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Brown adipocytes is a specialized fat cell that dissipates nutrient-derived chemical

energy in the form of heat, instead of ATP synthesis. This unique feature provides a

marked capacity for brown adipocyte mitochondria to oxidize substrates

independent of ADP availability. Upon cold exposure, brown adipocytes

preferentially oxidize free fatty acids (FFA) liberated from triacylglycerol (TAG) in

lipid droplets to support thermogenesis. In addition, brown adipocytes take up

large amounts of circulating glucose, concurrently increasing glycolysis and de

novo FA synthesis from glucose. Given that FA oxidation and glucose-derived FA

synthesis are two antagonisticmitochondrial processes in the same cell, it has long

been questioned how brown adipocytes run FA oxidation and FA synthesis

simultaneously. In this review, I summarize mechanisms regulating

mitochondrial substrate selection and describe recent findings of two distinct

populations of brown adipocytemitochondriawith different substrate preferences.

I further discuss how these mechanisms may permit a concurrent increase in

glycolysis, FA synthesis, and FA oxidation in brown adipocytes.
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Introduction

While white adipocytes primarily store excess energy in the form of triacylglycerol

(TAG), brown adipocytes located in the interscapular brown adipose tissue (BAT) have a

marked capacity to oxidize nutrients and dissipate energy as heat (1). Brown-like beige

adipocytes also emerge within white adipose tissue (WAT) during prolonged cold exposure

or pharmacological stimulation of b3-adrenergic receptors (2–5). Notably, activation of

brown and beige adipocytes in rodents (6, 7) and humans (8–14) increases energy

expenditure and improves systemic glucose and lipid homeostasis. Thus, brown/beige

adipocytes have emerged as an appealing target against obesity and its related metabolic

disorders, such as type 2 diabetes, insulin resistance, and dyslipidemia.
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Upon activation, brown adipocytes simultaneously increase

glycolysis, glucose-derived de novo fatty acid synthesis (FAS), and

fatty acid oxidation (FAO) (15–19), which are mutually exclusive

pathways in the same cell (20). In most mammalian cells, elevated

glycolysis and subsequent pyruvate oxidation in the mitochondria

block mitochondrial FAO. Conversely, elevated FAO decreases the

activity of glycolytic enzymes in the cytosol and pyruvate

dehydrogenase (PDH) within the mitochondrial matrix, thus

leading to inhibition of pyruvate production, oxidation, and de

novo FAS. It is not fully understood how brown adipocytes

simultaneously increase glycolysis and FAS while primarily

oxidizing FA in the mitochondria. To target brown adipocytes

therapeutically, it is important to understand the underlying

mechanism responsible for this unique phenomenon. This mini

review will focus on recent advances in our understanding of

substrate utilization in brown adipocytes and discuss molecular

mechanisms that may permit the concurrence of glycolysis, FAS,

and FAO in brown adipocytes.

UCP1-mediated proton leak: A
mechanism for high substrate
oxidation in brown adipocytes

In mammalian cells, oxidation pathways of glucose, FA, and

amino acids converge onto a common pathway, the tricarboxylic

acid (TCA) cycle, which generates NADH and FADH2 in the

mitochondrial matrix. These reduced electron carriers donate
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their electrons to the electron transport chain (ETC) system,

which is composed of four multi-subunit complexes (I-IV)

located in the inner mitochondrial membrane (IMM) and two

mobile electron carriers coenzyme Q and cytochrome c (21, 22).

Subsequent electron transfer through the ETC leads to pumping of

protons (H+ ions) from the mitochondrial matrix to the

intermembrane space, creating an electrochemical proton

gradient, also known as the proton motive force (PMF). The PMF

is a form of potential energy composed of an electrical charge

gradient (DYm) and a chemical gradient (DpH) across the IMM

(23). The resulting PMF is used by F0F1-ATP synthase (Figure 1A;

coupled respiration). The protons pass from the intermembrane

space into the matrix through the F0 component, causing a

conformational change in F0F1-ATP synthase so that ATP is

produced from ADP and inorganic phosphate (24). For the

coupling of ETC-mediated proton pumps to the ATP synthesis,

the rate of substrate oxidation and electron flow is highly dependent

on the availability of ADP (25). Fluctuations in coupling between

ETC activity and ATP production can cause electron leak from the

ETC onto oxygen, resulting in production of reactive oxygen species

(ROS) (26).

