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Introduction: Extracellular vesicles (EVs) have been recognized as key players in

numerous physiological functions. These vesicles alter their compositions

attuned to the health and disease states of the organism. In men, significant

changes in the proteomic composition(s) of seminal plasma EVs (sEVs) have

already been found to be related to infertility.

Methods: Methods: In this study, we analyze the posttranslational configuration

of sEV proteomes from normozoospermic (NZ) men and non-

normozoospermic (non-NZ) men diagnosed with teratozoospermia and/or

asthenozoospermia by unbiased, discovery-driven proteomics and advanced

bioinformatics, specifically focusing on citrulline (Cit) and homocitrulline (hCit)

posttranscriptional residues, both considered product of ureido protein

modifications.

Results and discussion: Significant increase in the proteome-wide cumulative

presence of hCit together with downregulation of Cit in specific proteins related

to decisive molecular functions have been encountered in sEVs of non-NZ

subjects. These findings identify novel culprits with a higher chance of affecting

fundamental aspects of sperm functional quality and define potential specific

diagnostic and prognostic non-invasive markers for male infertility.

KEYWORDS

seminal plasma, citrullination, deimination, carbamylation, citrulline, homocitrulline,
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Introduction

Infertility is estimated to affect over 70 million people

worldwide, and men’s contributions to couple infertility are

estimated to involve nearly 50% of the cases (1). Of note, 30% of

these men-linked infertility contributions involve idiopathic sperm

abnormalities (1). Although research on spermatozoa has

traditionally centered the research efforts performed to

understand male infertility, the weightiness of seminal plasma

(SP) within the intricate process of fertilization has also been

accounted for (2). SP is a rich fluid, secreted by the epididymis

and accessory sexual glands in the male reproductive tract, that

regulates semen viscosity, spermatozoa transit, immunologic

uterine tolerance, and fertilizing capacity (3). These regulatory

actions were initially attributed to the free SP circulating

molecules; however, parallel findings indicated that SP contains a

large number of extracellular vesicles (EVs), though the role(s) of

these vesicles have remained poorly understood for a long time (4).

Recent findings have demonstrated that the molecules associated

with these vesicles significantly contribute to some essential

structural and functional roles initially attributed to SP (5). Thus,

implementing further research actions aimed to elucidate the role(s)

and characteristics of seminal plasma EVs (sEVs) is most necessary.

sEVs, also known as prostasomes, are tiny bi-layered vesicles

that commonly range in diameter from 30 nm to 1 mm, with

exosomes (<250 nm) and microvesicles (>250 nm) being the main

components of the distribution (6, 7). The membrane of these

vesicles is structurally formed by lipids and multidomain proteins,

both of which possess outstanding signaling abilities (8).

Furthermore, EVs and prostasomes are known to contain

proteins, lipids, and genetic material as cargo, ready to be taken

up by the target recipient (9). It has been widely shown that these

circulating vesicles alter their biogenesis and molecular composition

(s), which are attuned to the rhythms of human health and disease

(10–12), and male infertility does not lack the ability to exert that

influence (13). Although changes affecting sEV proteomes at the

protein level have been already analyzed in healthy individuals (14)

and male infertility conditions (15), the posttranslational

biochemical profile(s) of sEV proteomes in this disorder remain

mostly unexplored. Although, recent advances, aimed at

characterizing posttranslational modifications in prostasomes,

have identified that specific glycan modifications, affecting the

proteome of these vesicles, al low distinction between

normozoospermic and oligozoospermic men profiles (16).

Posttranslational modifications (PTMs) have the ability to

regulate the function, stability, interaction, localization, and

turnover of translated proteins (17). These functional and

dynamic decorations tend to present standard molecular patterns

within certain eukaryotic proteomes, though their profiles are

highly susceptible to reflecting the effects of disordered conditions

(18). Furthermore, PTMs not only exert regulatory functions over

the proteome of eukaryotic cells, but these modifications also affect

proteins implicated in intercellular communication, such as those in
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EVs (19). Indeed, the identification and characterization of

disorder-related PTMs in bodily circulating EVs have been

postulated as a next-generation paradigm for the identification of

more specific molecular biological markers (20). Although certain

PTMs, such as phosphorylation and glycosylation, have regained an

outstanding amount of interest within the scientific community,

others, such as citrullination and carbamylation, have remained

further in the shade (21, 22). This is partially due to the fact that

progress on their biochemical characterization in health and disease

conditions cannot be properly achieved, as with the most popular

PTMs, by the use of classic biochemical methods (e.g., using specific

antibodies), but it requires implementation of advanced systems

biology technologies (22–25).

