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Single-cell RNA sequencing
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Background: While osteoimmunology interactions between the immune and

skeletal systems are known to play an important role in osteoblast development,

differentiation and bone metabolism related disease like osteoporosis, such

interactions in either bone microenvironment or peripheral circulation in vivo

at the single-cell resolution have not yet been characterized.

Methods: We explored the osteoimmunology communications between

immune cells and osteoblastic lineage cells (OBCs) by performing

CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-

seq) data from human femoral head. We also explored the osteoimmunology

effects of immune cells in peripheral circulation on skeletal phenotypes. We used

a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform

deconvolution analysis. Then weighted gene co-expression network analysis

(WGCNA) was used to identify monocyte subtype-specific subnetworks. We next

used cell-specific network (CSN) and the least absolute shrinkage and selection

operator (LASSO) to analyze the correlation of a gene subnetwork identified by

WGCNA with bone mineral density (BMD).

Results: We constructed immune cell and OBC communication networks and

further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification

related functions. We also found a Mono4 related subnetwork that may relate to

BMD variation in both older males and postmenopausal female subjects.
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Conclusions: This is the first study to identify numerous ligand-receptor pairs

that likely mediate signals between immune cells and osteoblastic lineage cells.

This establishes a foundation to reveal advanced and in-depth osteoimmunology

interactions to better understand the relationship between local bone

microenvironment and immune cells in peripheral blood and the impact on

bone phenotypes.
KEYWORDS
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Introduction

The immune and skeletal systems are closely linked through

various physiological and pathological conditions (1, 2).

Osteoimmunology interactions are involved in both bone

microenvironment and peripheral circulation (1, 2). For example,

activated monocytes stimulating the expression of Runx2 was

critical in differentiation bone marrow-derived mesenchymal stem

cells (BMSCs) into the osteoblast lineage for bone fracture repair (3,

4). The absence of neutrophils induces IL-17-driven inflammatory

bone loss damaging to bone tissue (5). In addition, postmenopausal

osteoporosis has been described as an inflammatory disease, as

immune cells were identified as key players in the onset of

osteoporosis (6, 7). The current research used single-cell RNA

sequencing (scRNA-seq) data from human femoral head to

explore the in vivo osteoimmunology communications of

osteoblastic lineage cells (OBCs) with bone microenvironment

immune cells. We also used scRNA-seq data and bulk

transcriptomes data from peripheral blood monocytes of both

male and female human subjects to reveal the osteoimmunology

effect of circulating immune cells on bone health.

Previous researches have explored the heterogeneity among

OBCs and microenvironment immune cells (8, 9), including our

previous study which provided the first unbiased examination of the

cellular landscape of freshly collected bone samples from human

femoral head via scRNA-seq (10, 11). Although the cellular

interaction between OBC and the immune system has been

looked at extensively in mice, the related studies are much more

uncommon in humans. CellphoneDB is a widely used cell

communication software based on a public repository of ligands-

receptors with complex information (12). CellChat is a classical

software with pathway and multiple analysis tools through social

network, pattern recognition and manifold learning (13). So

systemic analysis of cell interactions can be explored by using

these two complementary approaches.

In adult peripheral skeleton, peripheral blood monocytes are the

sole source of osteoclast precursors which are involved in the bone

resorption (by osteoclasts)-formation (by osteoblast) homeostasis

(14–17). This homeostasis state is crucial for keeping the normal

bone mineral density (BMD) level and is related to metabolic bone
02
diseases like osteoporosis (18). Investigating the correlations of gene

interactions with BMD may contribute to a better understanding of

the osteoimmunology process of monocyte. So, we applied multiple

approaches such as cell-specific network (CSN) (19) and Least

absolute shrinkage and selection operator (LASSO) (20) analysis to

assess gene interactions in expression profiles of circulating

monocyte from male and female samples in the current study.

CSN analysis allows construction of separate gene regulatory

networks for individual RNA-seq samples, thereby enabling

identification of multiple genes and their expression correlations

based on different sample status such as age and BMD level (19).

LASSO is a machine learning method that performs both variable

selection and regularization to enhance the interpretability and

accuracy of the prediction model (20). LASSO has been used to

select prognosis/clinical character-associated genes and avoid

overfitting in expression profiles of different diseases (21–23).

Here, we constructed OBC and bone microenvironment

immune cell communication networks, and further identified

L-R genes with ossification related functions. For circulating

immune cells, CSN and LASSO analysis revealed a monocyte

subtype (Mono4) related subnetwork may be associated with

BMD levels in older males and postmenopausal females

respectively. Our findings provide a resource of immune-skeletal

system interactions, which may contribute to understanding

characteristic gene’s osteoimmunology functions in skeletal

physiological and pathological processes.
Method

Study population and bone scRNA-seq
data sources

We visualized all the datasets with the sample origin, number of

cells, and sequencing methodology in Table 1. As described in our

recent study (10), the study subject was a 31-year-old male patient

who was diagnosed with osteoarthritis and osteopenia. After cell

digestion, a part of the cell mixture were collected as

“microenvironment cells (11)” (microenvironment dataset), and

the rest of the cells were used for osteoblast (OB) sorting (10) (OB
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sorting dataset). Detailed information on study population and

bone scRNA-seq data sources were shown in Table 1.
Study population and peripheral blood
monocytes (PBMs)-related datasets

The scRNA-seq data of 339 blood monocytes were obtained

from GEO database with GEO Series GSE94820 (24). In this

dataset, peripheral blood mononuclear cells were isolated by

FACS to exclude cells expressing markers of B, T, and NK cells

and sampled LIN–CD14lo/++ cells for monocytes. Four monocyte

subtypes were defined in the clustering analysis through Seurat R

package (24).