Brown adipocytes contain a large number of mitochondria that

uniquely express uncoupling protein 1 (UCP1) in the IMM (27, 28)

along with abundant expression of TCA cycle enzymes and ETC

complexes (I-IV) (1). Membrane-bound UCP1, an H+ transport

protein, allows the re-entry of protons into the mitochondrial

matrix independent of ATP synthesis (Figure 1B; uncoupled

respiration) (29, 30). Thus, UCP1-mediated proton leak causes a
FIGURE 1

UCP1-mediated uncoupled respiration and its contribution to substrate oxidation. (A) In most mammalian cells, a proton motive force (PMF) created
by the electron transfer chain (ETC) system is used by ATP synthase, resulting in ATP production (coupled respiration). To re-establish the
electrochemical proton gradient across the inner mitochondrial membrane (IMM), the cells increase substrate oxidation, generating more NADH and
FADH2 needed by the ETC. However, for coupled respiration, the rate of substrate oxidation and electron flow through the ETC is highly dependent
on ADP availability. (B) In brown adipocytes, the protons pass from the intermembrane space into the mitochondrial matrix through the membrane
bound UCP1. The resulting proton leak causes a drop in the PMF, releasing heat but not ATP synthesis (uncoupled respiration). The futile cycle of
ETC-mediated proton pumps and UCP1-mediated proton leak provides a marked capacity for brown adipocyte mitochondria to oxidize substrates
independent of ADP availability. TCA, the tricarboxylic acid cycle; I, II, III, IV, ETC multi-subunit complexes I through IV; Q, coenzyme Q; Cyt c,
cytochrome c; UCP1, uncoupled protein 1.
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drop in the PMF, and energy is lost as heat. As a mechanism to re-

establish the electrochemical proton gradient (DpH) across the

IMM, brown adipocytes increase the rate of substrate oxidation,

generating more NADH and FADH2 needed by the ETC.

Consequently, the futile cycle of ETC-mediated proton pumps

and UCP1-mediated proton leak provides a marked capacity for

brown adipocyte mitochondria to oxidize substrates without being

affected by ADP availability. In addition, dissipation of the PMF by

UCP1 has been shown to reduce mitochondrial ROS production,

contributing to an increase in ETC complexes (31–33).
Mitochondrial substrate utilization
in brown adipocytes: Fatty acids
vs glucose?

Brown adipocytes oxidize substantial amounts of substrates due

to high ETC activity (proton pumping) and UCP1 activity (proton

leak) in the IMM. Upon adrenergic stimulation of the cell by cold-

dependent activation of the sympathetic nervous system or b3-
adrenergic receptor agonists, brown adipocytes liberate free fatty

acids (FFA) by lipolysis of TAG stored in lipid droplets as well as

take up extracellular nonesterified fatty acids (NEFA) from the

circulation (1, 34–38). FFA released from the intracellular TAG is

the main source of FA for thermogenesis. Circulating NEFA is

directed toward TAG replenishment in brown adipocytes although

a portion of NEFA contributes to thermogenesis (35, 39). These FAs

are ligated to CoA groups before being converted to acyl-carnitine

for mitochondrial import through carnitine palmitoyltransferase 1

(CPT1) located in the outer mitochondrial membrane (OMM).

Subsequent FA b-oxidation in the matrix produces acetyl-CoA,

which then enters the TCA cycle as citrate after condensation with

oxaloacetate (OAA). FAO results in a larger increase in acetyl-CoA

levels per molecule of nutrient than glucose-derived pyruvate

oxidation (i.e., 1 C16-palmitic acid generates 8 acetyl-CoA; 1

glucose generates 2 acetyl-CoA). Accordingly, FAO is more

efficient in generating NADH and FADH2 and FA has been

viewed as the primary substrate for energy-demanding brown

adipocyte mitochondria (1, 6). Moreover, it is interesting to note

that FA is not only the energy substrate for thermogenesis but also

activates the UCP1-mediated proton leak across the IMM (29, 40).

Surprisingly, activated brown adipocytes also take up large

amounts of glucose from the circulation while primarily utilizing

FA to fuel thermogenesis (19, 41–45). However, recent studies have

further found that the primary function of this glucose is not to

support thermogenesis (<15%) but instead fuel de novo lipogenesis

(DNL) through multiple mechanisms (16, 17, 19, 38, 42, 46–49): i)

Pyruvate-derived citrate serves as the precursor for de novo FA

synthesis (FAS); ii) Glucose-derived glycerol-3-phosphate serves as

the structural backbone for TAG synthesis; iii) Glycolytic

intermediates support the pentose phosphate pathway generating

NADPH needed for DNL; and iv) Cytosolic ATP production during

glycolysis meets energy requirement for DNL as well as

compensates for the loss of mitochondrial ATP synthesis.

