genes. (E, F) Biomarker secret genes were detected for DN by SVM-RFE algorithm from the 17 potential hub genes (the accuracy and the error rate of
the SVM model). Lasso, Least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination.
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the serum of DN patients was 1.358±0.1292mg/ml, compared to

0.3683±0.08119mg/ml in the healthy population (Figure 8A).

APOC1 was significantly elevated in the sera of DN patients

and the difference was statistical significant (P > 0.001).

Furthermore, APOC1 diagnostic effectiveness for DN as

demonstrated by ROC curves (AUC = 92.5%, sensitivity = 95%,

and specificity = 97%, P < 0.001, Figure 8B).
Frontiers in Endocrinology 07
4 Discussion

DN is considered to the most serious complication of diabetes

and imposes a substantial financial burden on individuals and

society (22). It is vital to diagnose DN early to improve the

prognosis of patients with DN and reduce the financial burden

(23). However, the most dominant clinical indicators for the
B

C

D

A

FIGURE 5

6 potential secretory genes were obtained in GSE96804 by machine algorithms. (A) The intersection of genes obtained by the two machine algorithms
(SVM-RFE and Lasso algorithms). (B) Deviation plots showed the expression of six secreted genes in DN. (C) Folding line graph illustrates the different
expression of 6 hub genes. (D) Heat plots revealed elevated expression of six secreted genes in DN.
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B

C D

E F

A

G

FIGURE 6

Exhibition of the expression of APOC1 in DN. (A–D) APOC1 manifested significantly higher expression in different cohorts of DN patients. [(A): GSE96804,
Ctrl=20, DN=41, (B) GSE47185, Ctrl=21, DN=12, (C) ERCB Nephrotic Syndrome Tublnt cohorts in Nephroseq database, Ctrl=9, DN=10, GSE 30122, Ctrl=13,
DN=9]. (E) Representative Western Blot indicates APOC1 expression to be higher in different mice, Ctrl (n = 4) or DN (n = 4). (F) IHC reveals increased
expression of APOC1 on glomeruli of mice with DN (Bar = 20 mm). (G) Representative protein immunofluorescence of APOC1 in the glomeruli of DN (Bar =
20 mm.). (Data presented as mean ± SEM, *P < 0.05).
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diagnosis of DN are still UACR and eGFR, in clinical practice (24).

Previous studies have demonstrated that damage to the kidney, such

as endothelial damage, tubulointerstitial dilatation, and interstitial
Frontiers in Endocrinology 09
fibrosis, has already occurred before the appearance of albuminuria

in patients with DN (25). The abnormalities in molecular markers

usually precede the clinical symptoms of the disease (26, 27).

Therefore, the urgent challenge is to identify suitable, stable, and

easily detectable biomarkers for DN diagnosis.

Microarrays have been extensively implemented in medical

research, such as biomarkers for disease diagnosis, and prognosis

(28, 29). Consequently, we investigated the differential genes in the

kidney tissue of diabetic nephropathy and healthy people by

microarray transcriptome analysis (Figure 2). The research

demonstrated that 257 up-regulated and 247 down-regulated genes

were compared to normal kidney tissue. Furthermore, we also

screened for gene modules closely correlated with diabetic

nephropathy by the WGCNA method (Figure 3). 17 secretory

genes were obtained in the differential and Me-Brown modules

(Figure 3, 4), which may have an essential role in DN.

Our investigation further screened for core secretory genes in

diabetic nephropathy using the Lasso and SVM-RFE machine

learning algorithms, which identified a total of six potential core

genes (Figures 4, 5). Among the six secreted genes, APOC1 is newly

identified as a member of the lipoprotein family and is closely

associated with lipid metabolism and immune inflammation. Our

research demonstrated elevated expression of APOC1 in DN.