In fact, non-coded citrulline residues (Cit) become a product of

enzymatic citrullination of Arg by peptidylarginine deiminases

(PADs) and are almost biochemically indistinguishable from

homocitrulline (hCit), which in turn is the product of Lys

carbamylation through spontaneous reaction with isocyanic acid

(25). Cit and hCit are considered ureido protein modifications

(uPMs) as both share an identical ureido group and only differ by

one carbon in the side chain (22, 23). Specific biochemical

characterization of uPMs at the single protein or at proteome-

wide levels can only be achieved by the use of advanced mass

spectrometry technologies (22, 23, 26).

In a related vein, uPMs have been proposed as protein

decorations strongly implicated in the regulation of fertility in

mammals (27). However, to the best of our knowledge, any

potential role(s) of uPMs in human sEVs are yet to be defined.

Thus, in this work, we focus on analyzing, by unbiased discovery-

driven proteomics, uPMs in sEVs of subjects diagnosed with non-

normozoospermic (non-NZ) disorder. The findings obtained

indicate that although significant differences could be identified in

the cumulative hCit occurrence in sEV proteomes, protein-specific

uPM alterations in sEVs of non-NZ men were only attributable to

Cit residues.
Materials and methods

Clinical samples

Human semen samples (n = 26) were generously provided by

the fertility clinic GINEFIV (Madrid, Spain). These clinical samples

were donated by healthy men with NZ sperm profile(s) (NZ; n = 12)

and healthy men diagnosed with teratozoospermia and/or

asthenozoospermia (non-NZ; n = 14). All semen samples were

obtained by masturbation after 4 days of sexual abstinence and were

allowed to liquefy before experimental diagnosis for 30–60 min at

37°C in a CO2 incubator (5% CO2 in air at 95% relative humidity).

All non-NZ subjects showed abnormal reproductive clinical history

(no history of previous partner pregnancy or clinical history of

being involved in pregnancy loss), abnormal semen analysis, and a

clinical diagnostic for male infertility at the time of inclusion in the
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study, based on the reported clinical guidelines for the diagnosis of

male infertility (28). Clinical samples were cryopreserved at −150°C

until further analyses. The use of human samples was performed in

strict accordance with the Declaration of Helsinki. The following

detailed experimental procedures were performed according to

institutional guidelines and were previously approved by the

Ethics Committee of the Autonomous University of Madrid

(UAM) with reference: CEI 60-1058.
Isolation of seminal plasma
extracellular vesicles

Semen samples were thawed till liquification and centrifuged at

500×g for 10 min to remove spermatozoa and cell debris. Processed

samples were then visually inspected under the microscope to

confirm the absence of spermatozoa and subsequently stored at

−80°C prior to the isolation of sEVs.

Isolation of sEVs was performed by sequential centrifugation as

follows: thawed SP samples were centrifuged at 3,000×g for 20 min,

and the supernatant was centrifuged at 12,000×g for 20 min. sEVs

were then pelleted down by ultracentrifugation at 100,000×g for

70 min using a Beckman 70Ti rotor. Subsequently, the pellet

containing the sEVs was further washed by mixing it with 20 ml

of PBS, and sEVs were pelleted down again at 100,000×g for 70 min.

sEVs were resuspended in 200 µl of 1× PBS and stored at −80°C

before further processing.
Characterization of sEVs by nanoparticle
tracking analysis

Preparations of sEVs were analyzed by nanoparticle tracking

analysis (NTA), as we previously indicated (8). The NTA

experiments were performed in triplicate. Briefly, samples were

diluted to 1:1,000 in 1× PBS and analyzed by using the NanoSight

System (NanoSight, Malvern Instruments, UK), equipped with a

405-nm laser. No restrictions were applied to the imaged fields.
Ultrastructural characterization of sEVs by
transfer electron microscopy

Isolated sEVs from representative samples (two NZ and two

non-NZ) were mounted on Cu-Formvar-carbon grids. After 20 min

at RT, grids were washed with distilled water, and sEV samples were

fixed with 1% glutaraldehyde for 5 min in PBS. sEV samples were

then stained with uranyl oxalate for 5 min. Subsequently, samples

were embedded in methyl-cellulose-uranyl-oxalate and dried for

permanent preservation. Electron micrographs were collected using

a Jeol Jem 1010 electron microscope at 80kV.

