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Introduction: Polycystic Ovarian Syndrome (PCOS) is the most common

endocrinopathy in women of reproductive age and remains widely

underdiagnosed leading to significant morbidity. Artificial intelligence (AI) and

machine learning (ML) hold promise in improving diagnostics. Thus, we

performed a systematic review of literature to identify the utility of AI/ML in the

diagnosis or classification of PCOS.

Methods: We applied a search strategy using the following databases MEDLINE,

Embase, the Cochrane Central Register of Controlled Trials, the Web of Science,

and the IEEE Xplore Digital Library using relevant keywords. Eligible studies were

identified, and results were extracted for their synthesis from inception until

January 1, 2022.

Results: 135 studies were screened and ultimately, 31 studies were included in

this study. Data sources used by the AI/ML interventions included clinical data,

electronic health records, and genetic and proteomic data. Ten studies (32%)

employed standardized criteria (NIH, Rotterdam, or Revised International PCOS

classification), while 17 (55%) used clinical information with/without imaging. The

most common AI techniques employed were support vector machine (42%

studies), K-nearest neighbor (26%), and regression models (23%) were the

commonest AI/ML. Receiver operating curves (ROC) were employed to

compare AI/ML with clinical diagnosis. Area under the ROC ranged from 73%

to 100% (n=7 studies), diagnostic accuracy from 89% to 100% (n=4 studies),

sensitivity from 41% to 100% (n=10 studies), specificity from 75% to 100% (n=10
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studies), positive predictive value (PPV) from 68% to 95% (n=4 studies), and

negative predictive value (NPV) from 94% to 99% (n=2 studies).

Conclusion: Artificial intelligence andmachine learning provide a high diagnostic

and classification performance in detecting PCOS, thereby providing an avenue

for early diagnosis of this disorder. However, AI-based studies should use

standardized PCOS diagnostic criteria to enhance the clinical applicability of

AI/ML in PCOS and improve adherence to methodological and reporting

guidelines for maximum diagnostic utility.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier

CRD42022295287.
KEYWORDS

artificial intelligence, machine learning, polycystic ovarian syndrome (PCOS), diagnosis,
classification, Stein-Leventhal syndrome
Introduction

Polycystic Ovary Syndrome (PCOS) is the most common

endocrinopathy in reproductive aged women, with an estimated

prevalence ranging from 4% to 20% and affecting more than 66

million worldwide in 2019 (1–5). PCOS is associated with increased

incidence of cardiovascular disease, infertility, and of endometrial

cancer (6–9). Its public health burden is immense, with nearly eight

billion US dollars spent in 2020 to manage PCOS-related symptoms

among women in the United States alone (10).

The diagnosis of PCOS is based on clinical criteria, with the

Rotterdam criteria/International PCOS criteria (11, 12) being the

most widely accepted. PCOS is characterized by the presence of a

combination of hyperandrogenism, ovulatory dysregulation, and

polycystic ovarian morphology (PCOM) (13–15). This already

heterogenous clinical phenotype is complicated further by the

elaborate interplay of genetic and environmental factors, such as diet

related obesity or lifestyle factors, which affect clinical presentation (16).

The criteria-based diagnosis of PCOS is complicated by variations in

the clinical assessment of hyperandrogenism and determination of

menstrual irregularity. Furthermore, the variation in normative

standards for PCOM compounds these challenges (17). Estimates

suggest that diagnosis is delayed by more than two years in one

third of women with PCOS; yet this is likely an underestimation (18).

Artificial intelligence (AI) refers to simulation of human

intelligence by computer based systems (19). On the other hand,

machine learning (ML) is a subdivision of AI focused on learning

from previous events and applying this knowledge to future

decision making (20). ML techniques can be sub-classified as

either supervised or unsupervised (21). The revolutionary

advances in AI and ML over the last decade promise to rapidly

advance our ability to diagnose and manage PCOS. This is in part

due to the ability of AI to process massive amounts of disparate

data, making it an ideal aid in the diagnosis of heterogeneous

disorders like PCOS.
02
Several studies have investigated the ability of ML models to

