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Human beings lead largely sedentary lives. From an evolutionary perspective, such

lifestyle is not beneficial to health. Exercise can promote many enabling pathways,

particularly through circulating exerkines, to optimize individual health and quality of

life. Such benefits might explain the protective effects of exercise against aging and

noncommunicable diseases. Nevertheless, the miRNA-mediated molecular

mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of

exercise remain poorly understood. In this mini review, we focused on the exerkine,

irisin, mainly produced by muscle contraction during adaptation to exercise and its

beneficial effects on body homeostasis. Herein, the complex role of irisin in

metabolism and inflammation is described, including its subsequent effects on

thermogenesis through browning to control obesity and improve glycemic

regulation for diabetes mellitus control, its potential to improve cognitive function

(via brain derived neurotrophic factor), and its pathways of action and role in aging.
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1 Introduction

Despite millions of years of human evolution, the intricate genetic mechanisms and

transposable chromosome elements have not adapted to the average low-level physical

activity performed by modern Homo sapiens sapiens (1). Our ancestors, such as hunter-

gatherers, engaged in intense physical activity to search for food and evade predators (2). As a
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result, physical activity was performed up to 6-9 hours per day in

South Africa and Ache in Paraguay, including walking and running

(3). According to prior studies, men in the Tsimane group engaged in

120 min/day of moderate or vigorous physical activity while women

engaged in 100 min/day of such activity (4). Modern society has

introduced human beings to a sedentary lifestyle. Currently, human

beings spend hours seated in front of overbright screens, avoid using

the stairs, even to go two floors up, and prefer the delivery of food to

their homes, instead of taking healthy short walks to the grocery store

(5). Self-directed “physically active” individuals only exercise for 45-

60 minutes per session, twice or three-times per week (6). The slow

but constantly forged genes of humans were not designed for such low

levels of activity. In terms of evolutionary metabolic/physiological

adaptations, humans were designed to move frequently, run, and fight

for food, and survive in an often-unfriendly environment (7). In

developed countries, the vast availability of calories in addition to

sedentary lifestyles has led to a high incidence of modern life

(chronic) diseases, such as obesity, diabetes, heart disease, cancers,

and many other complex psychosomatic and inflammatory

disorders (8).

Regular exercise is important to the general health of humans.

Individual judgment and scientific data indicate that exercise is the

best non-pharmacological intervention (combined with good

nutrition) to assure a good quality of life at any age (9–11).

Physical exercise promotes cardiovascular efficiency, activates

protein and energy metabolism through progressive endocrine

adjustments, optimizes immune responses, and provides cognitive

benefits, especially in committed individuals who engage in regular

exercise programs (12). Although the benefits of exercise are known

to be dependent on the intensity and duration of the training sessions

adjusted to the physiological conditions of the participants (13),

understanding the cellular pathways that regulate/revert/avoid

extended post-exercise inflammatory condition has become a very

important target (14).

Exercise affects all organs, tissues, and cells in the human body.

Several molecular events are particularly important for eliciting

health-related physiological adaptations, including cellular redox

rebalancing, which involves the production of reactive oxygen/

nitrogen species (ROS/RNS) counteracted by antioxidant defenses

(15), skeletal muscle hypertrophy (including fiber-type distinctions)

(15), mitochondrial biogenesis, fission-fusion dynamics (16),

angiogenesis (17), and other mechanisms (18). However, the precise

cellular and molecular mechanisms that underlie the beneficial effects

of exercise remain unclear. Myokines constitute a new regulatory

component that may play a role in exercise-induced adaptation (16–

21). In this mini review, we sought to elucidate how myokines, in

particular the exerkine, irisin, act in body homeostasis and under

pathological conditions.
2 Skeletal muscle as an excretory organ

The skeletal muscle is the most abundant tissue in the human

body and is responsible to produce strength, balance, and movement

(21, 22). The skeletal muscle is also known as an endocrine, paracrine,

and autocrine organ that produces the myokines required for

integrative responses in the human body (19, 23, 24).
Frontiers in Endocrinology 02
The skeletal muscle releases myokines, which are signaling