The obtained TEM micrographs were scale calibrated and bi-

leveled in ImageJ (National Institutes of Health (NIH), USA). Particle

diameter sizes, for all observed particles in each micrograph, were

independently analyzed and quantified without constraints.
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In-gel tryptic digestion and isobaric
peptide labeling of sEV proteomes

Protein quantitation of sEV proteomes was performed by a

bicinchoninic acid assay using a BCA kit (Thermo Scientific,

Waltham, MA, USA) following the manufacturer’s instructions.

sEV samples were then combined to obtain three NZ and four non-

NZ pools with an average protein concentration of 100 µg, as

previously detailed (15). sEV samples were subjected to in-gel

digestion as previously described (29), with minor modifications.

Briefly, sEVs were suspended in 50 µl of sample buffer and placed

into a 1.2-cm-wide well of SDS-PAGE gel (0.75 mm thick, 4%

stacking, and 10% resolving). The run was stopped when the sample

front reached 3 mm into the resolving gel; hence, the whole

proteome was concentrated in the resolving gel interface.

Coomassie staining was used to visualize the unseparated protein

bands. A gel containing the protein band was cut into cubes of

approximately 2 × 2 mm. The gel pieces were destained using

acetonitrile:water (1:1). Protein disulfide bonds were reduced with

10 mM DTT for 1 h at 56°C and cysteines were alkylated with 50

mM iodoacetamide for 1 h at room temperature in darkness

protected from the light. After, gel pieces were dehydrated using

acetonitrile (ACN), and 50 mM ammonium bicarbonate at pH 8.8

with 60 ng/µL sequencing grade trypsin (Promega, Madison, WI,

USA) was added to the dried gel pieces. Samples were then placed

on ice for 2 h to ensure proper hydration. Trypsin digestion was

performed at 37°C for 12 h. Digestion was then quenched by

acidification with 1% trifluoracetic acid. Digested peptides were

extracted by using 50% ACN and 5% acetic acid in at least three

rounds under ultrasound sonication. Supernatants containing the

digested sEV proteomes were collected and dried in a

vacuum concentrator.

sEV proteomes were then labeled with an 8-plex isobaric tags

using the iTRAQ 8plex Multiplex kit (Applied Biosystems, Foster

City, CA) according to the manufacturer’s protocol. iTRAQ isobaric

groups were distributed as follows: 113 healthy control (NZ1), 114

healthy control (NZ2), 119 healthy control (NZ3), 115 non-

normozoospermic (non-NZ1), 116 non-normozoospermic (non-

NZ2), 117 non-normozoospermic (non-NZ3), 118 non-

normozoospermic (non-NZ4), and 121 non-normozoospermic

(non-NZ5). Labeled peptides were combined and desalted using

an OASIS HLB desalting cartridge (Waters Corporation, Milford,

MA, USA), and the eluates were dried to completion in a vacuum

concentrator, prior to being simplified into three cartridge-base

separated fractions.
Reversed-phase liquid
chromatography-tandem mass
spectrometry of sEV proteomes

LC-MS/MS analysis of the labeled sEV proteomes was performed

using an Easy-nLC II system coupled to an ion trap LTQ-Orbitrap

Velos Pro hybrid mass spectrometer (Thermo Scientific, Waltham,

MA, USA), as previously detailed (15, 30). Briefly, dried peptides were
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resuspended in 10 µl of 0.1% formic acid and reversed-phase

chromatographic separation was carried out using a 0.1 mm ×

20 mm C18 RP precolumn (Phonomenex, Torrance, CA, USA)

and a 0.075 mm × 250 mm C18 RP column (Phonomenex,

Torrance, CA, USA) operating at 300 nl/min. The separation of

peptides was conducted in a 240-min gradient as follows (solvent A:

0.1% formic acid in water; solvent B: 0.1% formic acid, 80%

acetonitrile in water): from 5% to 25% solvent B in 180 min

followed by a gradient from 25% to 40% solvent B over 240 min.