synthesize such disparate data as family genetic history, biomarkers,

and demographic information into a unified algorithm for the diagnosis

of PCOS, and make diagnostic predictions (22). Some pitfalls of these

studies are their small size (22), lack of relevant comparators (23), use of

varied diagnostic criteria (24, 25), and heterogeneity in reporting

structures. Thus, the real gaps in knowledge and the full scope of AI/

ML in the diagnosis of PCOS remain unclear. To better understand and

summarize the body of evidence related to the application of AI/ML in

PCOS, we conducted a systematic review of all relevant studies

published up to January 1, 2022.
Methods

Study overview and eligibility criteria

This manuscript employed the Preferred Reporting Items for

Systematic Reviews and Meta-analysis (PRISMA) guidelines, and was

submitted to PROSPERO (record number PROSPERO 2022

CRD42022295287) (26). We included English language, peer-reviewed

original studies that evaluated the use of AI/ML in diagnosing,

classifying, stratifying, or predicting PCOS. We subdivided studies into

those that ‘diagnosed’ and those that ‘classified’ PCOS subjects. Studies

were considered to diagnose PCOS if they employed standard diagnostic

criteria such as NIH, Rotterdam, androgen excess-PCOS and

international PCOS criteria. In contrast, those studies that partially

used standard criteria or only used some measures to determine

PCOS were considered to ‘classify’ subjects as having PCOS.
Data sources and search strategy

We applied a search strategy developed in collaboration with an

experienced librarian to find potentially eligible studies. Databases
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searched were MEDLINE, Embase, the Cochrane Central Register

of Controlled Trials, the Web of Science, and the IEEE Xplore

Digital Library. The search included all articles from the time of

inception of the dataset to May 2019. Conference abstracts were

included if they fulfilled the eligibility criteria provided the

manuscript wasn’t published. The full search strategy is included

in Supplementary Material 3.
Study selection

We uploaded all references to Covidence and performed two

rounds of screening, title-and-abstract screening, and full-text

screening. Each article was assessed for eligibility by two

independent reviewers in both rounds of screening using

standardized instructions. Pilot phases were conducted before

each screening round to ensure a baseline understanding of the

eligibility criteria and resolve misunderstandings between

reviewers. Inter-rater reliability assessed through Cohen’s Kappa

statistic was high (k>0.80) in both rounds of screening.

In the first screening round, disagreements were included in the

second round. In the second round, disagreements were resolved by

consensus between reviewers or by arbitration of a third

trained reviewer.
Data collection and management

Five reviewers working independently and in duplicate

extracted data from studies using a standardized extraction form.

Two pilot phases were performed to ensure proficiency in the data

extraction procedure. Further disagreements were discussed and

resolved by consensus, and the database was cleaned by two

reviewers. The extracted variables were: 1) study characteristics

(authors’ information, publication year, country and setting,

study design, aim and type of machine learning used, and type of

data entered into the models); 2) artificial intelligence/machine

learning characteristics (type of dataset used, dataset independence,

type of results reported [sensitivity, specificity, area under the curve,

diagnostic accuracy, precision]); 3) PCOS characteristics (definition

of the disease, sample size); and 4) risk of bias.
Risk of bias

Each study was assessed for risk of bias by two independent

reviewers and disagreements were resolved by two separate

reviewers. We used a modified version of the Quality Assessment

of Diagnostic Accuracy Studies (QUADAS-2) tool, which includes

four domains: patient selection, index test, reference standard, and

flow and timing. As this tool is not designed for systematic reviews

of diagnostic accuracy studies using AI/ML interventions, we

summarized and complemented it with input from the authors to

ensure that critical questions for AI/ML interventions were

included in addition to the relevant pre-existing QUADAS-2
Frontiers in Endocrinology 03
questions. Details of the modified QUADAS-2 tool are provided

in Supplementary Material 2. The tailored QUADAS-2 tool was

piloted on five studies by all reviewers and differences resolved with

consensus. If a study had at least two domains at unclear risk of bias

without any domain deemed at high risk of bias, it was judged to be

at unclear risk of bias. Finally, studies with domains classified as low

risk of bias without any domain of unclear or high risk of bias were

considered low risk of bias.
Results

Characteristics of the included studies

A total of 31 studies met our inclusion criteria (Figure 1). All

studies were observational and used retrospective data samples to

assess the performance of the AI/ML process on the diagnosis or

classification of patients. Seven of 31 studies (23%) were multi-

center studies and many were conducted either in India (29%) or in

China (16%). Eleven studies (36%) included subjects who did

not have PCOS as controls. Sample size ranged from 9 to 2,000

patients with PCOS and the median age of participants included in

studies was 29 years. The rest of the general characteristics can be

found in Table 1.

