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Fish body growth is a trait of major importance for individual survival and

reproduction. It has implications in population, ecology, and evolution.

Somatic growth is controlled by the GH/IGF endocrine axis and is influenced

by nutrition, feeding, and reproductive-regulating hormones as well as abiotic

factors such as temperature, oxygen levels, and salinity. Global climate change

and anthropogenic pollutants will modify environmental conditions affecting

directly or indirectly fish growth performance. In the present review, we offer an

overview of somatic growth and its interplay with the feeding regulatory axis and

summarize the effects of global warming and the main anthropogenic pollutants

on these endocrine axes.
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1 Introduction

Fish growth rate is an important trait with ecological, evolutionary, and conservation

implications (1, 2). Anthropogenic stressors such as global climate change, which imply

temperature rise, salinity change, and ocean acidification; ecosystem disturbance; and

selective pressure from capture have shown a rapid effect on the growth rate of several fish

species (2–10). During the last century, the mean global temperatures have risen

approximately 1.1°C concurrently with increasing anthropogenic greenhouse gas

emissions (11). Temperature is one of the main abiotic factors affecting body size in fish

(12–14). It has been described that increasing temperature induces a reduction in body size

of ectotherm organisms, such as fish (8, 15–18). Beyond the passionate discussion about the

underlying mechanism to explain this fact (19, 20), it is forecasted that body size will be

reduced in any scenario of global warming. Reduction of body size might have important

deleterious effects not only in the reduction of species fitness but also perturbation of

energy and nutrient web, ecosystem, and economic losses (1, 2, 7, 21, 22). In this regard, it

would be necessary to understand the effects of anthropogenic stressors on somatic growth

endocrine regulation.
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Body growth is promoted by growth hormone–insulin‐like

growth factors, the so-called GH/IGF axis or somatic growth axis

(23–27). This endocrine axis is integrated and influenced by

reproduction, feeding, and energy balance (23, 25, 28–30).

Therefore, fish growth is affected by a wide range of biotic and

abiotic factors, such as temperature (12, 13), nutritional state and

energy metabolism (30–32), intra- and interspecies interactions (33,

34), and sex and reproduction (35–37). Thus, pollutants could

interfere with this hormonal assembly that impacts the growth

rate and performance of fish, potentially affecting their populations

and the entire ecosystem (Figure 1).

The main goal of this review is to provide an overview and

update on the effects of several abiotic anthropogenic factors on GH

and food intake regulation. By summarizing the current knowledge

on this topic, this review aims to serve as a resource for those

involved in research related to understanding the effects of global

warming and pollutants on individuals and population growth and

the energy web.
2 Interrelationship between growth
and food intake in fish

The endocrine and neuroendocrine regulation of somatic

growth in teleost fish has been extensively reviewed (23, 24, 26–

29, 38–40). The main factors regulating growth are growth

hormone (GH), the insulin-like growth factors (IGFs), and their

respective receptors (GHRs and IGFRs). Systemic IGFs, derived

mainly from liver sources, in turn, act in a negative feedback fashion
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to suppress GH. GH belongs to the GH/prolactin (PRL)/

somatolactin (SL) family (23, 39, 41). GH, produced in and

released by the pituitary gland, is largely responsible for

endocrine growth promotion during postnatal growth. Once in

the circulation, according to the classical somatomedin hypothesis

(42–44), the main endocrine action of GH is stimulating hepatic

IGF production, which is the primary inducer of cell proliferation

and differentiation (45, 46). IGFs act on target tissues in either an

autocrine, paracrine, or endocrine manner (43, 47–49) stimulating

many biological processes, including protein synthesis and turnover

and cell proliferation and differentiation, among others (44, 50).

Furthermore, GH acts directly on different target tissues

including the muscle and adipose tissue, to regulate physiological

processes associated with protein synthesis and metabolism (40).

GH also induces the local production of IGFs to regulate, in a

paracrine way, cell proliferation and tissue growth, as shown in

mammals (51). In addition to growth promotion, GH is a

pleiotropic hormone also involved in several important processes

such as nutrition, metabolism, reproduction, neuroprotection,

immunity, osmoregulation, and social behavior (23, 28, 39, 40, 45,

49, 52–55). Consequently, the neuroendocrine regulation of GH is

influenced by several peptides and neurotransmitters also involved

in the regulation of either food intake or reproduction [for review,

see (23, 28, 29, 53)], suggesting a close integration of different

endocrine axes (Table 1).

The regulation of feeding behavior is based in the ventral tuberal

hypothalamus where several brain nuclei produce either feeding-

stimulating (orexigenic) peptides, particularly, agouti-related

protein (AgRP) and neuropeptide Y (NPY), or feeding-inhibiting

(anorexigenic) peptides, mainly melanocortin- stimulating

hormone (aMSH), a pro-opiomelanocortin (POMC) derived

peptide, and cocaine and amphetamine- related transcript

(CART), which act in a coordinated manner to maintain food

intake levels according to the requirements. As has been extensively

studied in mammalian models, the primary hypothalamic nuclei

involved in the regulation of food intake are the arcuate and the

paraventricular nuclei (108). Teleost fish present the same

neuropeptide control of food intake as mammals and have

equivalent brain areas involved in it [for review, see (28, 29, 74,

83, 103, 108)].

The neuroendocrine control of the GH/IGF axis includes

several stimulatory and inhibitory factors [for review, see (28,

29)]. The main stimulatory factors are the growth hormone-

releasing hormone (GHRH) (109, 110) and pituitary adenyl

cyclase-activating polypeptide (PACAP) (109, 111–114). In

addition, other hypothalamic or gastrointestinal peptides and

catecholamines also stimulate GH secretion. Among them that

are worthy to mention are gonadotropin-releasing hormone

(GnRH) (115–123), neuropeptide Y (NPY) (104–106),

corticotropin-releasing hormone (CRH) (124), thyrotropin-

releasing hormone (TRH) (125–127), ghrelin (84–87, 128),

cholecystokinin (CCK) (84, 99, 100), gastrin-releasing peptide

(GRP) (84, 99, 100, 107), nesfatin-1 (90, 129, 130), and dopamine

(DA) (123, 131–135).

On the other hand, somatostatin (SS) is the main hypothalamic

factor that inhibits both basal and stimulated GH secretion (112,
FIGURE 1

Schematic representation of how environmental factors activate a
stress response in fish, which includes modifications in the
interrelated growth – and food intake –endocrine axes. The
possible consequences at different levels of biological organization
are also mentioned.
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120, 123, 124, 136–141). In addition, norepinephrine inhibits GH

secretion as well (142).

Several of the abovementioned neuropeptides regulating GH

secretion are also involved in the control of feeding and energy

balance (Table 1). For example, neuropeptides such as NPY,

PACAP, SS, GnRH, TRH, and CRH and gastrointestinal peptides

like CCK, ghrelin, GRP, and nesfatin-1, among others, have a role in

feeding and energy balance regulation [for review, see (28, 29, 83,

88, 89, 103, 143, 144)].

This intricate regulatory network with many points of contact

suggests a strong interrelationship between these two physiological

processes. Furthermore, the GH itself, IGFs, and their regulatory

network are involved in the regulation of feeding, energy balance,

and metabolism [for review, see (53, 74)].