PBMs for the RNA-seq analysis were isolated from 944 male

subjects (ethnicity: Caucasian (572), African-American (371) and

Hispanic (1); age: 20-64) after whole-body BMD (WB-BMD)

measurements. Detailed characteristics of subjects are shown in

Table S1. These subjects were recruited from the Louisiana

Osteoporosis Study (LOS) (25–28). The Institutional Review

Boards of Tulane University approved the study. Written

informed consent was obtained from all participants before

inclusion in the study. The WB-BMD (g/cm2) of each subject was

measured using a Hologic dual energy x-ray absorptiometer (DXA)

scanner (Hologic Corp., Waltham, MA). The machine was

calibrated daily. PBMs were isolated from whole blood using a

Monocyte Isolation Kit II (Miltenyi Biotec Gmbh, Bergisch

Glagbach, Germany). Next, total RNA from monocytes was

extracted using the AllPrep RNA Universal Kit (Qiagen, USA)

following the manufacturer’s protocol and kept at -80°C until

further use. After quality control, mRNA sequencing (RNA-seq)

libraries were prepared following the Illumina’s TruSeq-stranded-

total-RNA-sample preparation protocol. RNA libraries were

sequenced on the Illumina’s NovaSeq 6000 sequencing system

and generated paired-end reads. The FPKMs were calculated by

StringTie (29) to evaluate the expression levels of genes in each

sample. MuSiC R package (30) was used to perform deconvolution

analysis based on monocyte scRNA-seq data through the package

reference manual (https://github.com/xuranw/MuSiC).

The female osteoporosis mRNA transcriptome array data were

obtained from 20 postmenopausal and 20 premenopausal subjects

with low BMDs, and 20 postmenopausal and 20 premenopausal

subjects with normal BMDs (GEO Series GSE56815) (14, 31). These
Frontiers in Endocrinology 03
data were derived from circulating monocytes isolated with a

Monocyte-Negative Isolation Kit (Miltenyi Biotec) and were

tested on the Affymetrix Human Genome U133A Array platform.

The expression matrix has been normalized by using the RMA

(robust multiarray average) method through the Bioconductor’s

Oligo package.
Integration of OBCs and bone
microenvironment cells

We integrated the microenvironment dataset and OB sorting

dataset by CCA using Seurat R package (32). The CCA method

identified shared correlation structures across different datasets by

finding linear combinations of the features with large correlation to

overcome batch effect. After CCA integration, uniform manifold

approximation and projection (UMAP) were used for dimension

reduction. Cell clustering results were visualized in a two-

dimensional panel by using DimPlot function in Seurat R package.
Single-cell trajectory construction

We reconstructed the single-cell developmental trajectories in

pseudo-time order by using Monocle 2 R package (v2.14.0) to

discover developmental transitions of OBC. We used

“reduceDimension” function for the dimension reduction and

“orderCells” function for the cell ordering. Next, “DDRTree” and

“UMAP” were applied to reduce dimension and these results were

used for cell trajectory visualization.
Gene enrichment analysis

To identify the significantly enriched pathways of cell trajectory

related genes or significant L-R gene pairs, we used clusterProfiler R

package to perform Gene Ontology (GO) enrichment analysis. Only

terms showing adjusted p-values less than 0.05 (adjusted for

multiple testing by using the Benjamini-Hochberg (BH) method)

were considered as significantly enriched.

Metascape were applied for pathway enrichment analysis in

KEGG and Wiki database. Metascape utilizes the well-adopted

hypergeometric test and BH p-value correction algorithm to
TABLE 1 Detailed information on sample origin, number of cells, and sequencing methodology of each dataset.

Dataset Sample origin Number of cells/samples Sequencing methodology

Microenvironment dataset Femur head-derived bone tissue 8952 cells scRNA-seq

OB sorting dataset Femur head-derived bone tissue 8728 cells scRNA-seq

CCA integration dataset Femur head-derived bone tissue 17680 cells scRNA-seq

Blood monocytes dataset Peripheral blood monocytes 339 cells scRNA-seq

Male monocytes dataset Peripheral blood monocytes 944 samples RNA-seq

Female osteoporosis dataset Peripheral blood monocytes 80 samples mRNA transcriptome array
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identify significantly enriched terms (adjusted p< 0.05). Next,

pairwise similarities between any two terms were computed based

on a Kappa-test score and a 0.3 similarity threshold was applied to

get separate term clusters. Metascape chose the most significant

(lowest p-value) term within each cluster to represent the cluster.

Term networks were created by the representing terms as nodes and

the Kappa similarities above 0.3 between pairs of nodes as edges in

the Cytoscape software (v.3.9.1).
Analysis of L-R communication

Cell communication analysis in the current research was based

on complementary tolls of CellPhoneDB (12) and CellChat (13).