Nearly half of all studies (48%) used ultrasound images to

implement the AI/ML intervention. Twelve studies (39%) used

clinical data such as anthropometric features (10%), signs and

symptoms (16%), biomarkers (19%), genetics (13%) and

metabolomics or proteomics (10%).

Ten (32%) studies used a validated diagnostic criterion to select

the population, such as exclusively the Rotterdam criteria (23%), the

NIH Criteria (6%), with one study using a combination of NIH and

Rotterdam criteria (3%) (11, 12, 57) (Table 1). Another study (3%)

used the Adams criteria, an imaging-based criteria which has not

been clinically validated (58). The remaining 20 studies (65%) used

clinical information to make the diagnosis, with or without

complementary imaging (55%), with one study using ICD codes.

Two (7%) studies reported that they used age-matched participants

without the diagnosis of PCOS as controls, while other studies

reported scarce information about controls; including definitions

such as “normal ovaries through imaging”, or “normal ovulation

cycles”. Five (16%) studies provided no definition for controls.
AI/ML models performance

Among the ten (32%) studies that used standardized diagnostic

criteria, the area under the receiver operator curve ranged from 80%

to 100% (n=3 studies), diagnostic accuracy from 89% to 100% (n=4

studies), sensitivity from 87% to 100% (n=3 studies), specificity from

90% to 100% (n=3 studies), and positive predictive value from 68% to

81% (n=2 studies), and negative predictive value (NPV) from 94% to

99% (n=2 studies). Performance measures for all the included studies

are shown in Table 2. The studies that used standardized PCOS

criteria are summarized in Figure 2 by outcome type.
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Machine learning methods

The majority (71%) of studies we investigated used supervised

methods. The most common were support vector machine (SVM)

(42%), K-nearest neighbor (26%), regression models (23%), and

Random Forest (23%). Unsupervised methods were used in nine

(29%) studies and included neural networks (13%), Otsu’s

thresholding and Watershed + object growing algorithm (6%),

clustering analysis (6%), and self-organizing maps (3%) (Table 2).

Various AI/ML models are described in Table 3.

Only six (19%) studies performed all major steps of training,

testing, and validation in their AI/ML interventions. About three-

quarters of studies (74%) performed at least one of these steps.

Specifically, ten (32%) studies performed only training and testing,

four (13%) only training and validation, and three (10%) completed

only one of them. Among those studies that used at least two steps,

all used an independent data set for each step by using a proportion

of their sample for each step or cross-validation models (where data

is trained and tested on different observations).

Nineteen (61%) studies compared the effectiveness of two or

more AI/ML interventions on the same sample, while only three

(10%) compared AI/ML interventions against a non-machine

learning classifier (board-certified physician or ICD-9 codes). Of

these three, two studies described the criteria used by the clinician

or the codes used to make the diagnosis.
Frontiers in Endocrinology 04
Risk of bias

Overall, the risk of bias was judged to be high across all studies

(Supplementary Material 1). Six (19%) studies described using a

consecutive or random sample of the enrolled patients. Moreover,

five (16%) studies used validated criteria to select their population,

which affected risk of bias due to misclassification bias but also

applicability bias due to an unclearly defined patient population in

the studies. About half of all (52%) studies used an independent

dataset to validate the AI/ML intervention. Finally, nine (29%)

studies had hospital affiliations or a physician as a co-author of

the study.
Discussion

We performed a systematic review of AI/ML interventions in

PCOS. All included studies were observational and retrospective. A

small number used standard inclusion criteria such as the NIH,

Rotterdam, or International PCOS criteria for diagnosis. Most

studies achieved a high ability to diagnose PCOS or ‘classify’

patients as having PCOS using AI informed by clinical,

radiological, electronic health records or biochemical data.

Among the ten studies that used standardized criteria, the area

under the receiver operator curve ranged from 80% to 100%,
Identification of studies via databases

Records identified from:
Databases (n =135)

Records removed before 
screening:

Duplicate records removed 
(n =0)

Records screened
(n =135)

Records excluded
(n =81)

Reports sought for retrieval
(n =54)

Reports not retrieved
(n =0)

Reports assessed for eligibility
(n =54)

Reports excluded: 23
Study design (n =7)
Intervention (n =5)
Outcome (n =7)
Patient population (n =1)
Setting (n=2)
Duplicate (n=1)

Studies included in review
(n =31)
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FIGURE 1

Selection process of the studies. Article selection flow chart for studies related to AI/ML and PCOS according to Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
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TABLE 1 Characteristics of the included studies.