molecules that promote an integrative crosstalk between the muscle

and other organs, resulting in physiological benefits from exercise

(25–28). Physical inactivity causes chronic inflammation, mainly

owing to the inappropriate release of cytokines from redox-

imbalanced (or injured) tissues or overstimulation of inflammatory

cells, such as neutrophils and macrophages (29). Interestingly, several

exercise protocols have been proven to reduce the mortality risk of

individuals with a previous sedentary lifestyle, an effect that could be

directly attributed to the signaling adaptation of key myokines. For

instance, interleukin (IL)-6, the first and most studied myokine, is

produced via muscle contraction during exercise training sessions

and is released in circulation to induce lipolysis in adipose tissue and

glycogenolysis in the liver. IL-6 increases the expression of IL-1ra,

which can be observed within 1 to 2 h after 2.5 hours of exercise at

75% VO2max. IL-10 levels were found to peak at 45 and 72 h after

resistance training and cycle ergometer at 60% VO2max, and at 4 h

after a marathon (30, 31). Therefore, the expression intensity and

circulating levels of the myokine, IL-6, and other factors, such as

tumor necrosis factor-alpha (TNF-a) and C-reactive protein (CRP)

(32, 33) are associated with muscle-derived signals for energy supply

and post-exercise inflammatory responses (34, 35).

A novel jargon used in clinical and sports medicine, “exerkines,”

may better define this myokine action in response to acute or chronic

exercise (20) Among several previously reported cytokines (such as

IL-6), key signaling agents have been highlighted from contractile

muscles, such as angiopoietin-like 4 (ANGPTL4), apelin, brain-

derived neurotrophic factor (BDNF), CCL2 (or MCP-1), CX3CL1

of fractalkine (FKN), fibroblast growth factor 21 (FGF21), IL-7, IL-8,

IL-15, myostatin, secreted protein acidic and cysteine-rich (SPARC),

leukemia inhibitory factor (LIF), meteorin-like protein (Metrnl), and

irisin (36). These cytokines have multiple effects on the body, ranging

from cardiovascular functions, with proven interactions with vascular

endothelial growth factor (VEGF) and nitric oxide (NO•), to their

pivotal participation in the triggering of post-exercise inflammation

(37–40).

The skeletal muscle releases non-coding RNAs, especially

microRNAs (miRNAs), which have been identified as new

regulatory components that may play a role in exercise-induced

adaptations. However, the function of these RNAs in circulation

remains unclear (41). miRNAs are a group of endogenous small non-

coding RNAs that are 18–25 nucleotides in length. miRNAs regulate

gene expression at the post-transcriptional level through messenger

RNA degradation or translational inhibition (42). Once released by

skeletal muscle cells, circulating miRNAs are stable, easily detectable,

and may regulate gene expression in target cells and tissues as a novel

mode of intercellular communication comparable to that exhibited by

myokines. Accordingly, specific circulating miRNAs are altered in

response to different acute and chronic exercise protocols in healthy

and diseased populations (43). miRNA-133 is a muscle-enriched

miRNA that regulates myogenesis in vitro by increasing myoblast

proliferation. The expression level of miRNA-133 in skeletal muscles

is sensitive to muscle contraction in response to several types of

endurance exercise. As a result, miRNA-133 is a suitable candidate for

potential post-exercise regulation at the plasma level (41). Therefore,

exercise-induced changes in circulating miRNAs are dependent on

muscle mass, angiogenesis, inflammation, ischemia, and hypoxia (44).
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Of all the active exerkines, irisin has been demonstrated as one of

the main protagonists in the modulation of blood pressure control via

the NO•-dependent pathways. Moreover, irisin is expected to be a

potential therapeutic agent for the treatment of non-communicable

diseases and their related conditions and is regulated by the

expression of some miRNAs (45). As a result, irisin is the focus of

our review.
3 Irisin and physical exercise

Irisin is a relatively small peptide with 112 amino acids and a

specific domain for the transmembrane protein, fibronectin

(FNDC5). The start codon of the human FNDC5 gene is

reported to be atypical ATA rather than ATG in rodents.