Input for the ligand receptor analysis (both CellPhoneDB and

CellChat) are cell-gene expression and cell type information

matrix. These two approaches were different in data sources and

analysis methods. Compared with CellChat, CellPhoneDB included

more information about protein complex (Table S2). L-R repository

used in CellPhoneDB was also larger than CellChat. On the other

hand, CellChat provides unique pathway-based L-R sources. It also

has multiple calculation methods regarding cofactors, mediators

and pattern-based analysis tools for discovery of novel functional

intercellular communications. Compared with CellChat,

CellPhoneDB included more information about protein complex

with a larger L-R repository (Table S2), while CellChat provides a

unique source regarding pathway, cofactors, mediators and pattern-

based analysis tools for discovery of novel functional

intercellular communications.

First, we used CellPhoneDB (12) to systematically analyze the

cell communication network between OBCs and bone

microenvironment cells. CellPhoneDB is a public repository of

ligands-receptors that considers interacting partners as binary

interactions and calculates the average log gene expression level

and communication significance of each known L-R pair. To

perform statistical inference of L-R specificity, a null distribution

for each L-R pair mean was generated by random permutation

(1,000 times by default) first. The p-value for the likelihood of cell-

type specificity of a given L-R pair was calculated by the proportion

of the means which are ‘as or more extreme’ than the actual mean.

Predicted interaction L-R pairs with p-values< 0.05 were considered

as significantly differentially expressed in one cell pair compared

with other cell pairs as defined in the original analyses (12).

Next, the intercellular communication pathways were analyzed

by CellChat (13), a public knowledge base of ligands, receptors,

cofactors, and their interactions with pathway annotation. CellChat

identified the differentially expressed ligands and receptors in each

cell type and clustered multiple communication patterns of different

cell populations and pathways through social network analysis tool,

pattern recognition methods and manifold learning approaches

(13). Such analyses enable identification of the specific signaling

roles played by each cell population, as well as the discovery of novel

functional intercellular communications in certain cell types.
Frontiers in Endocrinology 04
Construction of co-expression modules
and subnetwork identification

The weighted gene co-expression network analysis (WGCNA)

(33) was used to identify functional gene modules. The soft

thresholding power b = 14 was selected to amplify the expression

differences and get a scale-free topology in the co-expression

network. We set the minimum module size to be 30 genes. Each

module was represented by its eigengene which was defined as the

first principal component of a given module. The average gene

significance (GS) was defined as the correlation between module

eigengenes and phenotypes. There were five phenotypes involved in

the current analysis including WBTOT_BMD and cell type

proportions of four monocyte subtypes (Mono1, Mono2, Mono3,

and Mono4). Module membership (MM) was calculated by the

Pearson correlation between each gene and the module eigengene.

We further used the (MCODE) plugin to identify the most densely

connected core subnetwork in the whole module network. MCODE

is a graph theoretic clustering algorithm based on vertex weighting

(34). Local neighborhood density and outward traversal from a

locally dense seed protein are analyzed to define and select the most

densely connected core subnetwork in the PPI network. Key

parameters were set as default as follows: degree cutoff = 2, node

score cutoff = 0.2 and K-core value = 2.
Protein-protein network (PPI) construction

The Search Tool for the Retrieval of Interacting Genes

(STRING) database (35) was used to build PPI networks in the

selected gene module. This database provided information about

known and predicted protein interactions based on regulation,

correlation or protein binding validated in Co- IP and other

experiments. STRING analysis results were used to construct the

PPI network in the Cytoscape software v.3.9.1.
CSN analysis

To explore the gene associations at the single-subject level, we

used MATLAB software to construct the CSN (19) of gene

associations for each individual subject in the RNA-seq data.

Based on the expression values of genes X and Y in different

subjects (Figure S1A), the CSN method constructed a scatter

diagram in which each dot represented an individual subject, x-

axis shows the expression values of gene X, and y-axis shows the

expression values of gene Y for cell k. The number of dots (i.e., cell

number) in the blue, red and intersection green boxes is denoted as

n x (k), n y (k) and n xy (k) respectively. n was the total subject

number in the scatter diagram. n x (k) = n y (k) = 0.1n was set as

default. The coefficient 0.1 denotes the box size (blue and red

boxes). In cell k, the statistic rxy (k) is used to assess the inter-

relationships (edges) among gene x and gene y (Equation 1).
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r̂    (k)
xy =

ffiffiffiffiffiffiffiffiffiffi
n − 1

p
· (n · n  

(k)

xy − nx (k)ny (k))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx (k)ny (k)(n − nx (k))(n − ny (k))

p (1)
LASSO analysis

To select predictive features of osteoporosis risk in

postmenopausal and premenopausal patients with low and

normal BMD, genes in the core subnetwork were used to perform

the LASSO analysis using the glmnet R package (20). Coefficients of

unimportant variables were penalized to zero and important

variables were retained with LASSO method. The retained

predictors were then utilized to develop a binary logistic

regression model for scoring osteoporosis risk. We used the area

under the receiver operating characteristic (ROC) curve (AUC) to

determine the discriminative ability of the model. Then we test the

module significant by the “roc.area” function in R software (36).