3 External regulation of endocrine
factors controlling growth and food
intake in fish

As mentioned earlier, the somatotropic axis is highly

coordinated with the regulation of food intake as well as the

reproductive endocrine axis. Thus, the somatotropic axis involves
Frontiers in Endocrinology 03
a great number of controlling factors briefly summarized in the

previous sections. Therefore, the somatic endocrine axis would be

highly informative in a wide range of growth-disturbing and

stressful stimuli, and its study would represent a tool for assessing

nutritional and environmental limitations (39). In this context, we

will present the available information about abiotic factors affecting

growth and the somatic endocrine axis.
3.1 Photoperiod

Photoperiod has been shown to alter somatic growth as well as

the synthesis, secretion, and responsiveness of growth-related

hormones (145–148). As a general plot, increasing light duration

conducts to a higher growth rate and increased plasma IGF-1 levels

(146, 149). Nonetheless, growth shows seasonal variation being

increased during the summer and spring with non-parallel

variations among GH and IGF serum levels and growth rates

(149–155). For instance, a longer photoperiod results in higher

GH levels or expression in Atlantic salmon (Salmo salar) (150, 152,

156), gilthead sea bream (Sparus aurata) (157), goldfish (Carassius

auratus) (138), and coho salmon (Oncorhynchus kisutch) (158).

Moreover, studies on Atlantic salmon suggest that the photoperiod
TABLE 1 Summary of interacting factors linking growth and food intake in fish.

Factor Endocrine
axis

Main function Interaction with other systems Ref.

GHRH Growth Stimulation of GH release Stimulation of food intake (23, 28, 29)

PACAP Growth Stimulation of GH release Divergent effects on food intake depending on species and
administration sites. Stimulation of gut motility that indirectly
stimulates food intake

(23, 28, 29,
56–61)

TRH Growth Stimulation of GH release Stimulation of feed intake and locomotion (23, 28, 29,
62)

CRH Growth Stimulation of GH release Inhibition of food intake (23, 28, 29,
63–65)

SS Growth Inhibition of GH release (basal and stimulated) Role in metabolism
Disparate effect on food intake depending on the administration
site in mammals. No information for fish

(23, 28, 29,
66–73)

GH Growth Growth promotion
Stimulation of IGF release in the liver and muscle

Orexigenic activity
Induces the metabolism of protein, lipids, and carbohydrates

(23, 28, 29, 40,
74–82)

IGF-1 Growth Stimulation of protein synthesis and turnover,
cell proliferation. and differentiation

Role in peripheral metabolism and glucose homeostasis as shown
in mammals

(23, 28, 29,
45–48)

Ghrelin Food intake Stimulation of food intake Stimulate GH release in the pituitary (28, 29, 83–
89)

Nesfatin-
1

Food intake Inhibition of food intake
Glucose homeostasis and
lipid metabolism as shown in mammals

Inhibition of the GH–IGF system (28, 29, 83,
90–98)

CCK Food intake Inhibition of food intake. Stimulation of pancreatic
enzyme release, gallbladder contraction, and gut
peristalsis

Stimulation of GH secretion (28, 29, 83, 88,
99–102)

NPY Food intake Stimulation of food intake Stimulation of GH secretion (28, 29, 83, 88,
101, 103–106)

GRP Food intake Inhibition of food intake Stimulation of GH secretion (28, 29, 83, 84,
88, 99–101,

107)
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may modify the effects of temperature on GH levels (159, 160).

Thus, temperature and photoperiod should not be considered as

independent controlling factors of fish endocrine growth axis (146).

Furthermore, the individual effects of the two factors are difficult to

dissect because fish are subjected to seasonal cycles and both

photoperiod and temperature vary under natural conditions.

Additionally, the relationship among GH, IGFs, and growth rates

is affected by a wide range of endogenous and exogenous factors,

such as gender, developmental and maturity state, nutritional state,

temperature, salinity, and stress, in addition to photoperiod (39,

161, 162). Moreover, several of these factors, particularly those

related to reproduction and feeding, are also affected by

photoperiod and temperature.
3.2 Temperature

Fish, as aquatic ectotherms, must be able to contend with

continuous fluctuations in water temperature, which, in turn,

influences gene expression and the activity of metabolic enzymes

(163–167). In fact, environmental temperature is one of the most

important ecological factors, which influences the behavior and

physiological processes of aquatic animals (145, 168).

Seasonal variations of somatic growth as well as in GH levels are

associated with water temperature changes. Thus, it has been shown

that pituitary GH content or plasma GH levels and also IGF-1 levels

were increased during spring and summer in several teleost species

such as perch (Perca fluviatilis) (169), brown bullhead (Ictalurus

nebulosus) (170), coho salmon (171), goldfish (138), rainbow trout

(Oncorhynchus mykiss) (172), gilthead sea bream (157, 173),

chinook salmon (Oncorhynchus tshawytscha) (174), and common

carp (Cyprinus carpio) (175). Consequently, it is likely that water

temperature regulates the plasma levels of GH and IGF-1.

Although GH has been detected at the early stages of embryo

development and post-hatching (176–178), it seems that water

temperature does not affect GH cell differentiation or GH

expression (179, 180) at these early stages of life. Even so, the

expression levels of IGF-2 and IGF-1 receptors were upregulated

when incubated in elevated temperatures in correlation with the

enhanced embryonic growth rate found in this condition (181).

However, at hatching, the expression levels of IGF-1 and IGF-2

were higher at the lowest temperature (4°C) (179, 181). These

findings indicate that embryonic growth is GH independent and

there is a shift in growth regulation and temperature affects it

upon hatching.

The effect of temperature, independent of photoperiod, on GH

serum levels can be experimentally addressed. For example, when

Nile tilapia, Oreochromis niloticus, was maintained in increased

temperature, higher circulating GH levels were observed (182).

Rainbow trout reared at increasing temperatures shows that

growth rate correlates with temperature (183). In this experiment,

higher temperatures increased IGF-1 plasma levels and hepatic

IGF-1 mRNA levels (183) stimulated by GH. Increasing water

temperature during winter (short photoperiod) stimulates growth

rates and increases plasma GH levels in sea bream. Conversely,

decreasing water temperature during summer (long photoperiod)
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decreases growth rates and circulating GH levels (138, 157). Thus, it

seems that temperature, independent of photoperiod, induces

higher GH and IGF secretion, which positively correlates with

increased growth rates (184).

However, the positive correlation between increased

temperature and increased plasma GH could not translate into

enhanced fish growth because of stress or undernutrition. For

instance, Atlantic salmon reared at increasing temperatures shows

a biphasic growth rate increasing from 4.6°C to 14.4°C and

decreasing between 14.4°C and 18.9°C while reaching the highest

amounts of plasma GH at 18.9°C (185). Moreover, increasing water

temperature close to the maximum of the tolerable range elevates

GH levels regardless of feed conditions (166, 183, 186). However,

IGF-1 concomitantly increases only in ad libitum-fed fish, while

fish-restricted feeding regimens showed reduced IGF-1 levels and

reduced growth rates (183). It can be concluded that fish under ad

libitum feeding regimen had an increase in GH which is translated

into an increase in IGF-1 levels and somatic growth regardless of the

rearing temperature, while fish under restricted feeding and high

temperature exhibited a reduced GH receptors’ response, with

reduced IGF-1 and growth rates and increased GH levels which

may reflect a GH resistance (see discussion in Section 3.3 below).