Ionization of peptides was performed using a Nano-bore emitter

Stainless Steel ID 30 µm (Phonomenex, Torrance, CA, USA)

interface. Data acquisition was conducted for the top 20 ions with

an Orbitrap MS scan at a resolution of 30,000, followed by 20 high-

energy collision dissociation (HCD) MS/MS scans performed in the

Orbitrap at a resolution of 7,500. The minimum MS signal for

triggering MS/MS was 500. The lock mass option was enabled for

both MS and MS/MS modes, and polydimethylcyclosiloxane ions

(protonated (Si(CH3)2O))6; m/z 445.120025) were used for internal

recalibration. Peptide detection was performed in survey scans from

400 to 1,600 amu (1 µscan) with an isolation width of 2 u (mass-to-

charge ratio units), a normalized collision energy of 40% for HCD

fragmentation, and a 30-s dynamic exclusion window. Unknown or

+1 charge state precursors were discarded.
Bioinformatics and data analysis

Analysis of isobaric iTRAQ labeling raw data was carried out

using the specialized bioinformatics suite software PEAKS Studio

Xpro version 10.6 (Bioinformatics Solutions Inc., Waterloo,

Ontario, Canada). The UniProt human database lastly modified

on 5 November 2019 with 74,788 sequences used for searching. For

protein identifications, carbamidomethyl of Cys was set as a fixed

modification. PTM algorithm available in PEAKS Studio Xpro

software was used for the identification of protein PTMs.

Tolerances of 10 ppm for precursor ions and 0.05 Da for MS/MS

fragment ions were used. FDR < 1% was established for protein

identification in all samples (31) and trypsin was set as a proteolytic

enzyme. Data were exported to Microsoft Excel CSV files and in-

house-generated macros were used for protein quantification

analyses. Data were analyzed considering a significance threshold

of p < 0.05 and were reported as mean ± standard deviation (SD), if

not otherwise specified. Identification of exosome and microvesicle

markers was performed by comparison with the top 100 EV

markers curated in the specialized databases Exocarta (32) and

Vesiclepedia (33). Sequence alignment was performed using the

BLOSUM62 substitution matrix in Jalview version 2.11.2.3

considering the Cit residues ± 10 residues. Functional motif

analysis was performed using the Interpro protein families and

domains database (34). GraphPad Prism version 8.4.3 was used for

parametric and nonparametric statistical analyses and for creating

and rendering data plots. The potential interaction of age with each

of the clinical variables that showed significant differences in NZ

subjects was assessed by Pearson’s (p < 0.05). Figures were

assembled in the final version using the Illustrator 2020 software

(Adobe, San José, CA, USA).
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Results

Identification of sperm parameters linked
to male infertility in non-NZ donors

To define whether non-NZ donors present any significant decay

in sperm parameters linked to male infertility (35), we comparatively

analyzed the available clinical data of the donors included in this

study. Analysis of these clinical data revealed that non-NZ donors

showed collective impairment of the following sperm parameters

compared to NZ donors: vitality, morphology, progressive motility,

and count (Figure 1A). We then analyzed whether other relevant

clinical signs, such as diagnosed atherogenicity and urology history,

or relevant lifestyle parameters, such as smoking, alcohol

consumption, and toxicology, could have any effect on the

encountered non-NZ infertility profiles; no significant effect for

these variables was encountered in these analyses (Supplementary

Table S1). We also analyzed any potential effect of the variable age on

the clinical signs that showed significant differences between NZ and

non-NZ men, and no significant effect of age over the referred

significantly modulated variables was identified (Supplementary

Table S2). Further details on these donors’ clinical data can be

found in Supplementary Table S1.
Ultrastructural and molecular
characterization of non-NZ sEVs

NTA and ultrastructural characterization of sEVs were then

performed to define the concentration, predominant morphology,

average diameter, and potential contamination of the isolates (36).

A positive and significant correlation between particle and protein

concentration was observed (Spearman’s Rho = 0.337; p = 0.051),

indicating that sEV abundance was nicely linked to protein

abundance in these preparations and that no relevant presence of

residual contaminating proteins was present (Supplementary Figure

S1; Supplementary Table S3). Morphologically, these vesicles

display a well-rounded structure delimited by a singly formed bi-

layer membrane, as shown in the representative micrographs

included in Figures 1B, C. Furthermore, the observed average

particle size was <130 nm (Figure 1D), and no relevant

contamination attributable to non-EVs particles was observed.