The Youden index was calculated in the pROC R package and used

to determine the best ROC cutoff value (37).
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Results

Integrated analysis identified OBCs and
bone microenvironment cells

We integrated two scRNA-seq datasets of the femur head-

derived bone tissue from a 31-year-old Chinese male subject

before osteoblast isolation (Microenvironment dataset (11)) and

after osteoblast isolation (OB sorting dataset (10)) through FACS

(Figure 1A). The microenvironment dataset included seven original

cell clusters before CCA analysis (Figure 1B, top): Neutrophil/

Monocyte-1, Neutrophil/Monocyte-2, T cell, Erythrocyte, B cell,

plasmacytoid dendritic cell (PDC) and OBC. The OB sorting

dataset included six original cell clusters (Figure 1B, middle)

before CCA analysis: OBC-1, OBC-2, Erythrocyte-1, Erythrocyte-

2, Neutrophil/Monocyte and smooth muscle cell. After integration,

the same type of cells such as OBC, erythrocyte and neutrophil/

monocyte from the two different datasets clustered together, while

the unique cell types like T cell, B cell and PDC in the

microenvironment dataset and the smooth muscle cell in the OB
DA B

E

FC

G

FIGURE 1

Single-cell clustering analysis. (A) Single-cell clustering results after CCA integration analysis. (B) The upper panel shows cell cluster information of
microenvironment cells before integration analysis using the same clustering layout in panel (A) The middle panel shows cell cluster information of
OB sorting dataset before integration analysis using the same clustering layout. The lower panel markers the source of each cell. (C) Cell
developmental trajectory inference of OBC-1 and OBC-2. The upper-right trajectory plot indicates the direction of pseudotime. (D) Cell lineage
relationships in panel (C). (E) Expression levels (log-normalized) of indicated genes with respect to their pseudotime coordinates. The x-axis indicates
the pseudotime, while the y-axis represents the log-normalized gene expression levels. Black lines depict the LOESS regression fit of the normalized
expression values. (F) Continuum of up regulated-genes in cell fate 1 around branch point 2 in panel (D) Cell fate 1 is correlated to the left branch
after branch point 2 in panel (D) Marked names of ossification-related genes. (G) GO analysis results of up regulated-genes in cell fate 1.
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sorting dataset were separated in the CCA UMAP plot as expected

(Figure 1B, bottom; Figure 1A). However, some cell clustering

results were unexpected and may not be sensible due to batch or

sample effects before CCA (Figure S2A). For example, OBC cells in

these two datasets were completely separate. In addition, Some B

cells were mixed with the smooth muscle cell cluster. So CCA is

needed in the integration of these two datasets. Differentially

expressed gene (DEG) analysis identified top 10 DEGs in these 10

integrated cell clusters (Figure S1B). Cell type annotation was based

on the expression patterns of recognized cell-type markers

(Figure S2B).

For different subclusters of OBC, cell trajectory inference

analysis results showed that OBC-2 was the late-stage cell

compared with early-stage subcluster OBC-1 (Figures 1C, D).

OBC-1 also highly expressed BMSCs markers such as LEPR (38)

and VCAM1 (39); while OBC-2 highly expressed osteogenic
Frontiers in Endocrinology 06
markers such as RUNX2, BGLAP and COL1A1 (40, 41)

(Figure 1E). A branch heatmap (Figure 1F) of the branch point 2

in Figures 1C, 2D further showed a tendency toward up-regulation

of ossification related genes (Figure 1G) in cell fate 1 (late-stage cell

fate, left branch after branch point 2 in Figure 1D). So, we defined

OBC-1 as early-stage OBC and OBC-2 as late-stage OBC based on

these results.
CellPhoneDB analysis revealed L-R
interactions between OBCs and bone
microenvironment immune cells

Cell phone communication network predicted different

potential L-R interactions between OBC-1/OBC-2 and various

immune cells including Neutrophil/Monocyte-1, Neutrophil/
D

A B

E

C

FIGURE 2

Cell communication results based on CellphoneDB. (A) Cell communication network of OBC and immune cell clusters. Width of edge represents
the number of significantly differentially expressed L-R pairs. Edge direction is from ligand to receptor. Red edges are from immune cells to OBCs.
Blue edges are from OBCs to immune cells. (B) Heatmap of significantly differentially expressed L-R pairs numbers between two cell clusters. (C)
Dot plots show significantly differentially expressed L-R pairs between each immune cell type to OBC-1. Unique L-R pairs in the blue background
are only significantly differentially expressed in one cell pair. (D) Dot plots show significantly differentially expressed L-R pairs between each immune
cell type to OBC-2. Unique L-R pairs in the blue background are only significantly differentially expressed in one cell pair. (E) GO enrichment analysis
results of ligands (left) and receptors (right) in significant L-R pairs in panels (C, D).
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Monocyte-2, PDC, T cell and B cells in the bone microenvironment

(Figures 2A, B). Dot plots showed significantly differentially

expressed L-R pairs between each immune cell type with OBC-1

(Figure 2C) or OBC-2 (Figure 2D). Unique L-R pairs depicted in the

blue background were only significantly differentially expressed in

one cell pair (Figures 2C, D). Compared with any other immune

cells, PDC cells have more unique L-R pairs in both immune cell-

OBC-1 (Figure 2C) and immune cell-OBC-2 cell pairs (Figure 2D).

This result suggested PDC cells have unique functions regarding L-

R communications with OBCs. We next performed GO enrichment

analysis of the ligand genes from immune cells (Figure 2E, left) and

receptor genes from OBC-1 and OBC-2 (Figure 2E, right) in

significant L-R pairs identified in the cellphoneDB analysis

respectively. Receptor genes of OBC which were enriched in

osteoblast differentiation and bone mineralization related terms

(Table S3, Figure 2E) may play an important role in the

functional response of immune related ligands in the bone

microenvironment communication.
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Pathway-based cell interactions analysis
between OBCs and bone
microenvironment immune cells

We used CellChat to perform pathway-based L-R interactions

analysis between OBCs and bone microenvironment immune cells.