Thus, the positive effect of temperature on hepatic IGF-1 synthesis

was avoided (166, 183). Therefore, nutritional condition interferes

with the somatic growth endocrine axis. Additionally, higher

temperatures increase feed consumption (149, 166), which indeed

stimulated somatic growth (145).
3.3 Nutrition

Nutrient and diet composition strongly influence somatic

growth in fish (28, 187). The synthesis and release of hepatic

IGF-1 are largely affected by food restriction or deprivation as

shown by studies in several salmonid species (166, 183, 188–191) as

well as in gilthead sea bream (192, 193) and hybrid striped bass

(Morone chrysops x Morone saxatilis) (194, 195). Given that GH

stimulates lipolysis independently of IGFs and growth promotion, it

plays an important role in energy mobilization in the context of

undernutrition or nutrient deficiency. Thus, elevated circulating

levels of GH along with low IGF-1 confer a metabolic advantage

under this condition (39). Therefore, a state of GH resistance, a

reduced hepatic responsiveness to the anabolic GH action, is highly

conserved through the evolution of fishes and higher vertebrates

(39). The GH resistance may be the result of reduced GH receptor

expression or post-receptor defects in GH signaling (39). In this

context, it was shown that the hepatic transcript of ghr-1 correlates

with changes in growth rates, plasma IGF-1 level, and hepatic igf-1

expression (39, 196–198). In addition, deficiencies of nutrients as a

consequence of unbalanced diets downregulate hepatic ghr-1

expression (197–199), indicating the prominent role of GHR-1 in

the systemic growth-promoting action of GH.

It has been shown that, in teleost, nutrients like glucose, amino

acids, and lipids influence hormones and peptides that regulate

feeding such as nesfatin-1, ghrelin, CCK, and leptin, as well as the

GH/IGF axis [for review, see (28)]. The way nutrients influence
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feeding growth and metabolism is not fully understood, but it would

depend on nutrient- sensing mechanisms located in several tissues

such as the gut, liver, pancreas, and hypothalamus (200–202). These

nutrient- sensing mechanisms are capable of determining directly

or indirectly the levels of nutrients and stored energy [for review,

see (28, 103)]. Thus, nutrients in the luminal surface of the

gastrointestinal tract (GIT) evoke changes in the expression and

activity of digestive enzymes and the synthesis and secretion of GIT

peptides and hormones such as CCK, GLP-1, GIP, PYY, secretin,

ghrelin, or nesfatin-1 (28). Therefore, the GIT conveys information

about the type and levels of nutrients through the vagal enteric

afferents and/or an endocrine pathway to the brain as shown for

mammalian species (203). Furthermore, circulating levels of

nutrients modulate the responses of hypothalamic neurons that

express either AgRP and NPY (AgRP/NPY neurons) or CART and

POMC (CART/POMC neurons). As a general pattern, higher

nutrient levels activate the CART/POMC neurons and inhibit the

AgRP/NPY neurons (201) inducing satiation. Although it was

described that these peptides affect the GH/IGF axis (29, 83), it is

not clear at this point if GH is concomitantly affected. Nevertheless,

nutrients such as proteins, amino acids, and lipids modulate the

GH/IGF axis [for review, see (28)]. For instance, it was shown in

rainbow trout that in well-fed fish, GH induced hepatic IGF

expression through a signaling pathway involving JAK-STAT,

PI3K-Akt, and ERK. However, under fasting conditions, GH

stimulated lipolysis through PKC/phospholipase C (PLC) and

MAPK/ERK pathways (40). Furthermore, two GH receptor

(GHR) isoforms have been described in teleost fish named GHR-I

and GHR-II with additional variants in salmonids (GHR2a,

GHR2b) (40, 204, 205). If the receptor isoforms are involved in

switching signal transductions is not yet established. Nevertheless,

according to tissue expression patterns and changes in the

expression levels of the isoforms depending on nutritional status,

it is suggested that GHR-I could be involved in growth promotion,

while GHR-II could be involved in the metabolic response to GH

(40). However, experimental confirmation is still required. Thus,

nutrient availability is sensed, and a coordinated response by the

central and peripheral systems is executed to provoke either somatic

growth or internal maintenance processes.
3.4 Salinity

The relationship between the somatotrophic axis and

osmoregulation has been extensively demonstrated (206–211). In

this regard, GH and IGF- 1 improve acclimation and survival to

high salinity water (212–220). Conversely, water salinity modulates

growth rates, food intake, and feed efficiency ratio in several species.

When euryhaline or freshwater fish species were transferred to high

salinity water, they showed a higher growth rate and improved feed

efficiency ratio (221–225). In marine fish species, however,

intermedia salinities improve growth rates and feed conversion

(226–230). The mechanisms by which water salinity influences

growth are not fully understood; although, a reduction of energy

expenditure related to osmotic regulation would be involved (207).

Additionally, increasing water salinity stimulates GH and IGF
Frontiers in Endocrinology 05
production. For example, plasma GH and IGF- 1 levels were

increased in catfish and trout when transferred to high salinities

(231, 232). Moreover, changes in water salinity modulate the

expression levels of genes of the somatic growth axis in salmonids

(213), blackhead sea bream (Acanthopagrus schlegelii) (233),

gilthead sea bream (234), tilapia (Oreochromis mossambicus)

(235), and pejerrey (Odontesthes bonariensis) (236). Furthermore,

high salinity increases food intake (237, 238), perhaps stimulated

directly by GH or indirectly through the metabolic effects of GH

(75, 239, 240). Moreover, GH improves nutrient absorption at the

gut level (241) which can explain the observed increase in

feed efficiency.
3.5 Oxygen

The concentration of dissolved oxygen (DO) in water would

affect the performance of fish as oxygen is required for respiration

and metabolism. Environmental conditions regarding oxygen

partial pressure, water temperature, and salinity as well as oxygen

consumption by aquatic organisms (biological oxygen demand)

would affect the amount of DO in the water column (242). Low

levels of DO or hypoxia could be defined as the values of DO that

negatively affect the physiology or behavior of fish (242–245).

Hypoxia conditions reduce respiration, feeding activities, and

growth rate and increase the chances of disease in fish (243, 246–

248). Furthermore, hypoxia induces behavioral, physiological,

immunological, and metabolic adjustment [for review, see (243)]

including swimming behavior, declined metabolic rate, high

ventilation and anaerobic respiration, and high Hb-O2 affinity to

cope with low oxygen stress. In addition, hypoxia inhibits gonadal

development and reproduction as was shown in goldfish exposed to

different diel hypoxia cycles (249). Furthermore, hypoxia provokes

a reduction in egg production and spawning, delays embryo

development, and increases embryo and larvae mortality (242).

In terms of somatic growth and feeding, it has been shown that

low DO level negatively impacts growth, feed intake, and overall fish

performance (242, 244, 245). In Nile tilapia reared at high, medium,

and low DO, the fastest rate of growth was at high DO and the

slowest growth was at low DO (250). In the same study, the authors

found that the food conversion ratio (FCR) was inversely related to

the dissolved oxygen level. Thus, exposure to hypoxia reduced

growth and feed utilization, as well as respiration and feeding

activities (251–253). It has been shown in several fish species that

hypoxia inhibited weight gain, probably due to low feed intake (252,

254–260).

Reduced food intake at low DO has been found in several fish

species such as channel catfish (Ictalurus punctatus) (261, 262),

rainbow trout (263), blue tilapia (Oreochromis aureus) (264),

European sea bass (Dicentrarchus labrax) (265), juvenile turbot

(Scophthalmus maximus) (252), and Nile tilapia (250, 257–260).

Nevertheless, how hypoxic conditions affect the regulatory

endocrine axis for both somatic growth and feeding is not clear.