Further, the translation efficiency of the human FNDC5 gene

constructed with the ATA start codon is impaired. Other

hominid species, such as Denisovan and Neanderthal, also

display a loss in FNDC5 gene expression (46). Since the first

discovery of irisin, scientists have tried to understand and

determine the cleavage protein for FNDC5 (46). In fact, by using

an improved mass spectrometry technique with synthetic peptides

rich in heavy stable isotopes as internal standards, Jedrychowski

et al. found that irisin is mainly expressed in the non-canonical

start codon of FNDC5 (47). Based on recent studies, irisin binds to

proteins of the aV class of integrins. Further biophysical studies

revealed interacting surfaces between irisin and aVb5 integrin

(48). Chemical inhibition of aV integrins blocks the signaling

pathway activated by irisin in both osteocytes and fat cells (49).

These studies suggest the existence of the membrane receptors of

irisin, as predicted by some scholars, with aVb5 integrin as the

receptor of irisin in osteocytes, adipocytes, and enterocytes (48, 49).

However, the presence of irisin receptors in other cells requires

further studies. In addition, the results of the irisin assays must be

interpreted with caution as after ten years, the baseline values for

western blotting and ELISA are associated with a large variance and

problems with reproducibility may arise among lots (46, 50).”

In adipose tissue, FNDC5 exhibits its activity via uncoupling

protein type-1 (UCP-1), which promotes the so-called “browning”

process of adipose tissue. This activity is associated with an increase in

the mitochondrial-rich adipocyte population within the fat tissue,

ultimately leading to increased heat production and energy

expenditure by these cells (51, 52). Interestingly, some miRNAs,

such as miRNA-19b and miRNA-140, are suggested to

downregulate irisin expression, thereby promoting weight loss by

reducing energy expenditure (53, 54).

Irisin is produced in various tissues. In animals, irisin production

was identified in the muscle, liver, pancreas, lung, adrenal glands,

central nervous system (CNS), and kidney (53), whereas in humans,

its production was identified in other tissues, such as adipose, bone,

cardiomyocytes, and sebaceous glands. However, contracting skeletal

muscles are the main sources of irisin production in the human body

(54). In addition to its ability to induce mitochondrial biogenesis,

irisin can regulate oxidative metabolism in different cell types via

autocrine, paracrine, and endocrine mechanisms (55, 56). Notably,

ROS/RNS production, and consequently the redox status in active

skeletal muscles, is influenced by irisin activity (57, 58).
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Skeletal muscle contraction induces the transcription and

activation of the transcription coactivator, peroxisome proliferator-

activated receptor gamma (PPAR-g) type 1 alpha (PPARGC1A, also

known as PGC-1a), a master regulator of genes involved in

metabolism. The overexpression of PGC-1a increases irisin

production via cleavage of the FNDC5 factor, stimulating

mitochondrial biogenesis, oxidative phosphorylation, and oxygen

consumption rate (55, 56). In response to exercise, irisin regulation

depends on the specific training protocol (intensity, duration, and

type of exercise), age, sex, training status, and muscle mass. Short

bouts of intensive exercise acutely increase serum irisin levels in

children and adults; however, irisin levels do not differ following

prolonged (6 weeks) or chronic (1 year) exercise (57).

The activity of the FNDC5/irisin protein activates MAP-kinase

cascades, and upon activation, the differentiation of neural cells and

osteocytes is achieved, concomitant with the enhancement of glucose

uptake by muscles and subsequent “browning” of white adipose

tissues (58). Among the several MAPK pathways, the most

conventional routes are c-Jun N-terminal kinases 1-3 (JNK1-3),

extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38

isoforms (a, b, g, and d), and ERK5 families. Less understood

pathways, such as ERK3/4 and ERK7/8, and stress-activated protein

kinases (SAPK1A, 1 B, 1C) (59, 60). Zhang et al. (2014) showed that

chemical inhibition of the p38 or ERK pathways causes a significant

reduction in the action of irisin on the adipocyte UCP-1 protein (61).

The exercise-induced irisin effect can differ in middle-aged, older,

and young adults. Miyamoto-Mikami et al. showed that 8-weeks of

endurance training promoted higher serum irisin expression in

healthy middle-aged and older people (65 ± 8 years old) but not in

young people (21 ± 1 years old). In contrast, younger and older adults

displayed a similar irisin response to an acute bout of circuit training.

