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As emerging organic contaminants, per- and polyfluoroalkyl substances (PFASs)

have aroused worldwide concern due to their environmental persistence,

ubiquitous presence, bioaccumulation, and potential toxicity. It has been

demonstrated that PFASs can accumulate in human body and cause multiple

adverse health outcomes. Notably, PFASs have been detected in the semen of

human, posing a potential hazard to male fecundity. This article reviews the

evidence about the toxic effects of exposure to PFASs on male reproduction,

focusing on the sperm quality. Epidemiological studies showed that PFASs, such

as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were

adversely associated with the semen parameters in humans, including sperm

count, morphology and motility. Experimental results also confirmed that PFAS

exposure led to testicular and epididymal damage, therefore impairing

spermatogenesis and sperm quality. The mechanisms of reproductive toxicity

of PFASs may be involved in blood-testosterone barrier destruction, testicular

apoptosis, testosterone synthesis disorder, and membrane lipid composition

alteration, oxidative stress and Ca2+ influx in sperm. In conclusion, this review

highlighted the potential threat of exposure to PFASs to human spermatozoa.

KEYWORDS

per- and polyfluoroalkyl substances, reproductive toxicity, sperm, testosterone,
male fecundity
Introduction

The decline in human fertility rates has drawn considerable concern (1, 2). Accumulating

evidence suggests that human semen quality has decreased worldwide over the past few decades

(3–9). Although the causative factors remain to be fully discovered, exposure to environmental

pollutants is considered to be a major contributor for impaired male fecundity (2, 10–12). Per-
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and polyfluoroalkyl substances (PFASs) are a family of fluorinated

synthetic chemicals that have been extensively used in industry and

consumer products since the 1950s. As emerging persistent organic

contaminants, PFASs are extremely resistant to environmental

degradation and metabolic clearance due to their unique and stable

physicochemical properties (13). Consequently, these compounds are

ubiquitous and persistent in the environment and accumulate in the

food chain (14, 15), posing a serious threat to ecological and human

health worldwide. A variety of PFASs have been detected in the semen

of human (16–19), implying a potential hazard of PFASs to male

fecundity. Hence, this review briefly summarizes the epidemiological

and experimental evidence regarding the toxic effects of PFAS exposure

on male reproduction, focusing on sperm quality.
Human exposure to PFASs

Accumulating evidence has revealed that humans are universally

exposed to PFASs (20–24). The intake of polluted food and drinking

water, inhalation of indoor air and dust, and dermal contact are

claimed as the major routes of human exposure to PFASs (14, 25–

27). Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid

(PFOS) are the most predominant and frequently detected PFASs in

human blood (28). Their serum half-lives were estimated to be 3.8 and

5.4 years in human body, respectively (29). In human plasma, PFASs

primarily bind to albumin and are transferred through the body (30).

Epidemiological investigations have indicated a possible association

between PFAS exposure and adverse health outcomes, such as liver

function abnormality (31), glucose homeostasis disturbance (32),

dyslipidemia (33), cardiovascular diseases (34), fetal growth

restriction (35), and bone mineral density reduction (36).
Effect of PFASs on human sperm
quality and quantity

Sperm concentration and count

In a previous investigate on 105 Danish males from the general

population, sperm concentration and total sperm count showed a

reduced tendency in those with high PFAS levels, although not at

statistically significant levels (37). Similarly, a nonsignificant decrease

was observed in 212 young men from the PFASs-polluted Veneto

region (38). However, a recent investigation on 864 young males from

the general Danish population showed that maternal exposure to

PFASs was linked to lower sperm concentration and total sperm

count (39). A multivariable linear regression analysis on 169 male

offspring also demonstrated that in utero exposure to PFOAwas related

to lower sperm concentration and total sperm count (40).
Morphology

Sperm morphology is an important determinant of semen quality

and male fertility. Epidemiological studies have shown that exposure to
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high levels of PFASs are associated with a lower percentage of