Definition of controls N Age Aim Comparator

– – Classification None

iagnosis 364 NR Diagnosis None

40 NR Classification None

NR NR Diagnosis ICD-9 codes

hed healthy non-PCOS women

g tubal ligation

74 29.65

±

3.69

Classification None

NR NR Screening/

classification

Board-certified

reproductive

endocrinology and

infertility physician

60 NR Classification None

NR NR Diagnosis None

on-PCOS cases 206 >18 Screening/

classification

None

aries 37 NR Classification None

100 32.24

±

2.02

Diagnosis None

BMI-matched control 12 NR Classification None

menstruating volunteers with

aries

29 33 ±

5 (23-

41)

Classification None

210

Images

25-35 Classification None

NR NR Classification Physical identification

ulatory women without

rogenism

181 NR Classification None

maging of ovary 55 (30

normal +

25 cystic)

NR Classification None

(Continued)
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Author, year Multi-
center

Country Study type
(interventional

vs. experimental)

Controls Type of data Subtype of data Definition of
cases

N Age

1 Nazarudin et al.,

2020 (27)

No Malaysia Observational No Imaging Ultrasound PCOS ultrasound

images

13 NR –

2 Bharati et al.,

2020 (28)

Yes Bangladesh Observational Yes Clinical, and

imaging data

Anthropometric and hormonal

features; Ultrasound

Clinical diagnosis 117 NR Clinical d

3 Cahyono et al.,

2017 (29)

No Indonesia Observational Yes Imaging Ultrasound NR 14 NR NR

4 Castro et al.,

2015 (30)

Yes USA Observational Yes Electronic

medical

records

Signs, symptoms, comorbidities,

medication, laboratory results,

ultrasound findings

ICD-9 code 256.4 NR NR NR

5 RoyChoudhury

et al., 2016 (31)

No India Observational Yes Metabolomics Aminoacids and energy metabolites Rotterdam

Criteria

68 28.75 ±

4.28

Age-matc

undergoi

6 Rodriguez et al.,

2020 (32)

No USA Observational – Virtually

generated

clinical data

Signs and symptoms Rotterdam

Criteria

9 NR NR

7 Purnama et al.,

2015 (33)

No Indonesia Observational Yes Imaging Ultrasound NR 20 NR NR

8 Prapty et al.,

2020 (34)

Yes Bangladesh Observational Yes Clinical data Antropometric, hormonal, and

menstrual cycle data

NR NR NR NR

9 Chauhan et al.,

2021 (35)

No India Observational Yes Clinical data Symptoms and menstrual cycle data Women with

PCOS

61 >18 normal n

10 Lawrence et al.,

2007 (36)

No Canada Observational Yes Imaging Ultrasound Polycystic ovaries 33 NR normal o

11 Mehrotra et al.

et al., 2011 (23)

No India Observational Yes Clinical data Menstrual cycle, metabolic and

clinical data

Clinical criteria* 150 31.24 NR

12 Matharoo-Ball

et al., 2007 (37)

No U.K Observational Yes Proteomics Serum proteins/peptide biomarkers Rotterdam

Criteria

12 NR age- and

13 Lehtinen et al.,

1997 (38)

No Finland Observational Yes Clinical data Hormones and blood biomarkers Adams criteria 54 27 ± 6

(14-38)

regularly

normal o

14 Kumar, et al.,

2014 REFID

101 (39)

No Bangalore Observational Yes Imaging Ultrasound images Anovulatory

infertily/PCOS

210

Images

25-35 Normal

15 Madhumitha

et al., 2021 (40)

No India Observational No Imaging Ultrasound NR NR NR NR

16 Ho et al., 2020

(41)

Yes Taiwan Observational Yes Genetics Gene expression microarray 2009 Rotterdam

Criteria and 1990

NIH criteria

48 NR normal o

hyperand

17 Gopalakrishnan

et al., 2021 (42)