Somatic growth inhibition and lowered plasma IGF-1 occur in

hypoxic conditions as well as in crowded fish (266, 267). Thus,

activation of the stress response of the hypothalamus–pituitary–
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interrenal (HPI) axis could be responsible for the inhibition of

hepatic response to GH (266, 267). However, gh-transgenic fishes

show a reduced capacity to cope with a hypoxic environment (268,

269), suggesting some interaction between hypoxia and the GH/IGF

axis. In this regard, it was shown that knocking down insulin-like

growth factor binding protein (igfbp)-1, a known IGF- binding

protein with growth inhibition effect (270–272), moderates the

hypoxia effects on growth and development in zebrafish (Danio

rerio) (273). On the contrary, overexpression of igfbp-1 mimics

hypoxia- induced growth and developmental retardation, even

under normoxia (273). Furthermore, sirtuins, which are involved

in conveying energy level information and modulating the anabolic

action of GH by inhibiting GH receptor signaling (28, 39), could act

as links between oxygen availability, energy status, and the

somatotropic axis (39).
4 Effect of different pollutants on the
fish endocrine network governing
growth and feeding

Fish are particularly vulnerable to pollution because they are

heavily exposed to contaminants as they feed and live in the aquatic

environment. Therefore, fish are more sensitive to many toxicants

in comparison with other vertebrates, making them an important

subject of experimentation and good bioindicators of ecosystem

health. In this section, we will cover the knowledge about the impact

of pollutants on the endocrine axes that regulate growth and food

intake behavior in fish.

A key role in the integration of stress response is played by the

steroid hormone cortisol. Cortisol is usually released into

circulation when fish are under conditions of stress by the

activation of the vertebrate hypothalamus–pituitary–adrenal

(HPA) axis, so- called the “stress axis.” Cortisol is one of the

downstream main effectors of the HPA axis, playing essential

roles in development, energy balance, and behavior (274). One

notorious effect of cortisol is an increase in the plasmatic levels of

GH (217, 275, 276). Aside from a possible direct effect at the

pituitary level increasing GH synthesis and release (277), cortisol

decreases the hepatic expression of the GH receptors ghr1 and ghr2

and decreases the serum levels of IGF-1 and the liver expression of

igf-1 (162). Thus, corticosteroids could induce a state of “GH

resistance” characterized by high serum GH levels concomitant to

low serum IGF- 1 levels. Moreover, in chronic treatments, cortisol

led to a reduction of somatic growth in fish. Concerning food intake

regulation, it has been reported that chronic and acute stress

treatments exert a potent anorexigenic effect in fish involving

several hypothalamic neuropeptide s such as CRH and aMSH,

along with an increase in cortisol levels (278). This steroid

hormone seems also to be involved in the maintenance of the

anorectic response in teleost (279–281). The synthesis and release of

cortisol in response to contaminants in fish have been very well

documented. However, the specific connection between each

pollutant and the expression of factors governing growth and or

food intake, mediated by cortisol, is not always evaluated.
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Therefore, in those cases in which the effect of pollutants on

cortisol as mediating their effects on growth and food intake was

not studied, we will only mention it to point out the need for

additional studies.
4.1 Heavy metals

Heavy metal pollution in aquatic environments is the result of

anthropogenic and natural activities, such as atmospheric

deposition, geological weathering, and the discharge of

agricultural, municipal, residential, or industrial waste products.

When heavy metals occur in high concentrations, they are a serious

threat because of their toxicity, long persistence, bioaccumulation,

and biomagnification in the food chain. Low levels of pollution may

have no apparent impact on fish, but it may decrease the fecundity

of fish populations, leading to a long-term decline and eventual

extinction of species (282). Heavy metals negatively affect various

metabolic processes in fish embryos, resulting in developmental

retardation, morphological and functional anomalies, and

ultimately premature death. Additionally, heavy metals activate

energy-consuming detoxification processes resulting in less energy

available for growth (283). Cortisol is usually released when fish are

under conditions of stress, and one of the consequences observed is

an increase in the plasmatic levels of growth hormone and a

concomitant reduction in IGF levels (217, 275, 276). In chronic

treatments, this led to a reduction of somatic growth.

Concerning the impact of heavy metals at the endocrine level, it

was found that cadmium delays the expression of GH during the

early development of rainbow trout, demonstrating an endocrine-

disrupting capacity in vivo of cadmium in teleost fish (284). Lead

was also found to inhibit the expression of GH in roho labeo (Labeo

rohita). Concentrations of Pb from around the LC50 were found to

reduce the growth and consistently the plasmatic levels of GH while

increasing cortisol, compared with the control group during 5

weeks (285). When Prussian carp (Carassius auratus gibelio) were

exposed to Cd at 1, 2, and 4 mg/l per 30 days, the gene expression

levels of several neuropeptides in the brain were consistent with the

observed changes in food intake behavior (286). In all the Cd-

exposed groups, the expression levels of NPY, apelin, and

metallothionein increased significantly, while those of POMC,

ghrelin, and CRH decreased significantly. The authors suggested

that low doses of Cd might increase food intake, as well as weight

and length gains, but high doses of Cd might have the opposite

effect. The observed changes in food intake seem to be a result of

neurohumoral regulation in response to Cd exposure. The

expression levels of three genes (gh, ghr, and igf-1) related to the

growth endocrine axis were shown to be altered in grass carp

(Ctenopharyngodon idella) under mercury chloride (HgCl2) and

temperature stress. According to the authors, this result indicated

that the combined stress of temperature and HgCl2 affected the

growth performance of grass carp at the molecular level. In this

study, the expression of gh and ghr has increased, while that of igf-1

has decreased, indicating that there was a subtle interaction between

the two experimental factors (287). These results show that the

binding ability of GH and its receptor decreases in fish under
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physiological stress, resulting in the decrease of signal from GHR,

leading to the inhibition of IGF-1 synthesis and ultimately

decreasing fish growth (236, 288). Arsenic is a contaminant

commonly present in water and crops from several parts of the

world, and exposure to arsenic is linked to decreased birth weight,

decreased weight gain, and improper muscle function. The effects of

embryonic arsenic exposure on muscle growth and on the IGF

pathway were tested in killifish (Fundulus heteroclitus) by

Szymkowicz et al. (289). The authors found significant reductions

in condition factors of fish exposed to arsenic after 16, 28, and 40

weeks. Additionally, they found that exposure of killifish embryos to

arsenic has long-term effects, reducing growth and increasing both

igf-1 and igf-1r levels in skeletal muscle even after 1 year. Since fish

presented reduced growth, the higher expression levels of igf-1 and

its receptor in skeletal muscle might be related to a dysregulation in

their expression originated by the early exposition to AsIII. In

common carp, a decreased expression of gh mRNA was detected

in the pituitary in response to Zn (290). In rainbow trout, a

decreased expression of gh, igf-1, and igf- 2 was detected in an

exposure time-dependent response to Zn and Co (291). The authors

conclude that igf- 1 is the most resistant and gh is the most sensitive

component against cobalt and zinc exposure. The effect of Zn and

Cu on the action of CCK on the enzymes peptidases and

glycosidases in goldfish intestine was examined. Interestingly,

both metals affect the activity of glycosidases induced by CCK.

This means that the action of CCK is influenced by the presence of

Zn and Cu, which could affect other processes involving the action

of CCK (apart from nutrient assimilation) such as food intake

regulation (292).