Additionally, APOC1 expression was also confirmed by other
B

C

A

FIGURE 7

Correlation between APOC1 expression and proteinuria and GFR in Nephroseq database. (A) Correlation between APOC1 expression and proteinuria in
Schmid diabetes tubint cohorts (R2 = 0.515, P = 0.013). (B) Correlation between APOC1 expression and GFE in Woroniecka Diabetes Tublnt cohorts (R2 =
0.552, P = 0.014). (C) Correlation between APOC1 expression and GFE in ERCB Nephrotic Syndrome Tublnt cohorts (R2 = 0.632, P = 0.018).
TABLE 1 Baseline characteristics.

Characteristic Ctrl (n = 20) DN (n = 20)

Age (year) 46.10 ± 2.625 49.30 ± 3.361

Sex (Female/male) 11/9 7/13

SBP (mmHg) 122.9 ± 1.832 131.8 ± 5.333

DBP (mmHg) 70.70 ± 1.223 75.95 ± 2.300

eGFR (ml/min1.73m2) 103.0 ± 5.345 106.4 ± 9.705

Cr (mmoI/L) 72.40 ± 3.438 82.80 ± 9.288

ACR 0.0035 ± 0.001313 0.2425 ± 0.1029*

CHO (mmol/l) 5.111 ± 0.2631 4.603 ± 0.3581

TG (mmol/l) 1.459 ± 0.2988 2.018 ± 0.3723

UA (mmol/l) 306.9 ± 13.10 329.9 ± 20.37

APOC1(mg/ml) 0.3683 ± 0.08119 1.358 ± 0.1292***
SBP, Systolic Blood Pressure; Diastolic Blood Pressure; eGFR, Estimated Glomerular Filtration
Rate; Cr, Creatinine; ACR, Albumin/Urine Creatinine Ratio; CHO, Cholesterol; TG,
Triglyceride; UA, Uric Acid; Ctrl, Healthy population (n = 20); DN, Diabetic nephropathy
patients (n = 20). Ctrl vs DN; *P < 0.05; ***P < 0.001.
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transcriptome microarray data (Figure 6). Lipid metabolism disorders

and immunoinflammatory responses are critical in the development

and progression of DN patients (30, 31), which means that APOC1

may be also involved in the development of DN.

APOC1 has been implicated in the progress of many diseases such

as malignancy (32), atherosclerosis (33), and Alzheimer’s disease (34).

More importantly, APOC1 is closely associated with cell proliferation,

apoptosis, and immune inflammation (35). Recent research also has

identified ApoC1 which promotes renal clear cell carcinoma

metastasis through activation of the STAT3 pathway (36) and is a

potential novel diagnostic and prognostic marker for clear cell renal

carcinoma (37). Animal experiments are employed to confirm the

results of research. In vivo, we also demonstrated that APOC1

expression was significantly increased in diabetic nephropathy

kidney tissues, mainly in the glomerulus, using a mouse model of

diabetic nephropathy (Figure 6). Currently, our team are also

conducting functional and mechanistic research on the role of

APOC1 in DN.

Interestingly, we also conducted a correlation analysis between

APOC1 and clinical data. we investigated the correlation of APOC1

expression with urinary protein and eGFR in DN patients through the

Nephroseq database (Figure 7). For further evidence, we collected

blood samples from 20 patients with DN and 20 healthy. We assayed

the expression level of APOC1 in serum by Elisa assay. The outcome

showed that APOC1 expression was significantly higher in DN

patients and had an excellent diagnostic efficacy for DN (Figure 8).

Therefore, we concluded that APOC1 may be a novel biomarker for

DN. Nevertheless, many deficiencies remain for our research. The

role and mechanism of APOC1 in the development of DN is still

unclear. The diagnostic efficacy of APOC1 for DN still needs to be

demonstrated in multicentre research. Additionally, APOC1

expression and the prognosis of DN patients still need more

prospective investigation.

In conclusion, elevated glomerular and serum expression of

APOC1 in DN was identified for the first time through

bioinformatics, machine learning, animal model experiments, and

clinical data. APOC1 was demonstrated to be a novel and potential

biological diagnostic marker for DN, but additional prospective

research remains needed to demonstrate its diagnostic value.
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