Irisin levels were also found to have a significant correlation with a

less visceral adipose tissue but not with whole-body fat mass (62) In a

recent systematic review and meta-analysis, exercise training was

found to significantly increase circulating irisin, and decrease insulin,

glucose, and insulin resistance. Notably, the employed exercise

training protocol may be associated with different irisin expression,

suggesting that irisin level significantly increased when resistance

training and resistance training combined with aerobic training were

applied, while insulin level decreased when aerobic training and

combined training were employed, especially in patients with type 2

diabetes and prediabetes (63). In another study, different muscles and

training types were compared among mice. Based on the results, the

slow-twitch muscle produced more irisin than the fast-twitch

muscles; however, the training type (aerobic or anaerobic) did not

affect irisin production (64)

Beyond its pivotal role in energy metabolism and mitochondrial

biogenesis, FNDC5/irisin exerts inhibitory effects on inflammation by

inducing hyperphosphorylation of MAPKs and reducing the release

of pro-inflammatory cytokines (65). In addition, the association

between irisin and nervous system function has been revealed

during neural differentiation, when the loss of ERK1/2 function

causes a significant decrease in the expression of both FNDC5/irisin

and BDNF (66).

Overall, FNDC5/irisin can act as an important regulator of

cellular communication, especially between muscle and other

tissues. As suggested by Maalouf and Khoury (2019), FNDC5/irisin
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serves as a remarkable potential pharmacological target for

inflammation and energy metabolism control (67). Figure 1

summarizes the effects of irisin on several organs and tissues.
4 Irisin, inflammation, and illness

Obesity and type-2 diabetes mellitus are accompanied by the

upregulation of inflammatory markers that substantially contribute to

an overproduction of ROS/RNS, favoring insulin resistance in

peripheral tissues and impaired insulin secretion from the pancreas

(68, 69). As previously mentioned, irisin has a prominent capacity to

modulate peripheral energy metabolism. Further, higher systemic

irisin levels have been demonstrated to ameliorate glucose tolerance

and mitigate insulin resistance (70). These effects of irisin can be

observed through the upregulation of thioredoxin 2 (Trx2) and the

blocked expression of thioredoxin-interacting protein (Txnip),

consequently reducing the number of b-cells. Accordingly, irisin
administration can help us understand its possible protective effect

(71). Irisin was demonstrated to stimulate glucose uptake in skeletal

muscle cells by increasing the phosphorylation of AMPK, thereby

activating p38, which leads to the translocation of GLUT4 from the

perinuclear region to the plasma membrane (72). This antidiabetic

effect might be related to the ability of exercise-derived irisin to reduce

or modulate inflammation. The anti-inflammatory action of irisin is

reported to be particularly prominent in circulating immune cells,
Frontiers in Endocrinology 04
such as macrophages and neutrophils. Similarly, Mazur-Bialy et al.

(73) demonstrated that irisin not only improves macrophage

phagocytosis but also reduces ROS/RNS production in activated

immune cells, which has a remarkable impact on inflammatory

responses. The same researchers reinforced that the anti-

inflammatory properties of irisin could be attributed to its ability to

downregulate the downstream pathways of TLR4/MyD88 in RAW

264.7 macrophages (65, 73). The researchers also demonstrated the

ability of irisin to inhibit the expression and release of inflammatory

mediators in a coculture of adipocytes and macrophages (73). These

researchers also showed that the Nf-r2/Heme oxygenase-1 (HO-1)

pathways can be stimulated, consequently leading to less effects of

ROS in the cell. Exercise promotes higher expression of NO, a factor

that can stimulate HO-1; therefore, the antioxidant effects could be

related to the Nf-r2/HO-1 pathways in the system (74). Treatment

with irisin was found to stimulate antioxidants (SOD, GSH-Px, and

CAT-9), ultimately reducing the levels of H2O2 in macrophages in

vitro (75).