No India Observational Yes Imaging Ultrasound PCOS imaging 35 NR Normal I
n

v

v

v
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TABLE 1 Continued

Age Definition of controls N Age Aim Comparator

25.1 ±

4.51

Normal menstrual cycle, none clinical and

biochemical hyperandrogenism

15 26.4

±

2.92

Classification None

NR NR 20 NR Diagnosis Manual detection and

physician verification

18 to 40 Normal or Non-PCOS 364 18 to

40

Diagnosis None

NR NR NR NR Classification None

28 (25–

32)

median,

IQR

phenotyped reproductively normal control

women

4098 NR Classification None

NR Who underwent IVF treatment for an

indication of male factor infertility

20 NR Classification None

0 31.4 NR NR NR Classification None

30.24 ±

3.24

Regular menstrual cycles and normal ovarian

reserve who sought treatment for infertility

due to a tubal or male factor

NR NR Classification None

NR NR NR 57 Classification None

32 NR 364 31 Classification None

18-22 NR NR NR Diagnosis None

NR NR NR NR Classification None

NR Healthy non-containing cysts 20 NR Classification None

NR NR NR NR Classification Manual image reading

en applicable. Shorthand denoted as: No Response (NR), Inner Quartile Range (IQR).
arian morphology (presence of 12 or more follicles measuring 2-9 mm in diameter or increased ovarian volume) with

B
arre

ra
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
3
.110

6
6
2
5

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Author, year Multi-
center

Country Study type
(interventional

vs. experimental)

Controls Type of data Subtype of data Definition of
cases

18 Dong et al.,

2015 (43)

No China Observational Yes Clinical data Lipids, amino acids, carbohydrates,

organic acids, nucleosides and

aliphatic acyclic compounds

2003 Rotterdam

criteria

20

19 Deshpande

et al., 2014 (44)

No India Observational Yes Clinical and

imaging

Ultrasound, hormones and clinical

data

NIH criteria 9

20 Denny et al.,

2019 (45)

Yes India Observational Yes Clinical data

and imaging

Ultrasound, physiological symptoms,

biochemical data

NR 177

21 Deng et al.,

2011 (46)

No China Observational No Imaging Ultrasound PCOS imaging 31

22 Dapas et al.,

2020 (47)

Yes USA Observational Yes Genome wide

association

Biochemical and genotype NIH criteria 893

23 Che et al., 2019

(48)

No China Observational Yes Genetics Aberrant circular RNA (circRNA)

expression profiles

Rotterdam revised

criteria

20

24 Cheng et al.,

2019 (49)

No USA Observational No Imaging Ultrasound 2003 Rotterdam

criteria

200

25 Zhang et al,

2021 (50)

No China Observational No Clinical data Metabolic data Rotterdam

Criteria

50

26 Xie et al, 2020

(51)

Yes Denmark,

Ireland, India,

China, USA,

UK

Observational No Genetics Gene expression microarray NR 76

27 Thakre et al,

2020 (52)

No India Observational No Clinical data Physical and medical parameters,

along with physical symptoms

NR 177

28 Vikas et al,

2018 (53)

No India Observational No Clinical data Lifestyle and food habits NR 119

29 Setiawati, et al.,

2016 (54)

No Indonesia Observational No Imaging Ultrasound images NR 2

30 Rihana et al,

2013 (55)

No Lebanon Observational Yes Imaging Ultrasound images NR 20

31 Deng et al, 2008

(56)

No China Observational No Imaging Ultrasound images NR NR

Studies presented by lead author and year of publication with corresponding study characteristics. Age presented as median ± standard deviation wh
*The diagnosis of PCOS was made based on the following criteria: (1) Cycle length (oligomenorrhea) (2) clinical and metabolic features (3) polycystic o
the exclusion of other etiologies.
N

v
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TABLE 2 Main findings of the included studies.

Author Type of
data AI/ML intervention Best model AUC Sens Spec PPV NPV Diag.

Acc.

1
Nazarudin, et al.
(27)

Imaging

2 automated segmentation models:
combination of Otsu’s thresholding
and the Chan - Vese method, Otsu’s
thresholding.