morphologically normal spermatozoa (37, 38). An investigation on

the partners of pregnant women from arctic and European populations

showed a 35% decrease in the proportion of sperm with normal

morphology in those with the highest PFOS exposure relative to those

with the lowest exposure (41). Furthermore, a Longitudinal

Investigation of Fertility and the Environment (LIFE) study reported

that perfluorooctane sulfonamide (PFOSA) was related to smaller

sperm head area and perimeter and a higher percentage of bicephalic

and immature sperm, and PFOA, PFOS, perfluorodecanoate (PFDeA)

and perfluorononanoate (PFNA) were associated with a lower

percentage of sperm with coiled tails (42).
Motility

Sperm motility is a decisive factor for male fecundity. In the

population of the Pearl River Delta region in China, a significantly

negative correlation was observed between sperm motility and PFASs

in semen (17). Consistent with this finding, in a cross-sectional study,

seminal PFOS, PFOA and emerging chlorinated polyfluorinated ether

sulfonate (6:2 Cl-PFESA) were associated with a decline in the

percentage of progressive sperm and an elevation in the percentage

of DNA fragmentation (18). In addition, maternal exposure to PFASs

was also linked to a higher percentage of immotile and nonprogressive

sperm in the young adulthood (39). In our previous study, in vitro

exposure to PFOA conspicuously impaired the capability of human

sperm to penetrate artificial cervical mucus (43). Similarly, in vitro

incubation with PFOA led to a remarkable reduction in progressive

motility in human sperm (44).
Capacitation, acrosome reaction
and hyperactivation

Sperm capacitation, acrosome reaction and hyperactivation are

essential prerequisites for the fertilization of oocyte. However,

epidemiological data regarding the effects of PFASs on these

processes are scarce. Our previous study showed that incubation

with PFOA in vitro compromised progesterone-induced acrosome

reaction and viscous medium penetration in human sperm (43).

Similarly, in vitro exposure to PFOA and PFOS decreased the

number of capacitated spermatozoa and hindered progesterone-

induced acrosomal reaction in boar spermatozoa (45, 46).
Experimental evidence for toxicities of
PFASs to sperm

Numerous studies have confirmed the male reproductive

toxicities of PFASs in rodents. It has been shown that PFOA

exposure causes epididymis injury and reduces epididymal sperm

count in mice (47–49). Furthermore, sperm motility and

progressiveness were remarkably compromised and teratospermia

rate was significantly elevated in PFOA-treated mice (48).
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Correspondingly, rats exposed to PFOS also displayed a prominent