The effect of a mixture of heavy metals was studied in Nile

tilapia (293). Adults chronically exposed (5 weeks) to a mixture of

Pb, Cu, and Zn at sublethal concentrations showed a decrease in all

parameters related to growth and body weight compared with

control. Consistently, the expression of igf-1 and ghrelin in liver

and stomach, respectively, decreased in the exposed group

compared with the control group (293).
4.2 Persistent organic pollutants

Persistent organic pollutants (POPs) are ubiquitous

environmental contaminants that are not easily degraded and can

biomagnify in aquatic and marine food webs (294). The list of POPs

includes a wide range of halogenated contaminants such as

polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane

(DDT), chlordanes, and hexachlorobenzene (HCB) as well as

chemicals of emerging concern such as polybrominated diphenyl

ethers (PBDEs) or perfluorinated compounds. Because of their

lipophilic or proteophilic nature, they can be found at high

concentrations in the tissues of aquatic organisms (295, 296). POPs

could originate as industrial compounds or pesticides, being

produced during natural disasters (e.g., forest fires, volcanic

eruptions), as a by-product during wood pulp processing or in the

synthesis of chlorinated chemicals, or as a result of incineration of
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chlorine-containing compounds (297). Although POPs have

relatively low hormonal activity, they are persistent in animal

tissues and, thus, pose a serious risk as endocrine disruptors. There

is a wide range of molecular interactions between POPs and the

endocrine system of fish. The effects can vary depending on the

chemical, the fish species, sex, reproductive stage, and exposure

conditions, among other factors. The action of POPs as endocrine

disruptors could be at different levels, such as hormone synthesis,

transport and secretion, transformation, excretion or clearance,

receptor recognition/binding, and post-receptor response (298).

Thus, the mechanisms of POP-induced toxicity at the endocrine

level can be complex, with limited information on the molecular

interaction between these toxicants and the hormonal system. In

zebrafish, the developmental effects of lifelong exposure to

environmentally relevant concentrations of two natural mixtures of

POP s were investigated by Lyche and colleagues (299). The mixtures

emulate those found in freshwater systems in Norway, with high and

background levels of PBDE s, PCB s, and DDT metabolites. The

phenotypic effects observed in both exposure groups included

differences in body weight at 5 months of age. Genome-wide

transcription profiling showed changes in the regulation of genes

involved in endocrine signaling and growth. Consistent with the

changes observed at the growth level, the transcriptomic changes

include key regulator genes for steroid hormone functions (ncoa3)

and growth (c/ebp, ncoa3) (299).

Although POPs have been highlighted as endocrine disruptors

of special concern, as far as we know, their impact has been studied

on the thyroid and reproductive axes (300). Only the

abovementioned study reports an effect on the growth endocrine

axis, highlighting a clear gap of knowledge since it was widely

demonstrated that POPs generated several alterations of growth in

fish (301). Additionally, and to the best of our knowledge, no studies

have been carried out to cover the effects of POPs on the endocrine

regulation of food intake in fish.
4.3 Agrochemicals

The existence of several agrochemicals, popularly known as

pesticides, in water bodies such as dams, lakes, streams, and rivers

generates a multifarious exposure of these chemicals to aquatic

organisms (302). Pesticides are known as elements released into the

environment to kill fungi, weeds, insects, rodents, etc. Despite their

advantages for the human economy, pesticides might have harmful

effects on humans and other organisms (303). Based on their

harmfulness, the World Health Organization (WHO) grouped

them into four categories, namely, exceedingly hazardous, greatly

hazardous, abstemiously dangerous, and considerably harmful

(304). Although there are a few reports indicating the effects of

agrochemicals on growth and metabolism in fish (305–307), there

are very few reports on the effect on the endocrine growth axis. A

possible alteration of the growth endocrine axis by agrochemicals

was found in a study by Singh and colleagues (308). In this study,

high levels of pesticides (hexachlorocyclohexane, dichlorodiphenyl-
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trichloroethane, and chlorpyrifos) were co-related with low levels of

cortisol in wild populations of catfish. It is inferred that low levels of

cortisol lead to an increase in the expression of GH, but the real

effect on fish growth was not determined. The effect of two widely

used insecticides, chlorpyrifos and esfenvalerate, was evaluated on

the expression of igf-1 in juveniles of Chinook salmon. A decreased

expression of igf-1 was found in the spleen and related by the

authors to immune system response and growth effects (309).

Clearly, there is a knowledge gap about the impact of

agrochemicals on the endocrine growth axis and the endocrine

factors regulating food intake in fish. In the search for molecular

biomarkers suitable for use in aquatic toxicology, knowing the effect

of agrochemicals on the expression of genes of the abovementioned

axes would be a great advantage.
4.4 Pharmaceutical and personal
care products

Pharmaceutical and personal care products (PPCPs) are widely

used by individuals for health or cosmetic reasons or by industries to

promote growth or protect the health of production animals. These

chemicals include a huge variety of therapeutic and veterinary drugs,

fragrances, and cosmetics. The number of PPCPs has increased

exponentially during the past decades, with most of them being

synthetic compounds. Therefore, fish do not have a completely

evolved tolerance to these chemicals. Thus, the large number of

PPCPs and their diversity in chemical structures and toxicology

currently pose a significant challenge in understanding the adverse

environmental and health impacts of these products on animals and

humans. Moreover, in the environment, organisms are exposed to

mixtures of chemicals which exert their effects through complex

chemical, toxicological, and physiological interactions (310).

Therefore, in this section, we will describe as far as possible the

interactions between PPCPs with the endocrine growth axis and

hormones governing food intake behavior.

The effect of environmental estrogens (EEs) such as 17b-
estradiol (E2), b-sitosterol (bS), and 4-n-nonylphenol (NP) on the

synthesis of IGFs on rainbow trout was studied by Hanson et al.

(311). The authors found that E2, bS, and NP significantly inhibited

the expression of igf-1 and igf-2 mRNAs in the liver and gill in a

time- and concentration-related manner. The mechanism through

which EEs inhibit igfsmRNA expression was investigated in vitro in

isolated liver cells. The authors determined that EE treatment

deactivated JAK, STAT, ERK, and AKT. Also, the blockade of

GH-stimulated igf expression by EEs was accompanied by the

deactivation of JAK, STAT, ERK, and AKT. Overall, the results

indicate that EEs directly inhibit the expression of igf mRNAs by

disrupting GH post-receptor signaling pathways (311). Embryos of

rainbow trout were exposed to graded concentrations of E2

(measured: 0, 1.13, 1.57, 6.22, 16.3, 55.1, and 169 ng/L) from

hatching to 4 and up to 60 days post-hatch (dph) to assess

molecular and apical responses (312). Whole proteome analyses

of alevins did not show clear estrogenic effects, but among other

results, some terms were overrepresented, including regulation of
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IGF transport and uptake by IGFBPs, apolipoprotein A1/A4/E

domain, and lipid transport. Although all these factors have been

previously associated (by other authors) with endocrine functions

such as growth, this apical response was not observed in this work.

The effects of 17a-ethinylestradiol (EE2), 17b-estradiol, and 4-

nonylphenol on igfbps were studied in two stages of Atlantic

salmon by Breves et al. (313). In fry and smolts, hepatic ghr, igf-1,

and igf-2 were diminished by exposure to endocrine disruptor

chemicals (EDCs). In fry, EDCs diminished igfbp1b1, igfbp2a,

igfbp2b1, igfbp4, igfbp5b2, and igfbp6b1. In smolts, EDCs

diminished igfbp1b1, igfbp4, and igfbp6b1. Igfbp5a was stimulated

by EDCs in both fry and smolts. The authors conclude that hepatic

igfbps directly or indirectly respond to environmental estrogens

during two key life stages of Atlantic salmon and, thus, might

modulate the growth and development of exposed individuals.

Shved and coworkers (314) investigated whether estrogen

exposure during early development affects growth and the IGF- 1

system, both at the systemic and tissue levels in Nile tilapia.