Chan-Vese +
Otsu’s
segmentation
analysis

NR NR NR NR NR
Remarkable
increase in
accuracy

2
Bharati, et al.
(28)

Clinical, and
imaging data

Gradient boosting, RF, LR, and LR Hybrid RFLR 0.93 NR NR NR NR 0.91

3
Cahyono, et al.
(29)

Imaging Convolutional Neural Network CNN NR NR NR NR NR

4
Castro, et al.
(30)

Electronic
medical
records

Algorithm using Natural language
processing and codified data

Algorithm using
Natural language
processing and
codified data

NR NR NR 0.68 NR NR

5
RoyChoudhury,
et al. (31)

Metabolomics PLS-DA
Statistical analysis
with PLS-DA

0.8 NR NR NR NR NR

6
Rodriguez, et al.
(32)

Virtually
generated
clinical data

Bayesian network Bayesian network NR NR NR NR NR NR

7
Purnama, et al.
(33)

Imaging
Neural Network - LVQ method, K-
NN and SVM

SVM NR NR NR NR NR 0.83

8
Prapty, et al.
(34)

Clinical data KNN, SVM, Naive Classifier, RF RF NR NR NR NR NR 0.94

9
Chauhan, et al.
(35)

Clinical data
KNN, Naïve Bayes Classifier, SVM,
Decision tree classifier, LR

Decision Tree
Classifier

NR 0.41 0.94 NR NR 0.81

10
Lawrence, et al.
(36)

Imaging LDC, KNN, SVM LDC NR 0.91 0.95 NR NR 0.93

11
Mehrotra, et al.
(23)

Clinical data
Multivariate logistic regression,
Bayesian Classifier

Bayesian classifier NR 0.93 0.94 0.81 NR 0.94

12
Matharoo-Ball,
et al. (37)

Proteomics Artificial Neural Network
Artificial Neural
Network

NR NR NR NR NR 1

13
Lehtinen, et al.
(38)

Clinical data TPFFN and SOM TPFFN NR NR NR NR NR
efficiency of
97%

14
Kumar, et al.,
2014 REFID 101
(39)

Imaging PNN, SVM, RBF PNN NR NR NR NR NR 0.98

15
Madhumitha,
et al. (40)

Imaging SVM, K-NN, LR
Proposed Method
(SVM + K-NN +
LR)

NR NR NR NR NR 0.98

16 Ho, et al. (41) Genetics SVM, RF, GMM
SVM with 5 and
3-fold cross
validation

1 1 1 NR NR 1

17
Gopalakrishnan,
et al. (42)

Imaging SVM. SVM NR NR NR NR NR 0.94

18 Dong, et al. (43) Clinical data Orthogonal PLS-DA
Orthogonal PLS-
DA

0.96 NR NR NR NR NR

19
Deshpande,
et al. (44)

Clinical and
imaging

SVM SVM NR NR NR NR NR 0.95

20
Denny, et al.
(45)

Clinical data
and imaging

LR, KNN, CART, RFC, NB, SVM RFC NR 0.74 0.98 NR NR 0.89

21 Deng, et al. (46) Imaging
Watershed + Object growing
algorithm, Level set method, boundary

Watershed +
Object growing
algorithm

NR NR NR NR NR NR

(Continued)
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TABLE 2 Continued

Author Type of
data AI/ML intervention Best model AUC Sens Spec PPV NPV Diag.

Acc.