decline in epididymal sperm count and sperm viability and motility,

concomitant with a notable increase in the percentage of

morphological abnormalities of head, mid-piece and tail of sperm

(50). In another study, PFOS exposure at 5 mg/kg did not affect the

number of sperm or the percentage of motile sperm, but

significantly reduced the motility of sperm reflected by decreased

curvilinear, straight-line and average path velocity in mice (51). In

addition, exposure to PFOA and PFOS induced male reproductive

toxicity in Caenorhabditis elegans, leading to a reduction in

spermatid size and motility and an increase in sperm

malformation rate (52). Chronic exposure to PFOS also decreased

sperm density and compromised the total and progressive motility

in zebrafish (53).
Discussion

Due to the environmental persistence and pervasive presence,

there is growing concern regarding the toxicities of PFASs to male

fertility. Numerous studies have suggested that PFASs induce

testicular toxicity. For example, exposure to PFOA repressed the

expression of blood-testis barrier (BTB) proteins and increased

TNFa content and p-p38/p38 MAPK ratio in mouse testis and

cultured Sertoli cells (54). Similarly, hexafluoropropylene oxides

and PFOS disturbed BTB by activating p38 MAPK/MMP9 pathway

(55, 56). These results indicate that p38 MAPK signaling may

contribute to PFASs-induced BTB disruption. Proteomic profile

analysis also indicated that PFOA treatment altered blood-testis

barrier remodeling in mouse testis (57). Furthermore, PFOS

exposure promoted the generation of reactive oxygen species

(ROS) and suppressed the activities of antioxidases in the testes,

thereby impairing testicular physiology and spermatogenesis in rats

(50). Oral PFOA administration resulted in the destruction of the

seminiferous epithelium, induced oxidative stress, inhibited NRF2-

mediated antioxidant response, and led to apoptosis in the testis of

mice (49, 58). However, studies found that supplement with

flavonoids rutin and pachypodol attenuated testicular damage

caused by PFOA and PFOS through alleviating oxidative stress,

respectively (49, 50). Additionally, maternal exposure to PFOA

reduced serum testosterone levels, disrupted testis development,

damaged testicular structure, and caused testicular apoptosis in the

offspring mice (59, 60). These results suggest that exposure to

PFASs can result in the disruption of testicular structure and

function, which may be partly responsible for PFASs-caused

reduction of sperm count. Moreover, antioxidative intervention

with flavonoids may be a promising strategy for preventing and

rescuing PFASs-induced spermatogenic impairment.

Hormones in the hypothalamic-pituitary-gonadal axis are

important regulators in the reproductive process. Intratesticular

testosterone plays an important role in sperm number and sperm

motility, and abnormal testosterone generation impairs

spermatogenesis in humans (61). PFASs have been identified to
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act as endocrine disruptors affecting male reproductive health. A

cross-sectional study reported that higher serum levels of PFASs are

negatively associated with testosterone concentrations among male

adolescents (62). The negative association between serum PFOS and

testosterone levels was also observed in healthy young Danish men

(63). In laboratorial experiments, PFOS exposure disrupted the

hypothalamic-pituitary-testis axis activity (64, 65), and reduced

luteinizing hormone, follicle-stimulating hormone and

testosterone levels in adult male rats (50). Furthermore, both

PFOA and PFOS significantly decreased the expression of

steroidogenic enzymes and the concentrations of testosterone in

male mice (48, 66), and the mechanisms may be involved in

developmental inhibition, oxidative stress and apoptosis in Leydig

cells (67–70). Inversely, low-dose PFOA stimulated steroid

hormone synthesis by enhancing fatty acid metabolism and

steroidogenic activation in Leydig cells (71). These results

suggested that exposure to PFASs disordered testosterone

biosynthesis, which may be correlated with the impaired

semen quality.

Normal sperm function is crucial for male fertility. Some

epidemiological and experimental investigations also showed a

negative association between PFAS exposure and semen

parameters, such as sperm count, morphology and motility,

implying that PFASs have an adverse influence on sperm quality

(Tables 1 and 2). Nevertheless, the toxicological mechanisms

remain largely unelucidated. Rodent studies demonstrated that

PFOA could accumulate in the epididymis and cause

morphological change in epididymal epithelium (47, 49),

suggesting that the epididymis is a potential target and PFOA

may exert direct toxicity to spermatozoa. Lu et al. (47) found that

PFOA exposure activated AKT/AMPK signaling pathway, altered

polyunsaturated fatty acid composition, and triggered oxidative

stress in the epididymis of mice (47). Furthermore, in vitro

treatment with PFOA augmented ROS production and reduced

sperm viability (47). The study implied that oxidative stress and

membrane polyunsaturated fatty acid alteration may be involved in

PFOA-induced sperm toxicity. Moreover, PFOA incubation

resulted in accumulation in sperm membrane, and perturbed

plasma membrane fluidity, mitochondrial respiratory activity and

electrochemical potential, indicating that PFOA impacts human

sperm motility by plasma membrane disruption (44). Our previous

study showed that in vitro PFOA exposure compromised the

penetration ability of human spermatozoa by inducing oxidative

stress, evoking CatSper-mediated Ca2+ influx, and compromising

progesterone-induced response (43). Testicular transcriptome

profiling revealed that PFOS exposure led to alterations in

microtubule-based movement, microtubule motor activity, cilium

movement, cytoskeleton and spermatid development (51). In

addition, PFOS altered sperm membrane lipid composition

reflected by elevated ratio of cholesterol to phospholipids in male

zebrafish (53), suggesting that PFOS may sperm function through

disrupting membrane fluidity. These findings may help explain the

abnormalities in sperm morphology and motility caused by PFASs.
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Conclusions

We have summarized the toxicological effects of PFASs on

sperm using recent epidemiological and experimental data.