Developmental exposure to 17a-ethinylestradiol had persistent

effects on sex ratio and growth. Serum IGF-1, hepatic igf-1

mRNA, and the number of igf-1 mRNA-containing hepatocytes

were significantly decreased at 75 days post-fertilization (DPF),

while liver receptor alpha mRNA was significantly induced. In both

sexes, pituitary GHmRNA was significantly suppressed. A transient

downregulation of igf-1 mRNA occurred in the ovaries (75 DPF)

and testes (90 DPF). These results clearly show that estrogen

treatment impairs GH/IGF- 1 expression in fish and also that the

effects persist during development. These long-lasting effects seem

to be exerted indirectly via inhibition of pituitary GH and directly

by suppression of local IGF-1 in organ-specific cells (314). These

authors also demonstrated in a related work that environmentally

relevant concentrations of EE2 interfere with the GH/IGF- 1

system, at the endocrine, paracrine, and autocrine levels in

developing Nile tilapia (315). These results at the molecular level

were also accompanied by diminished growth and weight gain in

male fish. All these results demonstrated that estrogens released into

the environment interact with several endocrine functions in fish,

related not only to reproduction but also to growth and metabolism.

The influence of PPCPs on endocrine factors regulating food

intake in fish was not yet determined. This is an interesting topic to

address particularly in the case of EEs since they can affect the

intrinsic relationship between reproduction, growth, and food

intake in fish (23, 316, 317). As an antecedent, a study carried out

by Bertucci et al. (318) aimed to determine whether estradiol (E2)

and testosterone (T) affect the expression of several components of

this axis: preproghrelin, ghrelin/growth hormone secretagogue

receptor (GHS-R), ghrelin O-acyl transferase (GOAT), and

NUCB2 in goldfish. RT- qPCR analyses at 2.5 days post-

administration show that gut preproghrelin and GOAT

expression was upregulated by both E2 and T treatments, while

the same effect was observed for GHS-R only in the pituitary. Both

treatments also reduced hypothalamic preproghrelin mRNA

expression. NUCB2 expression was increased in the forebrain of

the T-treated group and reduced in the gut and pituitary under both

treatments. These results showed modulation by sex steroids of
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genes implicated in both food intake behavior and reproduction

that might help to explain the reproduction- dependent energy

demands in fish and highlight a possible negative impact of PPCPs

in wild fish.
4.5 Micro- and nano plastics

There are several works studying how microplastics and, to a

lower extent, nanoplastics can affect fish growth [for review, see

(319–321)]. Although most of these works were carried out on

model fish species and with concentrations of plastic particles that

are several orders of magnitude above the range found in the

environment (322), they provide novelty data about the problem

of plastics in the aquatic environment. A few of these articles

studied the effect of micro- or nanoplastics on the endocrine

growth axis. Some works investigated the effect of microplastics

and their combinations with other pollutants at the transcriptomic

level, but no reports of genes involved in growth were found (323–

325). Zheng and colleagues (326) investigated the effects of embryo–

larvae exposure to 500 mg/L of polystyrene microplastic (MP) (5

µm) alone and in combination with ZnO nanoparticles (NPs) on

exposed F0 and unexposed F1 larvae of zebrafish. The authors

found that growth inhibition, oxidative stress, apoptosis, and

disturbance of the GH/IGF axis were induced by MPs alone in F0

larvae. Reduced growth and antioxidant capacity and

downregulated GH/IGF axis were merely observed in F1 larvae

from F0 parents exposed to MPs + ZnO. In another work carried

out by Pedersen and colleagues (327), the early growth and

development of zebrafish was not impacted by NP, but the

endocrine system, disease rate, and organismal development were

significantly altered by NP exposure.

Microplastics can be ingested by fish and accumulated in the

stomach, generating a sensation of satiety or damage that could

inhibit food intake. This was previously reported (328–331)

although the effect of MP on factors that regulate food intake has

not been deeply studied yet. We found only one report, by Im and

coworkers (332), that investigated the neurodevelopmental toxicity

of polystyrene microplastics (PSMPs) in zebrafish. Fish were

exposed to PSMPs during the embryonic stage and then allowed

to recover. Among other results, the authors reported an increased

expression of NPY, a peptide involved among other functions in the

increase of appetite. However, no relations with food intake were

found in that work. On the other hand, the ingestion of

polyethylene microplastics by larvae and juveniles of medaka

(Oryzias latipes) does not affect the expression of molecular

markers involved in glucose metabolism, energy homeostasis,

weight gain, and proteolysis (ISN, GLP, PYY, and TRP) (333).

As a conclusion, there are few reports indicating that MP or NP

can trigger a stress response inducing mechanisms that involved the

GH–IGF axis. Moreover, their very well-documented accumulation

in the stomach of fish might alter the response of peripheral factors

regulating food intake, but surprisingly, this has not been deeply

studied yet. These two points represent a knowledge gap that would

be interesting to address to do a proper estimation of the potential

risk of MP and NP present in the marine environment.
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5 Effects of global climate change
factors on growth and feeding
endocrine axis

Fish are severely exposed to all changes produced by global

climate change that currently impacts the oceans. There are

predictions that indicate an increase in the mean values of water

temperature, an increase in dissolved CO2 with the concomitant

decrease in water pH, and higher variations in salinity, among

others (334). In this section, we will summarize the data on the

effects of ocean acidification and ocean warming on fish endocrine

axis regulating growth and food intake.
5.1 Ocean acidification

During the last 150 years, the burning of fossil fuels has

contributed to an increase in atmospheric CO2 from

approximately 280 to 410 ppm, with a predicted increase of 730

to 1,020 ppm by the end of 2100 (335). The absorption of

atmospheric CO2 by oceans generates rapid changes in the

seawater carbonate system ultimately decreasing the pH (among

other effects), a process termed ocean acidification (OA). Exposure

to these conditions can severely impact marine organisms as the

acclimation to a suboptimal environment requires physiological

adaptive responses that are energetically costly. Consequently, fish

experience environmental stress, which may impact them at the

biological and physiological levels (336). A comparison of the effects

of OA on the growth and development of the early life stages of

marine fish indicates that these are species-specific, and thus,

generalizing the impact of climate-driven ocean acidification is

not warranted. The effect will ultimately depend on the capacity

of the specie to balance the energy costs of acid–base homeostasis

versus that contributing to somatic growth.

An interesting case study that related growth with food intake

was carried out in black sea bream by Tegomo et al. (337). Although

the authors did not analyze the endocrine response of the growth

axis, they observed that under two projected scenarios of OA, with

pH values of 7.80-pCO2 = 749.12 ± 27.03 and 7.40-pCO2 = 321.37 ±

11.48 matm, the growth, feeding efficiency, protein efficiency ratio,

and crude protein content were significantly decreased in juveniles.

The authors conclude that, because of an elevated pCO2 in seawater,

the fish eat more than normal but grow less than normal. These

results evidence that ocean acidification provokes changes at the

endocrine level inducing an increase in feeding behavior while

generating diminished growth. Interestingly, Carney Almroth et al.

(338) found that the enzyme BChE was decreased at elevated CO2

treatment in the Atlantic halibut, Hippoglossus hippoglossus. The

BChE enzyme was inversely correlated with circulating levels of the

orexigenic peptide ghrelin in mice (339). Therefore, these decreases

in BChE levels under OA conditions could explain the endocrine

source of the increase in food intake observed by Tegomo et al.

(337) in black sea bream.

A study of the complete transcriptomic response in Asian sea

bass (Lates calcarifer) juveniles reared for 7 days under OA
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conditions showed tissue-specific differentially expressed genes

(340) involving many molecular processes in the brain, gill, and

kidney. The results indicate that although short-term ocean

acidification does not cause obvious phenotypic and behavioral

changes, it causes substantial changes in gene expression in the

analyzed tissues. These changes are related to organ and muscle

development, growth, and nervous system development, as well as

behavior related to memory (e.g., hunting, homing, and escaping

from predators). The authors conclude that these changes in gene

expressions may eventually affect the physiological fitness of

fish (340).