Therefore, it has been suggested that, while oxidizing FA to fuel
Frontiers in Endocrinology 03
thermogenesis, brown adipocytes concurrently increase glycolysis

and de novo FAS to replenish intracellular TAG pool in lipid

droplets (15–19). However, it is currently unclear how brown

adipocytes concurrently perform FAO and FAS in the same cell

because these processes are two mutually exclusive pathways in

healthy cells.

More interestingly, recent studies have shown that cold-

activated BAT in rodents and humans utilizes additional

substrates such as branched-chain amino acids (BCAA) (50, 51),

glutamate (44), and succinate (52) to support thermogenesis.

Extracellular succinate contributes to thermogenic respiration in

BAT by the succinate dehydrogenase (SDH)-mediated oxidation in

the TCA cycle (52), although its relative contribution to

thermogenesis is unclear. Similarly, BCAAs and glutamate enter

the TCA cycle as acetyl-CoA/succinyl-CoA and a-ketoglutarate,
respectively, to generate more reducing equivalents in BAT (44, 50,

51). It is also possible that carbons from these additional substrates

replenish TCA cycle intermediates that leave the cycle for

biosynthetic pathways (e.g., citrate for de novo FA synthesis).
Molecular mechanisms regulating
mitochondrial substrate selection

In most mammalian cells, mitochondrial FAO suppresses

glycolysis, pyruvate oxidation, and de novo FAS (20). FAO-induced

increases in acetyl-CoA/CoA, NADH/NAD+, and ATP/ADP ratios

inhibit the activity of pyruvate dehydrogenase (PDH) that catalyzes

the conversion of glucose-derived pyruvate to acetyl-CoA in the

mitochondria (53, 54). The resulting decrease in acetyl-CoA reduces

the production of pyruvate-derived citrate that exits themitochondria to

serve as the precursor for FAS. Thus, FAO-dependent inhibition of

PDH activity in the mitochondria is the primary mechanism preventing

both pyruvate oxidation and de novo FAS from glucose. Additionally,

FAO can inhibit glycolysis. A portion of excess citrate produced from

FA-derived acetyl-CoA is exported to the cytosol, where it in turn

inhibits glycolytic enzymes, such as phosphofructokinases (PFK1,

PFK2) and pyruvate kinase (PK) (20, 55–57).

Conversely, when extracellular glucose increases, enhanced

glycolysis provides more pyruvate to the mitochondria. The

conversion of pyruvate to acetyl-CoA by PDH and to OAA by

pyruvate carboxylase (PC) increases citrate production in the

mitochondria. Under high glucose, excess citrate is exported to

the cytosol and hydrolyzed back to acetyl-CoA and OAA by ATP-

citrate lyase (ACLY). Acetyl-CoA is then carboxylated to malonyl-

CoA by two acetyl-CoA carboxylases, ACC1 and ACC2 (58).

Malonyl-CoA is the precursor of de novo synthesized FA.

Remarkably, malonyl-CoA produced by ACC2 allosterically

inhibits CPT1 (59, 60) that controls the entry of long-chain

fatty acids from the cytosol into mitochondria. By this

mechanism, glucose-derived malonyl-CoA prevents the

oxidation of newly synthesized and pre-existing FAs. Thus,

malonyl-CoA is a key metabolite regulating the balance between

FAS and FAO.
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Although ACC1 and ACC2 have same enzyme activity with

over 70% protein sequence similarity, they play distinct roles in

the control of FAS and FAO (58, 61, 62). ACC1 is cytosolic and

directs malonyl-CoA toward de novo FA synthesis catalyzed by

fatty acid synthase (FAS). In contrast, ACC2 is associated with

the OMM and regulates FAO through malonyl-CoA-mediated

CPT1 inhibi t ion (59–61, 63) . Whi le l ipogenic WAT

predominantly expresses ACC1, BAT expresses similar

amounts of ACC1 and ACC2 (64). In addition, BAT expresses

CPT1b, an isoform with high sensitivity to malonyl-CoA (65–67).

Despite the expression of ACC2 and CPT1b, BAT mitochondria

have the highest CPT1 activity among the tissues expressing

CPT1b (65–67). High FAO in BAT is surprising in light of the

inhibitory effect of malonyl-CoA produced by ACC2 on CPT1b-
mediated FA transport. It is unclear whether ACC2 activity or

association to the mitochondria is negatively regulated by cold in

brown adipocytes.