RETN-CAP1 (RESISTIN pathway) was the highest expressed

interaction between Neutrophil/Monocyte-1 to OBC-1 and OBC-

2. AREG-EGFR (EGF pathway) was the highest expressed

interaction between PDC to OBC-1. MIF-ACKR3 (MIF pathway)

was the highest expressed interaction between PDC to OBC-2, T

cell to OBC-1, T cell to OBC-2, B cell to OBC-1 and B cell to OBC-2

(Figure 3A, Table S4). The communication network produced with

CellChat further showed L-R pair expression levels across all

different cell types (Figure 3B). MDK-SDC1/2/4 gene pairs were

only involved in B cell-OBC interactions instead of any other

immune cell-OBC interactions; MDK-SDC2 was the only

interaction that was shared by both B cell-OBC-1 and B cell-
A

B

C

FIGURE 3

Cell communication results based on CellChat. (A) Chord diagrams of immune cell-OBC communications. Width of edge represents the interaction
strength. Thicker edge line indicates a stronger signal. Edge direction was from ligand to receptor. (B) Circle plots of L-R pairs between different cell
groups. Width of edge represents the interaction strength. Thicker edge line indicates a stronger signal. (C) Relative contribution of each L-R pair to
the overall communication network of MK signaling pathway.
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OBC-2 cell pairs among MDK-SDC1/2/4 (Figures 3A, B, Table S4).

As the SDC gene family has been reported to control apoptosis of

OBC, we calculated the relative contribution of MDK-SDC1, MDK-

SDC2, MDK-SDC4 among the MK pathway, and further found

MDK-SDC2 was the most important contributor in this pathway

(Figure 3C). The most important contributor was inferred to have

potentially important biological contributions to the overall

signaling pathway. A violin plot of all involved genes in the

CellChat analysis also showed SDC2 expressed in both OBC-1

and OBC-2 clusters, while SDC1 and SDC4 were only expressed in

OBC-1 and OBC-2, respectively (Figure 4A).

Based on different cell types’ L-R pair expression profiles

(Figures 3, 4A), we performed a variety of quantitative network

measure analyses in an unsupervised manner provided by CellChat.

Pathway heatmap showed the relative importance of each cell group

in four different roles including sender, receiver, mediator and

influencer (Figure 4B). For example, betweenness analysis showed

B cell was the dominant mediator in VISFATIN signaling pathway,

suggesting its role as a gatekeeper in this communication network;

OBC-1 was a prominent influencer controlling the communications

in IL6 signaling pathway confirmed by network centrality

analysis (Figure 4B).

To explore how multiple cell groups and signaling pathways

coordinate to function, we identify the global communication

patterns that connect cell groups with signaling pathways either

in the context of incoming signaling (treating cells as receivers) or

outgoing signaling (treating cells as senders). This analysis

uncovered three patterns for outgoing signals (Figure 5A) and

two patterns for incoming signals (Figure 5B) that may

coordinate with each other within the corresponding cell groups.

The communication patterns of secreting cells (Figure 5A) show

that outgoing immune signaling is dominated by Pattern 2

(Neutrophil/Monocyte-1, Neutrophil/Monocyte-2, T Cell) and
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Pattern 3 (B cell, PDC). Pattern 2 included bone related signaling

pathways such as TGFb, while Patterns 3 include bone related

signaling pathways such as EGF. On the other hand, the incoming

OBC signaling was characterized by Pattern 1 (Figure 5B), which

represented multiple pathways such as EGF and PDGF. By

identifying poorly studied pathways that group together with

other well-known bone function related pathways like TGFb, MK,

MIF (42–46) in the functional similarity grouping analysis, these

results showed predicted putative bone related functions of the

former pathways (Figure 5C).
Co-expression network identification of
genes associated with monocyte subtypes

From L-R interaction analysis, we identified comprehensive

communication patterns between immune cells and OBCs in local

bone microenvironment. To further explore the systemic

osteoimmunology communications in peripheral circulation, we

investigated circulating immune cells’ association with bone health

(1, 2). We selected monocyte for further analysis partially because it

was also the sole source of osteoclast precursors in adult peripheral

skeleton. First, we performed RNA-seq of peripheral blood

monocyte from 944 male subjects (age:20-64). Second, we used

the subset of 4 monocyte clusters (Mono1, Mono2, Mono3, Mono4)

from a public scRNA-seq dataset (24) of human peripheral blood

mononuclear cells to characterize monocyte subtype compositions

by deconvolution analysis (30). The output was the cell proportion

matrix of four monocyte subtypes for each sample from the formal

bulk RNA-seq data of peripheral blood monocyte. Next, we

performed WGCNA analysis to identify potential gene co-

expression networks which were associated with BMD or certain

monocyte subtypes.
A

B

FIGURE 4

L-R Expression and signaling networks. (A) Expression levels of L-R genes in Figure 3B. (B) Heatmap shows the relative importance of each cell
cluster based on the computed network centrality measures of different signaling networks.
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WGCNA identified 25 distinct functional modules (Figure S3A)

in the RNA-seq data of PBMs. The midnightblue module was

identified to have the highest correlation coefficient between its

eigengene with the proportion of Mono4 (Figure 6A). However, no

module showed a significant correlation (correlation coefficient >

0.7) with WB-BMD (Figure 6A). The high correlation coefficient

between gene significance (reflecting how strongly the module gene

expression values correlate with a certain cell type) vs. module

membership (reflecting how strongly the module gene expression

correlates with the module eigengene) further supports the

significant association of the midnightblue module with Mono4

proportion (Figure 6B). In addition, the midnightblue module also

had the highest gene significance score across modules (Figure 6C),

indicating that the association of Mono4 proportion was specific in

this gene module. Top 150 gene connections (topological overlap

based on co-expression) among the top 100 hub genes (genes with

the highest kME) of the midnightblue module were shown in the

gene member network (Figure 6D).