Interestingly, some studies have already revealed that irisin can

reduce the progression of inflammation associated with inflammatory

bowel disease (IBD) by reducing pro-inflammatory cytokine release

(76, 77). IBD is related to reduced bone mineral density (DMO)

induced by inflammation, and treatment with irisin induces bone

formation and reduces the TNF-a+. Thus, irisin could reduce bowel

inflammation and sclerostin (SOST) production, and reinvigorate

DMO through osteoprotegerin (OPG) stimulation (46, 77). The
FIGURE 1

The exercise stimulates the peroxisome proliferator-activated receptor gamma coactivator 1 (PCG1)-alpha transcription, which in turn drives the
expression of fibronectin type III domain-containing protein 5 (FNDC5), a membrane protein that is cleaved and secreted as irisin. Irisin acts on various
human organs and tissues; which together orchestrate whole-body metabolism by regulating bone remodeling, "browning" of mature white adipocytes
in response to exercise, glucose metabolism and insulin sensitivity in skeletal muscle, neuroplasticity, insulin sensitivity, and improving hepatic glucose
and lipid metabolism. Irisin improves redox balance and inflammation. ATP, adenosine triphosphate; AMPK, AMP-activated protein kinase; ANGPTL4,
angiopoietin-like 4; BDNF, brain derived neurotrophic factor; MCP-1, monocyte chemoattractant protein-1; FGF21, fibroblast growth factor 21; LIF,
leukemia inhibitory factor; Metrnl, meteorin-like protein; SPARC, secreted protein acidic and cysteine-rich; ROS, reactive oxygen species; RNS, reactive
nitrogen species; SOD, dismutase superoxide; GSH-PX, glutathione peroxidase and CAT-9, catalase.
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volume intensity suggested a moderate intensity (60% VO2max) for 1

has no gastrointestinal changes were observed and intestinal

inflammation was reduced (78) More studies are needed to delimit

an exercise protocol for the treatment of these patients. Beyond these

remarkable findings, higher levels of exercise-derived irisin can

induce the expression of several anti-inflammatory proteins in the

brain, particularly BDNF, in the hippocampus, a well-known brain

segment associated with memory. Overall, irisin has putative

applications in reverting the cognitive decline associated with

Alzheimer’s disease (already demonstrated using experimental

models) through exercise (79).

In a previous study, hepatic-released irisin was demonstrated to

function as a paracrine/autocrine factor that inhibits lipogenesis and

gluconeogenesis via the adenosine 5’-monophosphate (AMP)-

activated protein kinase pathway by reducing the expression of

phosphoenolpyruvate carboxyinase (Pepck) and glucose-6-

phosphate (G6P) genes (80, 81). Accordingly, irisin could be a new

treatment for the diabetic population.

In summary, both in vivo and in vitro studies revealed that irisin

has remarkable anti-inflammatory properties as it modulates cytokine

production, induces MAPK cascade factors (NF-kB), and reduces

oxidative stress in different contexts. However, further mechanistic

studies directly addressing the effects of irisin on ROS/RNS

production and antioxidant defenses are needed.
5 Irisin and aging

Irisin is a myokine linked to many age-related diseases and

neurological disorders (82–89). Studies in gerontology

demonstrated that the pro-inflammatory response of adipose tissue

contrasts with the anti-inflammatory action of exercise-induced

myokines, such as irisin, released by contractile muscle tissue (23,

90). Unfortunately, only few studies have combined these variables

into the same model. In 2020, Rashid et. al. analyzed the response of

irisin to long-term moderate physical exercise (91). Their findings

highlighted the influence of long-term exercise on metabolic

mediators. After long-term physical exercise, irisin was

demonstrated to improve glucose homeostasis, which was

correlated with better glucose regulation, less insulin resistance, and

consequently obesity. The protocol was tested in two groups: normal

weight group (BMI < 25 kg/m2) and obese group (BMI ≥ 30 kg/m2).

Notably, resistance training was adopted in this study. As aging

comorbidities were consistently supported by the physiological

pattern of an unhealthy aging lifestyle (87, 88), these studies could

be perceived as early explorations into the positive effects of exercise-

regulated irisin levels in the elderly population. To the best of our

knowledge, this study is the only report of this information.

Numerous data have suggested the putative effect of increased

irisin levels on reverting or retarding obesity and aging progression,

based on renowned biomarkers, such as glycemia and total cholesterol

levels (92). Previous studies have shown that irisin can act as a

regulatory factor to control diabetes and obesity during aging (93).

Obesity and diabetes can increase the risk of cognitive ageing (94)

and dementia (95). These cognitive conditions represent a significant
Frontiers in Endocrinology 05
challenge for the scientific and clinical communities (14). Exercise can

have beneficial effects on brain health (9–11). Based on strong

evidence, irisin plays a crucial role in the cognitive benefits of

exercise. Prior studies also shed light on irisin as a potential

therapeutic agent for some cognitive disorders (88, 96, 97).