Increasing evidence suggests that exposure to PFASs is adversely

associated with sperm quality, and their mechanisms of toxicity
Frontiers in Endocrinology 04
might be involved in testicular and epididymal damage, testosterone

synthesis disorder, and oxidative stress, membrane lipid

composition alteration and Ca2+ influx in sperm. However, due to

the limited number of epidemiological studies, the reproductive

health risk of human exposure to PFASs, especially their emerging

alternatives, needs further investigation.
TABLE 1 Epidemiological studies on toxicities of PFASs to sperm.

PFASs Type Samples PFASs content
(ng/mL) Note on impact Reference

PFHxS
PFOA
PFOS

Blood
6.6 (4.0-12.1)
4.9 (2.7-7.2)
24.5 (14.2-42.1)

Lowered sperm concentration and total sperm count. (37)

PFHxS, PFHpA, PFOA,
PFOS, PFNA, PFDA,
PFUnDA

Semen
0.77, 0.06, 4.4, 27.56,
0.38, 0.15 and 0.12,
respectively.

Combined maternal exposure reduced sperm concentration and total sperm count,
and increased the proportions of nonprogressive and immotile sperm.

(39)

PFOA Blood 3.8 (2.8-4.7)
In utero exposure lowered sperm concentration and total sperm count with higher
FSH and LH levels.

(40)

PFOS, PFOA, PFHxS,
PFNA

Semen
18.4, 3.8, 1.1 and 1.2,
respectively.

Increased sperm morphology defects. (41)

S9PFASs
Blood
Semen

160
17

Decreased sperm motility. (17)

PFOA, PFOS, 6:2 Cl-
PFESA

Serum
8.57, 8.38 and 6.09,
respectively. Increased the percentage of progressive sperm and the percentage of DNA

fragmentation.
(18)

PFOA, PFOS, 6:2 Cl-
PFESA

Semen
0.23, 0.1 and 0.06,
respectively.

Me-PFOSA-AcOH,
PFDeA, PFNA, PFOA,
PFOS

Semen

Michigan: 0.4, 0.3, 1,
4.6 and 19.15,
respectively;
Texas: 0.25, 0.5, 1.65,
5.3 and 21.6,
respectively.

PFOSA reduced sperm head area and perimeter and increased the percentage of
bicephalic and immature sperm. PFDeA, PFNA, PFOA and PFOS reduced the
percentage of sperm with coiled tails.

(42)
f

TABLE 2 Experimental studies on toxicities of PFASs to sperm.

Species PFASs Doses Note on impact Reference

Human PFOA
0.25, 2.5 and 25 mg/
mL

Compromised P4-initiated sperm migration and acrosome reaction, reduced sperm penetration
ability, and induced sperm oxidative stress.

(43)

Human PFOA 0.1-10 ng/mL Increased the percentage of non-motile sperm, altered membrane fluidity, and reduced sperm
motility.

(44)

Boars
PFOA/
PFOS

500, 1000, 2000 and
3000 µM

Increased sperm mortality, and affected sperm capacitation. (45, 46)

Mice PFOA
1.25, 5 and 20 mg/
kg/d

Reduced epididymis weight, altered polyunsaturated fatty acid composition, and induced
oxidative stress.

(47)

Mice PFOA
0, 0.31, 1.25, 5, and
20 mg/kg/d

Reduced sperm quality, damaged seminiferous tubules, and reduced testosterone and
progesterone levels.

(48)

Mice PFOA 20 mg/kg/d Disrupted epididymal epithelium. (49)

Rats PFOS 20 mg/kg Increased sperm mortality, and reduced sperm viability and epididymal sperm. (50)

Mice PFOS 1 and 5 mg/g Decreased epididymal sperm motility. (51)

Caenorhabditis
elegans

PFOA/
PFOS

0.001, 0.01 and 0.1
mmol/L

Reduced spermatid size and motility, and increased the rate of malformed spermatids.
(52)

Zebrafish PFOS
0, 5, 50, and 250 mg/
L

Reduced sperm density and the total and progressive motility, and changed sperm membrane
lipid composition.

(53)
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