Next, we performed function enrichment analysis of

midnightblue module genes in the KEGG and Wiki databases.

The enrichment results showed genes in the midnightblue

module were significantly enriched in TGFb signaling pathway

and TGFb receptor signaling in skeletal dysplasias (Figure S3B). As

TGFb signaling pathway was also involved in Neutrophil/Monocyte

related incoming and outgoing patterns in our pathway-based L-R

analysis, we further used Metascape to explore the relationship of

TGFb signaling pathway groups with other term groups. The results

showed TGFb signaling pathway related midnightblue module

genes were widely associated with other skeletal related term
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groups represented by BMP signaling pathway and skeletal

system development (Figure S3C).
CSN analysis revealed the potential BMD
protective effects of the core subnetwork
of the midnightblue module in older males

MCODE extracted a core subnetwork of the midnightblue

module (Figure 7A) consisting of nine hub genes (MCODE

score = 8.5) within the gene member network (Figure 6D). PPI

analysis showed the protein interaction information of proteins of

nine hub genes and other genes in the gene member network

(Figure S1C). We next performed the CSN analysis to explore the

correlation of gene interactions in the core subnetwork with BMD

by using the RNA-seq data of PBMs from male adults. First,

samples were categorized into quartiles (Q1, Q2, Q3, and Q4)

according to BMD and age respectively (Figure 7B). We defined

four sample groups (Figure 7C) as OH (oldest quartile in age and

highest quartile in BMD), OL (oldest quartile in age and lowest

quartile in BMD), YH (youngest quartile in age and highest quartile

in BMD) and YL (youngest quartile in age and lowest quartile in

BMD) group. Then CSN networks of nine hub genes were

constructed in each group respectively. We observed that the hub

genes were strongly interconnected only in the OH group. While

other groups especially YH and YL groups showed weak

interconnections in the network (Figure 7D). No significant

correlation was found in Mono4 proportions with BMD levels,

and no significant differences were found in Mono4 proportions in
A

B C

FIGURE 5

Cell communication patterns. (A) The inferred outgoing communication patterns of cells (Left plot). The inferred outgoing communication patterns
of pathways (Middle plot). The correspondence between the inferred latent patterns of cell clusters and signaling pathways (Right plot). (B) The
inferred incoming communication patterns of cells (Left plot). The inferred incoming communication patterns of pathways (Middle plot). The
correspondence between the inferred latent patterns of cell clusters and signaling pathways (Right plot). (C) Projecting signaling pathways according
to their functional similarity. Dot size is proportional to the overall communication probability. Different colors represent different pathway groups.
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OH and OL groups. These results further supported that the effects

of core subnetwork extracted from Mono4 were mainly based on

gene interactions, instead of Mono4 proportions. The specific

strong connections in the OH group suggested that high

interactions of this subnetwork may be involved in the BMD

specific protective effect in older males.
Construction of osteoporosis risk
prediction model within the core
subnetwork of the midnightblue module

To explore whether the above subnetwork is also related to

different BMD levels in older females, we selected predictive

features within the subnetwork using LASSO method to predict

osteoporosis in postmenopausal patients with low and normal

BMD (Figure 8A). We used postmenopausal female osteoporosis

data as the training dataset and premenopausal female osteoporosis

data as the validation group. Five genes remained after the LASSO
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feature selection, and the formula for the osteoporosis risk score

(ORS) was established as follows: ORS = 33.991 - 2.272 * ABCD2 -

6.201* RORA + 2.237 * ITK - 1.100 * CAMK4 + 0.466 * RASGRP1

(Figures 8B, C). The AUC was used to value the formula’s ability of

prediction. The ORS was reliable for predicting osteoporosis as

AUC is as high as 0.807 (Figure 8D). The ORS module is also

statistically significant with a p-value at 0.00029. Then, Youden

index was used to adjust the cutoff value and the classification result

of ORS model. The Youden index analysis showed the best cutoff

value was 0.51 (specificity = 0.8, sensitivity = 0.75; Figure 8E). The

higher ORS score is corresponding to lower osteoporosis risk and

higher BMD level. Next, we used the premenopausal female

osteoporosis data to validate this model. Although the

performance was not as good as the training dataset, the

specificity was 0.50 and the sensitivity was 0.70 in this validation

dataset (Figure 8F). These results further suggested the specific

higher correlation of this subnetwork with higher BMD in older

females, which was also consist with its strong correlation in older

males with higher BMD.
D

A

B

C

FIGURE 6

Construction of gene correlation modules. (A) Module-trait relationship heatmap. Each row indicates a module eigengene, and each column
presents cell subtype proportion. The corresponding correlation and P value have been marked. (B) Scatter plots of module membership vs. gene
significance in midnightblue module. (C) Gene significance of Mono4 proportion crosses modules. (D) Gene member network of midnightblue
module. Top 150 gene connections (by topological overlap) among the top 100 hub genes (by kME) are shown in the network.
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Then we compared two known gene panels to our module (47–