In the Atlantic salmon, the physiological adaptations which take

place during the early phase of salmon ocean migration (high hypo-

osmoregulatory capacity, growth, and energy metabolism) are all

processes that are under the control of the growth endocrine axis

(341). The osmoregulatory development that allows smolts to have

high seawater tolerance while still in freshwater may make them

more susceptible to external stressors, particularly those that affect

ion regulation, such as water acidification. The smolt stage of

Atlantic salmon is then particularly sensitive to acidification, and

it was observed that moderate conditions can lead to increased

mortality and less severe conditions result in loss of salinity

tolerance and reduced adult return rates (342).

Shao et al. (343) found that OA suppresses the mRNA

expression of insulin-like growth factor 1 and reduces the growth

rate in juveniles of orange-spotted groupers (Epinephelus coioides).

In this study, the authors exposed fish to different levels of

acidification: a condition predicted by the Intergovernmental

Panel on Climate Change (IPCC, pH 7.8 - 8.0) and an extreme

condition (pH 7.4 - 7.6) that may occur in coastal waters in the near

future. After 6 weeks, the growth rates of fish reared at pH 7.4 - 7.6

were less than those raised in control water (pH 8.1 - 8.3).

Additionally, exposure to pH 7.4 - 7.6 resulted in lower levels of

hepatic igf-1 mRNA but did not affect the levels of pituitary gh or

hypothalamic pre-pro-somatostatin II and III (psst2 and psst3,

respectively). Overall, these results show that ocean acidification

conditions suppress the growth of juvenile grouper, which may be a

consequence of reduced levels of IGF-1, but not due to diminished

growth hormone release (343). To test the effects of climate change

on juvenile blue rockfish (Sebastes mystinus), Bruzzio (344)

measured the endocrine response to single and combined

stressors of OA and hypoxia after 1 week of exposure. Assays of

cortisol and IGF-1 hormone responses served as proxies for stress

and growth, respectively. There was no observable difference in

IGF-1 in juvenile blue rockfish after a week of exposure to stressors

such as low pH or low DO. The author also found a high peak of

cortisol with low pH presumably associated with the role of cortisol

in acid–base regulation. Interestingly, when cortisol levels were

high, the same fish had low levels of IGF-1, but when cortisol levels

were lower, the same fish had highly variable levels of IGF-1.

Overall, the results indicated that pH levels influenced hormonal

stress physiology, while DO levels contributed to differences in

metabolism, body condition, and behavioral anxiety in juvenile

blue rockfish.

All these reports highlight the necessity to investigate the effects

of climate change on fish endocrine response related to growth and
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food intake behavior to find interrelationships with physiological

and biological effects. It will be important to obtain more knowledge

on molecular markers that can be used for fish population

management in a rapidly changing ocean.
5.2 Ocean warming

The ocean absorbs most of the excess heat from greenhouse gas

emissions, leading to rising ocean temperatures in a phenomenon

known as ocean warming (OW). Increasing temperatures affect

marine species causing a stunning impact on ecosystems, such as

coral bleaching and the loss of breeding grounds for marine fishes

and mammals. The effects of OW are being widely studied in

marine invertebrates although not much information is available for

fish, neither at the biological nor at the endocrinological level. At a

physiological level, temperature has been proven to affect metabolic

rate, aerobic metabolism, growth, reproduction, and survival with

potential effects on population sustainability (345). Moreover,

changes at the individual level are dependent on the capacity to

modulate gene expression under environmental variation (346,

347). Changes in cellular stress proteins (heat shock proteins,

antioxidant enzymes, etc.) have been detected in marine

organisms exposed to acute and chronic heat stress (348, 349).

Nevertheless, these studies have only focused on a few protein

biomarkers and therefore do not explore all the possible changes

caused by OW. In this section, we will summarize the knowledge

about the influence of environmental temperature increase on the

endocrine growth axis and, if available, on the endocrine regulation

of feeding behavior.

The effect of water temperature increase seems to be specie-

specific. For example, no changes in the mRNA expression of igf-1

with the temperature increase were found in European sea bass after

15 and 60 days of exposure, but a decrease in the myog gene

(associated with muscle growth) was found at 60 days (350). In

European eel (Anguilla Anguilla), the impact of temperature on

thermally induced phenotypic variability from larval hatch to first

feeding was studied by Politis et al. (351). The results showed that

increasing temperature from 16°C to 22°C accelerated larval

development, while gene expression of hsp70, hsp90, gh, and igf-1

was also accelerated at warm temperatures. On the contrary, larval

gene expression patterns (hsp70, hsp90, gh, and igf-1) were delayed

at cold temperatures. Moreover, the expression of gh was the

highest at 16°C during the jaw/teeth formation and the first-

feeding developmental stages. These results highlight the

differences in the effect provoked by the increase of water

temperature through developmental stages. In conclusion, the

authors suggest a plausible vulnerability of this critically

endangered species in future scenarios of increasing ocean

temperature. The larvae of the gilthead sea bream exposed to

three temperatures —18°C (control), 24°C (warm), and 30°C

(heat wave)—for 7 days showed a survival decrease with

increasing temperature, with no larvae surviving at 30°C. A

proteomic analysis (that was only carried out at 18°C and 24°C)

showed that larvae upregulated, among other proteins, the growth

hormone. These results might indicate that although the
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temperature increase could generate a proteome modulation,

gilthead sea bream larvae would not be able to fully acclimate to

higher temperatures. This conclusion was supported by the

observed low survival rates at high temperature (352).

Overall, as it was mentioned before, the effect of ocean warming

seems to be dependent on the fish specie and on the developmental

stage, leading to changes in larvae that could result in mortality or

malformations altering the future stages of these fish. Independent

of the specie, as mentioned in Section 3.2, temperature induces

changes in the growth endocrine axis that seems to be more related

to changes in metabolism, stress resistance, or energy mobilization,

than directly to growth (146). However, overexpression of gh or igfs

can indirectly lead to an increment of growth as a side effect. This

increment in growth should be taken carefully because, instead of a

positive effect, it could mask developmental problems in fish with

later repercussions at a population level.
6 Concluding remarks

The main factors that influence somatic growth are nutrition,

temperature, photoperiod, salinity, and reproduction. Food

restriction reduces growth, as well as changes in temperature or

photoperiod and reproduction modify feeding, influencing the GH/

IGF axis (23, 29, 161, 353). The temperature–size response found in

aquatic ectotherms (16) that may involve the animal’s capacity of

capturing oxygen and the adjustments in respiratory surfaces have

received high attention, leading to an intense debate (19, 20), and

several mechanisms have been purposed to explain this fact (18, 20,

354–357). However, these proposals overlook the endocrine

regulation of growth and the effects of hypoxia on the GH/IGF

axis as well as in feeding and metabolism which will affect somatic

growth as well, as described in early sections. Nevertheless, there is

an intricate relationship between the abovementioned

environmental factors, growth, feeding, and the endocrine

processes governing them. These relationships were molded over

millions of years through fish evolution and currently are being

altered as a consequence of, for example, global climate

change phenomena.