Collectively, our ultrastructural characterization indicated that

these vesicle preparations should be predominantly categorized as

exosomes, finding it highly consistent with our own and other

colleagues’ previous reports (14, 15).

Molecular characterization of sEVs, achieved by discovery-

driven shotgun proteomics (Figures 1E–G), demonstrated that

these vesicles present an abundant array of common EV markers,

including the relevant microvesicle- and exosome-linked proteins

FLOT1, CD63, CD9, and ANXA2, as shown in Figure 1E. Further

analysis demonstrated that the presence of specific microvesicle

markers, based on data curated in EVpedia (37), was lower than the

presence of specific exosome markers, based on data curated in

Exocarta (38) (Figures 1F, G), reinforcing the conclusion previously

reached through ultrastructural characterization of sEVs.
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uPM proteome profiles in non-NZ sEVs

Subsequently, to investigate specific molecular profiles in these

vesicles and to define whether uPMs alter their global proteome-

wide occurrence in sEVs linked to non-NZ profiles, we focused on

investigating the cumulative presence of uPM-modified proteins in

non-NZ men and control subjects (Supplementary Datasets S1, S2).

Strikingly, we only observed a significant increase in the total levels

of hCit affecting sEV proteomes in non-NZ men (Figure 2A), while

no significant differences were observed regarding the identification

of cumulative Cit in these diseased proteomes (Supplementary

Figure S2). Cumulative hCit in non-NZ samples showed a

significant negative correlation with the clinical signs of sperm
Frontiers in Endocrinology 05
morphology and progressive motility (Table 1), and no significant

interaction with age was observed (Table 1).

Further in-depth scrutiny, at the protein level, indicated that

specific differences could not be identified between non-NZ and

control subjects regarding the presence of hCit in sEV proteomes.

However, significant differences were found between these analyzed

groups regarding the occurrence of specific protein Cit, as shown in

Figures 2A, B. We then performed functional categorization of these

significant abnormally citrullinated proteins in sEVs based on

previous reports (39–42) and encountered that nearly 30% of

these molecules involve in sperm motility, ~20% are components

of the Eppin protein complex, and 36% are equally distributed (9%

each) in the categories inflammatory moderators, sperm viability,
D

A

B

E F G

C

FIGURE 1

Analyses of clinical sperm parameters in normozoospermic (NZ) and non-normozoospermic (non-NZ) men and physicochemical characterization of
sEVs. (A) Spider web chart displaying the average sperm parameters of NZ and non-NZ subjects. Thin lines represent the standard deviation.
Significant differences between groups were assessed by Student’s t-test (significance established at p ≤ 0.05), and sperm progressive motility was
the most significantly affected clinical sign of non-NZ men followed by count and vitality, and morphology. Ultrastructural characterization of sEVs
from (B) non-NZ men and (C) NZ men. (D) Violin graph depicting vesicle size quantification from the obtained micrographs of sEVs of non-NZ men
and NZ. No statistically significant differences in particle size were observed between the analyzed groups (p < 0.05). (E) Bar chart indicating the
average relative intensity detected by LC-MS/MS of EV markers commonly curated in the specialized databases Exocarta and Vesiclepedia identified
in sEVs. (F) Bar chart indicating the average relative intensity detected by LC-MS/MS of specific exosome markers curated in the specialized database
Exocarta identified in sEVs. (G) Bar chart indicating the average relative intensity detected by LC-MS/MS of specific microvesicle markers curated in
the specialized database Vesiclepedia identified in sEVs. *p ≤ 0.05 and **p < 0.01—levels of significant differences. Scale bars in transfer electron
microscopy micrographs represent 200 nm.
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sperm exocytosis, and semen viscosity (Figure 2B). The proteins

within these categories organized by their SP molecular function

and their respective Cit levels in non-NZ and control subjects are

shown in Figure 2C. Of note, the protein dipeptidyl peptidase-4

(DPP-IV) was the candidate that showed the major significant

mismatch in terms of downregulation of its Cit levels between non-

NZ and controls, as shown in Figure 2C. Other relevant proteins

significantly downregulated in their citrullination levels in sEVs of

non-NZ subjects include semenogelin-2 (SEMG2), heat shock

cognate 71 (HSP7C), Ras oncogene 27A (RAB27A), Annexin 2

(ANXA2), transglutaminase 4 (TGM4), lactotransferrin (LTF), and

the carboxypeptidase E (CBPE) (Figure 2C).
TABLE 1 Correlation analysis between relevant demographic and clinical
signs and the hCit cumulative signal in non-NZ samples.