vector field methiod, fuzzy support
vector machine classifier

22 Dapas, et al. (47)
Genome wide
association

SVM, RF, GMM NR NR NR NR NR NR NR

23 Che, et al. (48) Genetics
Unsupervised hierarchical clustering
analysis

Unsupervised
hierarchical
clustering analysis

NR NR NR NR NR NR

24
Cheng, et al.
(49)

Imaging
Gradient boosted trees, Rules based
classifier

Rules-based
classifier

NA 0.97 0.98 0.95 0.99 0.98

25
Zhang, et al.
(50)

Clinical data
K-NN, RF, XGB, Stacking
classification model

K-NN with
follicular fluid

NR 0.87 0.90 NR NR 0.88

26 Xie, et al. (51) Genetics
Random Forest, Artificial Neural
Network

Artificial Neural
Network

0.73 0.73 0.75 NR NR NR

27
Thakre, et al.
(52)

Clinical data
RF, SVM, LR, Gaussian Naïve Bayes,
K-NN

RFC 0.89 0.97 0.8 0.89 0.94 0.91

28 Vikas, et al. (53) Clinical data
Frequent item set mining, Apriori
algorithm

NR NR NR NR NR NR NR

29
Setiawati, et al.
(54)

Imaging
LR, SVM, Backpropagation Neural
Network

Backpropagation
Neural Network

NR NR NR NR NR NR

30
Rihana, et al.
(55)

Imaging SVM SVM NR 0.88 0.95 NR NR 0.9

31 Deng, et al. (56) Imaging
Clustering analysis, Manual image
reading

Clustering analysis 0.84 NR NR NR NR 0.84
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Studies presented by lead author and year of publication with corresponding main findings. Shorthand denoted as: No Response (NR), K-Nearest Neighbor (K-NN), learning vector quantization
(LVQ), logistic regression (LR), not reported (NR), support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), topology-preserving feed-forward network (TPFFN),
extreme gradient boosting (XGB), self-organizing map (SOM). Classification and Regression Trees (CART), Random Forest (RF), Random Forest Classifier (RFC), Naïve Bayes Classifier (NB),
Gaussian mixed model (GMM), Linear Discriminant Classifier (LDC), Convolutional Neural Network (CNN), Random Forest and Logistic Regression (RFLR)
FIGURE 2

Unpooled results of studies with well-defined PCOS patient population. Outcomes and interventions are denoted in shorthand as Area Under the
Curve (AUC), Partial Least-Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). A parameter
threshold of 80% (0.8) indicated by the dotted line was considered a benchmark to evaluate studies assuming a 20% performance error.
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diagnostic accuracy from 89% to 100%, sensitivity from 87% to

100%, specificity from 90% to 100%, and positive predictive value

from 68% to 81%. The most common AI/ML methods were SVM in

13 (42%) studies, K-nearest neighbor in eight (26%) studies, and

regression models in seven (23%) studies. Importantly, a large

number of the studies analyzed in the current review were able to

achieve a high degree of diagnostic accuracy relative to standardized

criteria. For instance, Deshpande et al. (2014) attained a 95%

diagnostic accuracy against the Rotterdam criteria using an SVM

algorithm using ultrasound imaging, clinical, and biochemical data

(44). Similarly, Bharti et al. (2020) employed multiple ML

algorithms to a dataset of 364 women with and without PCOS

using clinical and imaging data and reported a > 90% diagnostic

accuracy for the best SVM model (28).

AI/ML-based screening techniques for diabetic retinopathy and

colorectal cancer have previously been found to be highly cost-

effective (59, 60). In the case of colorectal cancer, cost savings of 400

million USD have been estimated when comparing next generation

sequencing approaches to AI-based screening techniques (61). The

potential use of AI/ML in the diagnosis and management of

endocrine disorders has sparked intense research activity. A

recent review reported that among the 611 ML-based

endocrinology studies published between 2015 and 2020, 52%

focused on diabetes, 14% on retinopathy, 14% on thyroid

dysfunction, 8% on endocrine-related carcinoma, 7% on

osteoporosis, and 5% on other disease states (62). Despite a

growth in such studies, FDA-approved applications of AI for

diagnostic or therapeutic purposes have lagged and approved

devices employing AI/ML are concentrated in the management of

diabetes and related conditions (63, 64).

In comparison, polycystic ovarian syndrome represents an ideal

setting for future AI-based tools, given its high prevalence,

significant healthcare burden, delayed detection, and complex

diagnostic criteria spanning clinical, biochemical, and radiological

domains. The diagnostic delay of greater than two years in a third of

women reporting PCOS symptoms is a potent target for AI/ML-

based approaches (18). Furthermore, geographical heterogeneity in

clinical features of PCOS suggests an additional role of

environmental influences, which may be overcome through

adoption of AI/ML (65). Together, high costs and diagnostic

delays in PCOS present a major unmet need which could be filled

by the adoption of AI technology, as effectively demonstrated in
Frontiers in Endocrinology 09
other diseases. AI holds especially high potential for the diagnosis of

PCOS because of its heterogeneous nature, with clinical,

biochemical and radiological features each being incorporated

into its diagnostic criteria (12). The use of AI on electronic health

record (EHR) systems holds the potential to integrate these features

while reducing diagnostic delays in PCOS.