It is interesting to note that concurrent FAO and FAS have

also been observed in a subset of cancer cells (68–70). Glycolytic

colorectal cancer cells recruit FAO as an adaptive response to

extracellular acidification associated with increased pyruvate to

lactate conversion (68). A selective decrease in the transcription

of ACACB gene under acidosis was in part the mechanism

permitting mitochondrial FAO. However, it is unlikely that the

selective decrease in ACACB gene expression provides a

mechanism by which brown adipocytes concurrently perform

FAO and FAS because BAT upregulates the expression of both

ACACA and ACACB genes encoding ACC1 and ACC2,

respectively, in response to cold (17). As another example, a

subset of highly proliferating B-cell lymphomas concurrently

stimulates mitochondrial FAO while increasing glycolysis

and FAS (69) ; however , the under ly ing mechanism

remains unknown.
Heterogeneity of brown adipocytes
in BAT

Single-cell and single-nucleus RNA sequencing of BAT has

uncovered the existence of multiple brown adipocyte

subpopulations with large variability in their transcriptomes and

with different degrees of thermogenic capacities (71–73). Compared

with the high-thermogenic brown adipocytes, low-thermogenic

brown adipocytes express lower levels of Ucp1 along with

reduced mitochondrial respiration (71). It is considered that these

subpopulations are derived from distinct precursor cells and/or

represent different cell states acquired during environmental

temperature changes (71–73). The co-existence of functionally

different brown adipocytes within the BAT may in part explain

how BAT performs FAO and FAS simultaneously. Further studies

are required to delineate the location, functional specialization, and

substrate utilization of these brown adipocyte subpopulations and

their ratios in response to environmental stimuli.
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Heterogeneity of mitochondria within
the brown adipocyte: FA-oxidizing vs
lipogenic mitochondria

In addition to heterogeneity of brown adipocytes, recent studies

have demonstrated the presence of metabolically distinct populations

of mitochondria within the same brown adipocyte: cytosolic

mitochondria (CM) and peridroplet mitochondria (PDM) (74–78).

PDM are found to be anchored to the lipid droplets and have reduced

motility and fusion-fission dynamics that segregate PDM from the rest

of the mitochondrial population (79, 80). While CM preferentially

oxidize FA for theromgenesis, PDM have a higher capacity for

pyruvate oxidation and ATP synthesis (74) (Figure 2). In line with

increased oxidative phosphorylation, PDM is enriched with ATP

synthase compared to CM (74) although UCP1 levels are

comparable in PDM and CM (74, 78). More interestingly, an

increase in PDM is associated with lipid droplet expansion in brown

adipocytes (74). Given that coupled respiration is dependent on ADP

availability, excess citrate produced from pyruvate-derived acetyl-CoA

in the PDM may exit the mitochondria and be converted to malonyl-

CoA by ACC1 and ACC2, thus contributing to de novo FAS for TAG

synthesis and concurrently preventing FA entry into these specific

subpopulations of mitochondria (Figure 2). On the contrary, in CM

preferentially oxidizing FA (74), FA-derived acetyl-CoA could inhibit

PDH activity, resulting in a decrease in pyruvate-derived citrate

production and subsequent malonyl-CoA accumulation in close

vicinity of CM (Figure 2). It is unclear whether there is a difference

in ACC2 levels between PDM and CM. CM could maximize UCP1-

mediated thermogenesis by producing high levels of NADH and

FADH2 from FAO. The resulting rapid oxidation of FA-derived

citrate through the TCA cycle may prevent citrate export to the

cytosol for inhibition of glycolytic enzymes.

The association between mitochondria and lipid droplets has been

overserved in other tissue/cell types including skeletal muscle, heart,

and adipocytes (77, 81–83). In contrast to the lipogenic role of PDM in

brown adipocytes, several studies reported conflicting results that

PDM promotes the oxidation of FA released from lipid droplets (77,

81). This discrepancy may imply that the role of PDM is differently

regulated by the cell type, nutritional status, or cellular stress. Proteome

profiling of PDM and CM in BAT has identified a subset of

mitochondrial proteins differentially expressed between PDM and

CM although their impact on the functional difference has not been

explored (78). Additional studies are required to quantitatively

characterize PDM and CM mitochondrial proteins (e.g., MPC1/2,

ACC2, CPT1b) and understand the significance of relative PDM/CM

ratio and the mechanism controlling this ratio in brown adipocytes.

Conclusion

Brown adipocytes have two unique features: (1) UCP1-

mediated dissipation of the PMF, which provides a mechanism

for maximal substrate oxidation in the mitochondria and (2)
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concurrence of glycolysis, de novo FAS, and FAO. Upon activation,

brown adipocytes increase glycolysis and de novo FAS to replenish

intracellular TAG pools that are depleted due to increased lipolysis

and FAO. The co-existence of FA-oxidizing and lipogenic

mitochondria within the brown adipocyte in addition to

heterogeneity of brown adipocytes may in part explain the unique

capacity of brown adipocytes to be involved simultaneously in FAO

and FAS.
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