Correlation Pearson r Significance (p)

hCit

Morphology −0.5892 0.0266*

Motility −0.6286 0.016*

Age 0.3269 0.2713
*p < 0.05—significant correlation between variables assessed by Pearson.
A B

C

FIGURE 2

Differential presence of ureido protein modifications (uPMs) in sEV proteomes of non-normozoospermic (non-NZ) men compared to healthy
controls (NZ). (A) The total cumulative intensity of homocitrullinated (hCit) proteins in sEV proteomes detected in non-NZ and NZ subjects. The
intensity was calculated as the sum of spectral counts of all hCit-modified peptides identified. The difference between non-NZ and NZ (nonNZ-NZ)
is displayed using the right y-axis. (B) Functional categorization of Cit proteins in sEV proteomes significantly modulated in non-NZ subjects
compared to NZ. (C) Relative quantification of significantly modulated citrullinated (Cit) proteins in sEV proteomes from non-NZ and NZ. *p ≤ 0.05,
significant differences. Significant differences between groups were assessed by the Student’s t-test.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1113824
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Roy et al. 10.3389/fendo.2023.1113824
Protein uPM stoichiometry in non-NZ sEVs

As previously indicated, we then investigated whether we could

identify any significant mismatch between the modified and

unmodified portions of the significantly altered citrullinated

proteins in non-NZ sEVs. These stoichiometric analyses revealed

that a basal level of Cit affecting sEV proteomes involves >25% of

the total protein, as detailed in Table 2. However, we also strikingly

found that the unmodified fraction of the protein was significantly

higher in all these sEV molecules in non-NZ men compared to NZ

subjects with the exception of the protein RAB27A, which presented

a higher portion of its Cit-modified counterpart in non-NZ

subjects (Table 2).

Functional in silico analysis of protein Cit in
sEVs of non-NZ men

Finally, to elucidate whether there may exist a consensus

sequence for aberrant Cit in certain proteins of sEVs in non-NZ

subjects, similarities between the surrounding area of Cit-modified

Arg were in silico computed using BLOSUM62 substitution matrix

(Figure 3A). Sequence alignment results indicated little consensus

sequence (< 60% agreement) surrounding Cit residues in the

analyzed proteins, with the exception of LTF and CBPE, for

which no consensus at all was identified (Figure 3A).

Subsequently, the potential implications of the aberrant Cit

identified in sEV proteomes in non-NZ, based on the affectation

of functional motifs within the protein structure, were also analyzed

using the domain prediction database Interpro (43) (Figures 3B–E).

These functional analyses revealed the affectation of an intrinsically

disordered region (IDR) in SEMG2 (IDR localization: residues 228–

248) (Figure 3B). Moreover, Cit was also identified at the prolyl

endopeptidase motif (residues 605–635) of the dipeptidyl peptidase

IV (DPP-IV) (Figure 3C), the peptidase-associated domain of the

CBPE protein and the catalytic domain of TGM-4 (Figures 3D, E).
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Discussion

The characterization of sEV proteomes from non-NZ men by

unbiased discovery-driven proteomics, as performed here, revealed

the impaired presence of uPMs in those men affected by infertility.

Initially, we encountered increased cumulative signal of hCit

residues proteome-wide in sEVs of non-NZ men. An increase in

hCit in the human proteome has been associated with unhealthy

lifestyle habits such as smoking (44, 45) and systemic clinical

syndromes such as atherogenesis or uremia (44, 45). However, no

direct associations were identified in this study between the

analyzed lifestyle- and clinical-associated variables with the

observed accumulation of hCit residues in sEV proteomes.

Indeed, our results indicate a negative association between hCit in

sEV proteomes of non-NZ men and sperm morphology as well as

with progressive motility. Additionally, hCit shows strong abilities

to interfere with host immunity (46–48) and balanced immunology

is crucial for the entire reproductive process (49). Thus, the

tentative hypothesis that an exacerbated presence of hCit in sEVs

of non-NZ men may promote abnormal auto-/host-immunity

responses affecting the fecundity capacity of these subjects

deserves further attention.