The effects of reproduction on somatic growth cannot be

explained only as a mere allocation of energy in gonads, instead

of somatic growth (20, 161), as many times simplistically illustrated

[see (20) and references therein]. The relationship between growth

and reproduction would not depend solely on the amount of energy

devoted to gonadal development. Instead, it will depend on the

hormonal control of each process and the crosstalk between the

endocrine axes. Thus, sex steroid hormones may have divergent

effects on the GH/IGF axis depending on specie and gender (161,

358–364). Nevertheless, in a general view, they contribute by

reducing somatic growth while inducing gonadal development

and sexual behavior that may reduce energy partitioning to

somatic growth processes. Both GH and IGF have been

implicated in gonadal development as well (23, 29, 365, 366);

therefore, gender and sexual development produced a discordant
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variation of somatic growth and GH/IGF axis regulation (161). Sex

steroids, particularly estrogens, increase pituitary GH content and

release and reduce GH responsiveness and IGF production in the

liver [for review, see (29)]. Thus, estrogens uncouple GH levels with

somatic growth in a similar fashion to fasting and stress (29). The

presence of steroid hormones and its derivates in aquatic

environments as a consequence of anthropogenic activity is

provoking disruptions in fish that have been mostly studied at the

reproductive level. However, taking into consideration all the

evidence exposed in this review, it would be important to look at

their impact on growth and feeding behavior as well.

Although the available information on the effects of pollutants

on growth and feeding is scarce, the few studies that address the

issue clearly point out that pollutants would affect growth,

metabolism, and development, affecting the animal’s performance.

Thus, some heavy metals, EEs, and micro- and nanoplastics have

been shown to affect growth and/or the GH/IGF axis. Nevertheless,

more studies are required to analyze pollutants’ effects on growth

and feeding and their regulatory endocrine network. It is possible,

however, to hypothesize that most of the effects of abiotic factors

that influence growth and feeding would have a common effector in

the HPI axis and in the stress response. The physiological result due

to stress and activation of the HPI axis is an increase in serum levels

of cortisol. As such, the magnitude and duration of cortisol

variation may be used to define the response to a stressful

condition (161, 367). There is extensive research on cortisol

response to stress, as well as cortisol effects on growth and

feeding in fishes (367–371). In a general plot, stress and cortisol

reduce somatic growth and appetite and decrease IGF plasma levels

or mRNA levels (23, 29).

Future work analyzing the effects of pollutants and other abiotic

factors not only on size, condition factors, growth rates, and food

intake but also on some key regulatory hormones of somatic growth

(GH, IGF), feeding (ghrelin, nesfatin-1), metabolism (insulin), and

stress (cortisol, catecholamines) will help to understand the

mechanis t ic control and i ts perturbat ion evoked by

environmental factors in fishes. All this information would be

very useful to integrate the early signals of endocrine disruption

with the apical effects provoked by pollutants. This will generate

new approaches for the study of the effect of contaminants on fish

and the possibility to add a predictive value to the results.
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and grammar revision of the MS.
Frontiers in Endocrinology 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Lorenzen K. Toward a new paradigm for growth modeling in fisheries stock
assessments: Embracing plasticity and its consequences. Fisheries Res (2016) 180:4–22.
doi: 10.1016/j.fishres.2016.01.006

2. Dijoux S, Boukal DS. Community structure and collapses in multichannel food
webs: Role of consumer body sizes and mesohabitat productivities. Ecol Letters (2021)
24(8):1607–18. doi: 10.1111/ele.13772

3. Hendry AP, Gotanda KM, Svensson EI. Human influences on evolution, and the
ecological and societal consequences. Philos Trans R Soc B: Biol Sci (2017) 372
(1712):20160028. doi: 10.1098/rstb.2016.0028

4. Laufkötter CA-O, Zscheischler JA-O, Frölicher TA-O. High-impact marine
heatwaves attributable to human-induced global warming. Science (2020) 369:1621–
5. doi: 10.1126/science.aba0690

5. Silvy Y, Guilyardi E, Sallée J-B, Durack PJ. Human-induced changes to the global
ocean water masses and their time of emergence. Nat Climate Change (2020) 10
(11):1030–6. doi: 10.1038/s41558-020-0878-x

6. Bowles E, Marin K, Mogensen S, MacLeod P, Fraser DJ. Size reductions and
genomic changes within two generations in wild walleye populations: Associated with
harvest? Evolutionary Appl (2020) 13(6):1128–44. doi: 10.1111/eva.12987
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29. Canosa LF, Gómez-Requeni P, Cerdá-Reverter JM. Integrative cross-talk
between food intake and growth function. In: Polakof S, Moon TW, editors. Trout:
From physiology to conservation. New York: Nova Science Publishers (2013). p. 179–
239.

30. Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S.
Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front
Endocrinol (2019) 10(83). doi: 10.3389/fendo.2019.00083
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Effects of repeated hypoxic shocks on growth and metabolism of turbot juveniles.
Aquat Living Resources (2003) 16(1):25–34. doi: 10.1016/S0990-7440(02)00002-5

257. Tran-Duy A, Schrama JW, van Dam AA, Verreth JAJ. Effects of oxygen
concentration and body weight on maximum feed intake, growth and hematological
parameters of Nile tilapia, oreochromis niloticus. Aquaculture (2008) 275(1):152–62.
doi: 10.1016/j.aquaculture.2007.12.024

258. Abdel-Tawwab M, Hagras AE, Elbaghdady HAM, Monier MN. Dissolved
oxygen level and stocking density effects on growth, feed utilization, physiology, and
innate immunity of Nile tilapia, oreochromis niloticus. J Appl Aquaculture (2014) 26
(4):340–55. doi: 10.1080/10454438.2014.959830

259. Abdel-Tawwab M, Hagras AE, Elbaghdady HAM, Monier MN. Effects of
dissolved oxygen and fish size on Nile tilapia, oreochromis niloticus (L.): growth
performance, whole-body composition, and innate immunity. Aquaculture Int (2015)
23(5):1261–74. doi: 10.1007/s10499-015-9882-y

260. Li M, Wang X, Qi C, Li E, Du Z, Qin JG, et al. Metabolic response of Nile tilapia
(Oreochromis niloticus) to acute and chronic hypoxia stress. Aquaculture (2018)
495:187–95. doi: 10.1016/j.aquaculture.2018.05.031

261. Randolph KN, Clemens HP. Some factors influencing the feeding behavior of
channel catfish in culture ponds. Trans Am Fisheries Society (1976) 105(6):718–24. doi:
10.1577/1548-8659(1976)105<718:SFITFB>2.0.CO;2

262. Buentello JA, Gatlin DM, Neill WH. Effects of water temperature and dissolved
oxygen on daily feed consumption, feed utilization and growth of channel catfish
(Ictalurus punctatus). Aquaculture (2000) 182(3):339–52. doi: 10.1016/S0044-8486(99)
00274-4

263. Jobling M. he influence of environmental temperature on growth and
conversion efficiency in fish. Causes of observed variations in fish growth. ICES
(1995) 4:1–25.

264. Papoutsoglou SE, Tziha G. Blue tilapia (Oreochromis aureus) growth rate in
relation to dissolved oxygen concentration under recirculated water conditions.
Aquacultural Eng (1996) 15(3):181–92. doi: 10.1016/0144-8609(95)00013-5

265. Thetmeyer H, Waller U, Black KD, Inselmann S, Rosenthal H. Growth of
European sea bass (Dicentrarchus labrax l.) under hypoxic and oscillating oxygen
conditions. Aquaculture (1999) 174(3):355–67. doi: 10.1016/S0044-8486(99)00028-9

266. Pickering AD, Pottinger TG, Sumpter JP, Carragher JF, Le Bail PY. Effects of
acute and chronic stress on the levels of circulating growth hormone in the rainbow
trout, oncorhynchus mykiss. Gen Comp Endocrinol (1991) 83(1):86–93. doi: 10.1016/
0016-6480(91)90108-I

267. Martos-Sitcha JA, Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J.
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