The current body of research on AI in PCOS has revealed high

rates of sensitivity and accuracy of PCOS detection. This implies

that a well-designed AI/ML based program has the potential to

significantly enhance our capability to diagnose PCOS early, with

associated cost savings and a reduced burden of PCOS on patients

and on the health system. However, several gaps remain in the

domain of AI/ML based detection of PCOS. First, we noted that

only a third of studies (32%) used standardized criteria such as the

Rotterdam, NIH and International PCOS criteria as reference

standards when evaluating AI in PCOS. This presents a high

possibility misclassification of disease and biased detection

estimates. Second, there was considerable heterogeneity in

assessed AI-based studies, with some relying exclusively on a

single parameter of PCOS diagnosis such as radiological,

biochemical, or clinical features, despite Rotterdam criteria

recommending diagnosis based on more than one of these

elements. Third, a large number of assessed studies did not

exhaustively report methodology/algorithms for AI based

diagnosis, presenting concerns about the reproducibility of their

findings. Most studies also relied on observational/retrospective

data without use of prospective studies or validation datasets,

limiting their applicability (66). A fourth major gap was the

inadequate utilization of electronic health records, one of the

most promising avenues for AI integration due to their potential

for synthesizing clinical, biochemical, radiological, and genetic

information and reducing lead time to the diagnosis in PCOS.

This warrants further investigation in future studies. Finally, we

noted that a vast number of AI/ML based studies were conducted in

non-healthcare settings (71%) with non-healthcare investigators

(97%). This raises the possibility of reduced applicability and

relevance of studies in the clinical management of PCOS since

such studies, while being technically robust, may not account for

clinically important variables and outcomes. It is therefore

important for physicians to become more aware of the advantages

of AI/ML based methodologies and for physicians and

computational scientists interested in AI/ML to work together to
TABLE 3 Machine Learning Methods.

Type of Machine
Learning

Description of Technique

Unsupervised Learning Hidden patters within unlabeled datasets are identified through clustering or association (C-means, K-means, etc)

Reinforcement Learning Sequential feedback is provided to models based on their response to training data (Q-learning, SARSA, etc)

Semi-Supervised Learning Models are trained with a small amount of initial data before being used to identify structures within larger unlabeled datasets (Generative
model, semi-supervised SVM, etc).

Supervised Learning Labeled inputs and outputs are used to approximate a relationship between variables (ie linear regression, logistic regression, SVM, KNN,
etc).
Definitions of Machine Learning Techniques and Sample Methods. Techniques are shortened to SARSA (State, Action, Reward, State, Action), SVM (Support Vector Machine), and KNN (K
Nearest Neighbor).
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optimize the power of these new tools. Moreover, future AI/ML

studies with applications for PCOS or other conditions, should

make greater efforts to increase the methodological quality to

increase the validity of the results. For this, we recommend the

following five measures to improve the applicability of AI/ML for

diagnosing PCOS and improving its care.

1. Increase collaboration between clinicians, researchers, and

computational biologists.

2. Set up combined registries of data that include defined

clinical, radiological (including images), and laboratory data (with

reference values) of PCOS patients.

3. Use standardized criteria to train machine learning models

as the standard reference and perform robust training and

validation studies in PCOS patients.

3. Since some of the data used to develop the model may have

some variation by time, it is important that future studies also test

for performance (accuracy measures) consistency across time.

4. Enhance integration of population-based studies [e.g. All of

Us, NHANES (67, 68)] with electronic health datasets to identify

risk factors and risk enhancers for PCOS.

5. Include commonly used biochemical tests such as AMH,

gonadal hormones, markers of insulin resistance and others in AI/

ML to identify reliable biomarkers that can aid the diagnosis

of PCOS.

To our knowledge, this is the first systematic review of AI/ML in

the diagnosis of PCOS, spanning all published studies to date. We

followed the methodological standards for systematic reviews

proscribed by PRISMA guidelines. Despite the absence of a

methodological assessment tool for evaluation of AI/ML based

studies at the time of execution of this review, we performed a

thorough evaluation of the quality by adapting the QUADAS-2 tool

and adding relevant questions for the AI/ML interventions

evaluated. Although not a weakness of our methods, confidence

in our results is limited by the relatively small number of studies

conducted on this subject, the heterogeneity of available data, and

the risk of bias in primary studies. Broadly, poor dataset sourcing

using non-standardized criteria, inconsistent use of best-practice

machine learning methods, and limited clinical affiliations among

authorship all undermined confidence in our selected studies.

In conclusion, our findings suggest that there is a high potential

of AI/ML based programs in the diagnosis and care of PCOS, but

that future studies should focus on enhancing methodological

robustness and incorporating variables and outcomes of

clinical importance.
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