Citrullination of proteins is catalyzed by PAD enzymes and

becomes a calcium-dependent reaction proven to be affected by

available calcium levels and PAD sensibility to these ions, as widely

reviewed by György et al. (50). Moreover, abnormal calcium

metabolism and calcium deficiency have been directly related to

apparition and progression of male infertility (51). Thus, whether

any of these catalytic factors may affect the lower levels of Cit

observed here in key proteins involved in important aspects of male

fertility, such as sperm viability, exocytosis, motility, viscosity,

inflammation, or the Eppin protein complex, is yet to be

deciphered and holds promise to further understand the aberrant

occurrence of this uPM in sEVs of non-NZ men. The implications

of protein citrullination in crucial physiological processes have also
TABLE 2 Stoichiometric analysis of protein citrullination in sEV proteomes of non-normozoospermic (non-NZ) men compared to normozoospermic
(NZ) healthy controls.

Gene symbol Protein description Modified residuea % Citrullinationb p valuec

Controls Patients

SEMG2 Semenogelin 2 R245 31.75 29.00 ↓d <0.0001

DPP-IV Dipeptidyl peptidase-4 R611 26.6 23.3 ↓ <0.0001

HSP7C Heat shock cognate 71 kDa protein R155 40.7 38.3 ↓ <0.0001

TGM4 Transglutaminase 4 R393 76.7 76.1 ↓ <0.0001

ANXA2 Annexin A2 R196 24.4 23.4 ↓ <0.0001

CBPE Calcium-binding protein E R374 52.8 47.7 ↓ <0.0001

C9JKZ3 Transmembrane protease serine 2 R409 17.2 14.6 ↓ <0.0001

RAB27A Member RAS oncogene family R80 30.1 31.3 ↑ <0.0001
fro
Only citrullinated (Cit) proteins significantly modified in sEVs of non-NZ subjects compared to NZ are included (p < 0.05 assessed by the Student’s t-test).
aThe position of the Cit residue in the protein sequence.
bPercentage of Cit protein compared to unmodified protein based on stoichiometry calculated from intensities of the modified and unmodified Cit peptide detected by mass spectrometry.
cLevel of significance obtained from the Xi2 analysis.
dArrows indicate increased (↑) or decreased (↓) stoichiometry compared to controls.
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been largely detailed and include gene regulation and protein

expression, regulation of molecular signaling, and maintenance of

cell and tissue structure [see the excellent review of Maria

Christophorou for further detail (52)].

Cit has also been associated with the regulation of protein

activation and degradation (53), a fact that may be associated with

the differences in the citrullinated/uncitrullinated stoichiometry

observed here affecting certain proteins in non-NZ men. Part of

the circulating EVs has traditionally been linked to the potential

discarding of dysfunctional proteins (12). However, based on the
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findings encountered in this work, higher unmodified stoichiometry

linked to non-NZ sEVs may not support that classical

interpretation. It is thus unlikely that sEVs serve degradation and

discarding of the noncitrullinated fraction of the proteome, and the

presence of lower proteome citrullination stoichiometry in these

vesicles may directly contribute to abnormal molecular functions, a

hypothesis that, based on the findings observed in this study, needs

further scrutinization. Decreased Cit has already been implicated in

female infertility and in aberrant embryo development (54, 55).