Cognitive function was previously thought to be improved by the

increased expression of BDNF, which is stimulated by exercise-

induced irisin and lactate (98, 99). Diabetes may also induce

neuroinflammation, and consequently, cognitive deterioration and

reduced memory. Treatment with irisin was found to block the p38,

STAT3 and Nf-kB proteins, reducing diabetes-induced

neuroinflammation in the brain of mice (100) Another study

revealed that 100 nm/L irisin promoted cell proliferation via the

STAT3 pathway (101). Synaptogenesis, neurogenesis, and long-term

potentiation can be molecular pathways that explain the BDNF-

mediated improvement in neuroplasticity via irisin (102).

Moreover, a higher expression of BDNF affects the levels of

dopamine, serotonin, and melatonin in several brain regions,

preventing many of the symptoms observed in individuals with

depression (65) and directly benefitting learning and memory via

the dopamine pathways (103). When BDNF is stimulated by lactate

(via SIRT1 pathway activation), memory and learning functions are

substantially improved compared with instances of lower lactate

concentrations (98). Notably, such findings were transversal and

enthusiastically received from the psychological scientific

community. However, lactate levels may reflect exercise intensity,

which may be mainly responsible for the reported associations with

improved memory function. Other benefits of exercise on brain

function and the prevention of dementia include improved cerebral

perfusion, improved metabolism (104), and reduced inflammation.

Immunological analysis must be performed to understand how

the MAPK, AMPK, and TLR4/MyD88 intercellular pathways and

exercise-induced irisin can benefit systemic inflammatory conditions

(105). Recently, Papadopoulos, et al. reported that irisin released by

muscles during aerobic exercise is an active agent in the AMPK/Akt-

eNOS/NO• pathway (106).

Overall, the current evidence reinforces the hypothesis that irisin

at optimal levels could be the main agent responsible for the long-

term health benefits in regularly exercising individuals. Acute exercise

can increase the concentration of circulating irisin, while chronic

exercise can improve irisin metabolic dynamics and selectively

increase circulating irisin concentrations. The effects of irisin may

mediate some beneficial effects of exercise, such as the enhanced

oxidation of fatty acids and heat production, leading to increased

energy expenditure, glucose homeostasis, weight reduction,

mitochondrial biogenesis, angiogenesis, improved cognition

function, muscle fiber shifting, and prevention of muscular atrophy

in aging and metabolic diseases (Figure 2). These effects can be

regulated by distinct molecular pathways that permeate redox

signaling and miRNA-mediated ncRNAs. However, the exact

mechanisms remain unclear as the available data are barely

consistent. Therefore, it is important to highlight how irisin can be

used in the future as a diagnostic tool and possible treatment for the

population. Further studies are necessary based on the metabolic,

physiological, and cognitive limitations imposed by aging and

pathological processes.
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6 Conclusions

Herein, we addressed the mediators elicited during exercise for the

maintenance of good health. We focused on the myokines produced by

contracting muscles, which are also known as exerkines. Some of these

mediators, including miRNAs, are released into the circulation, thereby

improving cell-to-cell communication. Herein, the role of irisin in

metabolism and inflammation was revealed, including its subsequent

effects on obesity and diabetes mellitus, cognitive function, and

compromised immune function. Further studies are necessary to

demonstrate the possibility of biomarker-led diagnostics, conduct

further mechanistic assessments, and identify novel treatment regimes.
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FIGURE 2

Irisin secreted by skeletal muscle during the exercise reaches blood circulation and in general ameliorates the mitochondrial biogenesis, angiogenesis,
endothelial cell proliferation and browning. Such benefits might explain the protective effects of exercise against type-2 Diabetes Mellitus, inflammation,
oxidative stress and neurodegenerative disease. PGC1-a, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; FNDC5', fibronectin
type III domain-containing protein 5; TLR4, toll-like receptor 4; MyD88, myeloid differentiation primary response 88; HO-1, heme oxygenase-1; SOD,
dismutase superoxide; GSH-Px, peroxidase glutathione; CAT-9, catalase; H202, oxygen peroxide; BDNF, brain-derived neurotrophic factor and NF-kB,
factor nuclear kappa B.
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