49). 29 BMD-associated gene were included in the first gene panel

which were defined in the Dubbo Osteoporosis Epidemiology Study

with 557 men and 902 women (47). AUC score of this gene panel is

0.775 in the LASSO analysis. Thirteen fracture risk-associated gene

were included in another gene panel which were defined in a
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genome-wide meta-analysis with 31,016 cases and 102,444

controls (48, 49). AUC score of this gene panel is 0.787 in the

LASSO analysis (48, 49). So, both known gene panels were less

predictable with lower AUC scores less than 0.8. These results

indicate the ORS model is efficient and specific in osteoporosis

risk prediction.
D

A B

E F

C

FIGURE 8

LASSO analysis results in female subjects. (A) Age and BMD information of four subject groups. (B) Subnetwork gene expression features selection in the
LASSO model. (C) Coefficient curves of subnetwork genes. (D) ROC curves of the prediction model. (E) Cutoff selection based on specificity and
sensitivity performance in postmenopausal group. (F) Specificity and sensitivity performance under the same cutoff value in the premenopausal group.
D

A B C

FIGURE 7

CSN analysis results in male subjects. (A) The subnetwork screened by MCODE. MCODE score = 8.5. (B) Box plots of whole-body BMD level (left)
and subject age (right). (C) Age and BMD information of four subject groups. (D) CSN analysis results of subnetwork gene in OH, OL, YH and YL
group. Edge represents mean connection score in each cell type from low (yellow/thin) to high (darkgreen/thick).
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Discussion

In the current study, we performed cell communication analysis

between OBCs and immune cells by integrating two scRNA-seq

datasets generated from the same sample: a 31-year-old man who

underwent hip replacement surgery. To further explore the bone

health-related functions of immune cells, we used CSN and LASSO

analysis in male and female subjects respectively, to reveal the

potential role of a gene subnetwork associated with Mono4 which

was identified by WGCNA.

Cell communications in the bone microenvironment are known

to be important for bone homeostasis (1, 2, 6, 7). Receptors in the

significant L-R interactions provided by CellPhoneDB were

enriched in multiple bone related terms such as osteoblast

differentiation and bone mineralization. For example, previous

research has reported that Jagged1 was expressed concomitantly

with Notch1 in maturating osteoblastic cells during bone

regeneration (50). Interaction of Jagged1 and Notch1 was

involved in enhancing BMP2-induced osteoblastic differentiation

(50). Jagged1 and Notch2 were similarly localized in mesenchymal

cells and regulated both endochondral and intramembranous bone

regeneration (51). Our research further showed these JAG1-

NOTCH interactions may also play an important role in PDC-

OBC cell communication in the bone microenvironment. Active

TGFb1 release from cleaved LAP by osteoclastic bone resorption

induced enrichment of osteoprogenitor in the bone resorption

lacunae (42) . Our resul ts further showed that bone

microenvironment immune cells such as Neutrophil/Monocyte-1,

PDC and T cell may also be the important source of TGFb1 to

active TGFb receptor-1/2 in both early-stage and late stage OBC.

Compared with any other immune cells, PDC cells have more

unique L-R pairs in both immune cell-OBC-1 (Figure 2C) and

immune cell-OBC-2 cell pairs (Figure 2D). In addition, FLT3-

FLT3LG and JAG1-NOTCH3 were unique PDC-OBC-1 cell pairs

in the PDC-OBC communications; while LGALS9-CD44,

COL24A1-a10b1 complex and COL24A1-a11b1 complex were

unique PDC-OBC-2 cell pair in the PDC-OBC communications.

Moreover, Jagged1 and Notch3 were up-regulated during

osteogenic differentiation of human bone marrow-derived

mesenchymal stromal cells in vitro and bone healing period of

murine tibial fracture in vivo (52). These results suggested PDC cells

have unique functions regarding L-R communications with early

and late-stage OBCs.

Pathway based CellChat analysis showed NAMPT-INSR

(VISFATIN pathway) was a common L-R pair among all immune

cell types to OBC-2. Nampt plays a critical role in osteoblast

differentiation through epigenetic augmentation of Runx2

transcription (53). Nampt induced activation of insulin signaling by

INSR influenced not only postnatal bone acquisition but also of bone

resorption (54, 55). The interactions through different immune cell

types to the late-stage OBC regarding NAMPT-INSR suggested a

complex regulatory mechanism may involve in this functional L-R

pair. There are also unique bone related L-R pairs that only showed in

certain cell pairs such as MDK-SDCs in B cell-OBC interactions (43–

45). SDCs are proteoglycans that act as signaling molecules. Previous

research showed that SDC2 is involved in the control of OBC
Frontiers in Endocrinology 12
apoptosis (44). As CellChat analysis also supported MDK-SDC2

was the most important contributor in the corresponding MK

pathway, further investigation may focus on the functional role of

SDC2 based on this interaction.

Circulating immune cells also influence bone states (56, 57).