Thus, the abnormal presence of Cit as identified here may involve
D

A

B

E

C

FIGURE 3

Functional bioinformatics of citrullinated (Cit) proteins in sEV proteomes of non-normozoospermic (non-NZ) men compared to healthy controls
(NZ). Only Cit proteins that were significantly modulated in non-NZ compared to NZ (p ≤ 0.05) were considered for these analyses. (A) Multiple
sequence alignment (Blosum 62) of Cit proteins in sEV proteomes significantly modulated in non-NZ compared to NZ, performed with Jalview.
Sequence alignment was performed with partial sequences that formed Cit Arg (squared in red) ± 10 residues. Conserved residues are highlighted in
blue shades (mid blue: >60% agreement, light blue: >40% agreement). The amino acid position numbers shown at the top of the sequences
correspond to the relative position in the aligned polypeptide. The conservation histogram displayed below the sequence alignment graphic reflects
the conservation of physicochemical properties. The yellow column indicates the absolute conservation of Cit Arg (score 11), and less-conserved
positions are shown in brown with a decreasing score. The consensus histogram shows the percentage of modal residue per position and includes
the conserved sequence logo. “+” indicates non-conserved residues. (B–E) Predicting domain analysis performed using the Interpro database to
define potential (dis)functional localizations of Cit Arg. Only proteins with relevant colocalizations between Cit Arg and predicted domains are
displayed. Grey lines represent the entire sequence length of the protein. Light yellow areas represent the localization of the predicted domains
within the entire protein sequence. Green magnifications contain the predicted domain sequence, and the Cit Arg is indicated in red and shaded
in black.
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aberrant signaling of the affected proteins through direct

impairment of their expected molecular functions.

The functional in silico analyses of protein Cit performed in this

study point out that abnormal citrullination in the proteome of

non-NZ sEVs does not occur randomly to certain proteins given

their physicochemical profiles, but it follows mechanistic rules likely

linked to the specific functions of these sEVs molecules. Moreover,

Cit affects the proteolytic and catalytic active regions in most of the

significantly affected proteins of sEVs in non-NZ men, a fact that

may show a high potential to compromise their homeostatic

enzymatic activities and requires further research.

Crucial proteins affected by Cit in sEVs of non-NZ play a

pivotal role in male fertility, for example, the mitochondrial-

associated protein DPP-IV. This protein has been linked to sperm

motility and to the induction of premature acrosome reaction when

is present in excess on the sperm surface (39, 40). Thus, the

abnormal protein Cit profiled observed in the specific subset of

proteins have a high chance to mechanistically affect the normal

molecular function of these specific proteins in sEVs of non-NZ

men, and by chance impact different crucial aspects of the sperm

functional quality. Another example that illustrated the importance

of Cit in the correct function of protein in male fertility is the

affectation of IDRs, unstructured polypeptide segments that do not

fold into a defined tertiary structure but still display regulatory and

signaling functions (56), by altered Cit profiles. It is known that

PTMs modulate the conformational properties and functionality of

IDRs (57). Thus, further investigations are required to elucidate the

modulating capacity of Cit over the SEMG2 function given its

presence within the IDR region.

In a related vein, the potential biomarker ability of the uPM

findings encountered here cannot be underestimated and might be

considered highly promising, consistent with the report of

Candenas et al. (58). The probability of the uPMs reported here

to be validated as biomarkers is ~ 20%, based on the Skates et al.

calculation power guidelines (59), and requires of specific validation

in larger clinical cohorts.

To conclude, our study reports abnormal uPM profiles affecting

sEVs of non-NZ men. Specifically, a higher cumulative presence of

hCit residues was identified in these seminal plasma proteomes while

a specific down-regulated occurrence of protein Cit was found

affecting specific proteins and their functional regions in non-NZ

men. Furthermore, the aberrant stoichiometry of citrullination was

also identified in sEV proteomes of non-NZ subjects. Collectively,

these findings identify novel mechanisms linked to aberrant calcium-

dependent signaling that may affect the fertility implications of sEVs

in sperm. Furthermore, the novel findings reported here pave the way

for future studies aimed at identifying the therapeutic potential of

aberrant uPMs in sEVs of non-NZ men and to validate their

intrinsically promising diagnostic and prognostic biomarker abilities.
Limitations of the study

Non-NZ subjects did not present a clinical history of exposure

to specific gonadotoxin agents (chemotherapy, radiotherapy),
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testosterone replacement therapy, congenital abnormalities, or

severe testicular trauma. However, there are clinical variables such

as incipient metabolic syndrome, mild previous testicular trauma,

etc. that might be taken into consideration in required further

studies aimed to validate the therapeutic target and diagnostic/

prognostic capacities of sEVs-uPMs through the use of larger

cohorts. Similarly, although NZ subjects did not present any

abnormal reproductive clinical history or any clinical sign linked

to male infertility, the fact that they have been involved in a

previous successful partner pregnancy was not specifically

considered an inclusion criterion in this study.
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products as a novel circular source of biocompatible extracellular vesicles. Adv Funct
Mater (2022) 32:2202700. doi: 10.1002/adfm.202202700
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