Aging and impaired circulating monocytes were chemotactic to

bone lesions. So, we chose peripheral blood monocytes, the sole

source of osteoclast precursors in peripheral bone [14, 15] to

investigate their potential association with BMD. First, we found

a Mono4 related gene module (midnightblue module) by

deconvolution and WGCNA analysis. Mono4 expressed two

kinds of signature genes, i.e., classical monocyte signature genes

(e.g., TLR2, CTSD, NLRP3) and distinctive cytotoxic signature

genes (e.g., PRF1, GNLY, CTSW), resembling previously reported

“natural killer dendritic cells” (24). Natural killer dendritic cells

provide a link between innate and adaptive immunity, and involve

in antigen presentation, cytotoxic and antitumor activities (58, 59).

However, the specific function of the Mono4 cell subtype is still

poorly understood. Genes in the midnightblue module were highly

expressed in this cell subtype or regulated by Mono4 in the whole

monocyte group. GO analysis showed the midnightblue module

genes were enriched in TGFb pathway. Metascape further showed

the TGFb pathway-related genes also have correlations with other

bone function related terms such as skeletal system development

and BMP signaling pathway. RORA was one of the nine hub genes

in the midnightblue module identified byMCODE. Previous studies

have examined RORA’s function in bone metabolism (60). RORA-

deficient mice exhibit abnormalities in bone formation and bone

tissue maintenance (60). In the CSN analysis results, hub genes

showed a high association in OH group. These association edges

may come from co-expression, gene regulation, alternative splicing

and so on. Strong interactions among hub genes suggested their

unique function in maintaining high BMD in the older male at the

gene interaction perspective. LASSO analysis showed hub genes can

predict low/high BMD group in postmenopausal female subjects,

which further underline their potential function in this population.

There are some similarities and differences between the

osteoimmunology communication results in older male and

postmenopausal female samples. For example, ITK showed the

highest association within the CSN network of HO group, and it

also has the highest coefficient in the osteoporosis risk score (ORS,

high score is corresponding to low osteoporosis risk) formula of

postmenopausal female. While the other CSN network gene with

higher association in the HO group, DOCK9, is not a predictive

feature for osteoporosis in postmenopausal females. These results

showed that the function of DOCK9 might be more specific in

postmenopausal females compared with the potentially general

effect of ITK. So, pathological conditions and gender differences

should be considered in the further osteoimmunology

communication related research.

One limitation of the present study is that much of the research

data used in the microenvironment cell communication analysis

were obtained from one 31-year-old Chinese male patient. This

sample size is limited in its ability to fully represent the general

osteoimmunology pattern. Specifically, more samples from both

healthy subjects and patients with bone disorder are needed to
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derive unbiased expression matrices for the downstream analyses of

osteoimmunology communication. Despite this potential

limitation, our results provide the first necessary and valuable

insights into the predictive microenvironment osteoimmunology

communication at the single cell level. Secretory factors produced

by immune cells influenced osteoblast biology such as increased

osteoblast activity, reduced viability and increased apoptosis (1, 2),

which provided the evidence for the immune cells-osteoblast

interactions’ substantial effect. Although direct cell contact is not

required to exert this effect, increases in immune cell number within

the close proximity of osteogenic cells could likely increase the

likelihood of immune-osteogenic cell interactions. These insights

on the predicted L-R interaction perspective may prove critical for

the basic understanding of bone metabolism and pathophysiologic

mechanisms associated with various bone disorders.
Conclusion

In conclusion, our research revealed a comprehensive

intercellular interactions landscape between microenvironment

immune cells and OBCs. We also found a Mono4 related

subnetwork to further strengthen the evidence of immune cells’

function in bone health in older males and postmenopausal females.

Our results establish the foundations to investigate advanced

mechanisms regarding both microenvironment and circulating

immune cells’ impact on BMD and the related skeletal disorders

such as osteoporosis and traits as well.
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SUPPLEMENTARY FIGURE 1

(A) Each dot in the scatter plot represents an individual cell. X-axis represents

the expression values of gene x, Y-axis represents the expression values of
gene y. The red dot represents cell k. The number of dots in the yellow, green

and intersection blue boxes near the red dot (cell k) are denoted as n(k)
N nx(k) ,

n(k)
y and n(k)

xy respectively. (B) Relative gene expression level of top 10 most

significant differentially expressed genes for each cluster. C. PPI network

based on genes in . Yellow nodes represent Mono4 related subnetwork
genes. Edge represents the evidence probability valued by combined score.

SUPPLEMENTARY FIGURE 2

(A) Single-cell clustering results before CCA integration analysis. (B)
Expression of marker genes in each cell cluster.

SUPPLEMENTARY FIGURE 3

(A) The clustering dendrograms of 25 co-expression gene modules by

different colors. Each gene is represented by one branch. (B) Function
enrichment results of genes in the midnightblue module. (C) Pathway

correlation analysis of TGFb signaling pathway related midnightblue module
genes. Metascape enrichment network visualization. Edges reflect the

relatedness of two term clusters. Cluster annotations (left plot) or adjusted

p values (right plot) are shown in different colors. Dot size represents gene
number in each term.
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SUPPLEMENTARY TABLE 1

Detailed characteristics of subjects for the PBMs RNA-seq analysis.

SUPPLEMENTARY TABLE 2

Complex information of all L-R pairs that are involved in the CellPhoneDB
analysis.
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SUPPLEMENTARY TABLE 3

Enriched genes in the bone function related GO terms correspond to
Figure 2E.

SUPPLEMENTARY TABLE 4

Pathway information of each L-R pair in Figure 3A.
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