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Integrative network-based
analysis on multiple Gene
Expression Omnibus datasets
identifies novel immune
molecular markers implicated in
non-alcoholic steatohepatitis

Jun-jie Zhang1*†, Yan Shen2†, Xiao-yuan Chen2, Man-lei Jiang3,
Feng-hua Yuan1, Shui-lian Xie1, Jie Zhang3 and Fei Xu3*

1Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University,
Ganzhou, China, 2Department of Publication Health and Health Management, Gannan Medical
University, Ganzhou, China, 3Department of Hepatology, The Affiliated Fifth People’s Hospital of
Ganzhou, Gannan Medical University, Ganzhou, China
Introduction: Non-alcoholic steatohepatitis (NASH), an advanced subtype of

non-alcoholic fatty liver disease (NAFLD), has becoming the most important

aetiology for end-stage liver disease, such as cirrhosis and hepatocellular

carcinoma. This study were designed to explore novel genes associated

with NASH.

Methods: Here, five independent Gene Expression Omnibus (GEO) datasets were

combined into a single cohort and analyzed using network biology approaches.

Results: 11 modules identified by weighted gene co-expression network analysis

(WGCNA) showed significant association with the status of NASH. Further

characterization of four gene modules of interest demonstrated that molecular

pathology of NASH involves the upregulation of hub genes related to immune

response, cholesterol and lipid metabolic process, extracellular matrix

organization, and the downregulation of hub genes related to cellular amino

acid catabolic, respectively. After DEGs enrichment analysis and module

preservation analysis, the Turquoise module associated with immune response

displayed a remarkably correlation with NASH status. Hub genes with high

degree of connectivity in the module, including CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN were further verified in

clinical samples and mouse model of NASH. Moreover, single-cell RNA-seq

analysis showed that those key genes were expressed by distinct immune cells

such as microphages, natural killer, dendritic, T and B cells. Finally, the potential

transcription factors of Turquoise module were characterized, including NFKB1,

STAT3, RFX5, ILF3, ELF1, SPI1, ETS1 and CEBPA, the expression of which

increased with NASH progression.
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Discussion: In conclusion, our integrative analysis will contribute to the

understanding of NASH and may enable the development of potential

biomarkers for NASH therapy.
KEYWORDS

non-alcoholic steatohepatitis, weighted gene co-expression network analysis, hub
genes, immune response, transcription factors
Introduction
Non-alcoholic fatty liver disease (NAFLD) is likely to become

the most common chronic liver disease, affecting about 25% in the

adult population (1). It is characterized by excessive accumulation

of hepatic triacylglycerol (TG) and encompasses a spectrum of liver

pathologies ranging from isolated steatosis (non-alcoholic fatty

liver, NAFL) to non-alcoholic steatohepatitis (NASH), a more

severe form of fatty liver disease featured by lobular inflammatory

infiltrates, hepatocyte ballooning and fibrosis (2). Up to 30% of the

patients with NAFLD will process to NASH (3), which may

eventually progress to cirrhosis, hepatocellular carcinoma (HCC)

and liver failure (4). Moreover, NASH is considered the hepatic

manifestation of metabolic syndrome, commonly alongside serious

extrahepatic diseases, such as dyslipidemia, hypertension, obesity

and type 2 diabetes mellitus (T2DM) (5, 6), and multiple pathogenic

pathways are involved in NASH progression.

Previous studies have contributed greatly to our understanding

of genetic and environmental risk factors in the pathogenesis of

NAFLD. Genome-wide association studies (GWAS) have revealed

genetic variants in several loci (PNPLA3, TM6SF2, GCKR,MTARC1

and HSD17B13) that promote NAFLD risks in humans (7–11),

which highlights the dysregulation of gene expression and/or

function as an important players in the development and

progression of NASH. Integrating multi-omics approaches

including genomics , transcriptomics , proteomics and

metabolomics have provided additional insights (12–15), which

may not be elucidated by genomics analysis alone. In addition,

previous bioinformatics analyses in cross-sectional studies have

facilitated the exploration of potential biomarkers related to

NAFLD/NASH (16–19). However, for complex disease trait, the

comprehensive molecular characterization of NASH are still not

entirely deciphered. As a consequence, no effective pharmacological

therapies targeting NASH are presently available. Hence, further

exploration into the molecular pathogenesis of NASH and

diagnostic biomarkers are essential to build novel approaches for

management of NASH.

Network biology approaches have proven effective for

uncovering new perturbed pathways underlying molecular

pathology (18, 20, 21). Contrary to traditional differential

expression analysis methods based on gene expression profiling,

network-based approaches investigate the correlation among

changing genes from a systematic perspective. Weighted gene co-

expression network analysis (WGCNA) has become a frequently
02
used method for multigene analysis, which establishes gene sets

(modules) from observed gene expression data using unsupervised

hierarchical clustering. WGCNA is widely used for exploring the

relationship between diverse gene sets and clinical features (22, 23),

providing insights into functions of co-expression gene modules

and detecting hub genes related to the clinical characteristics of

various diseases (24, 25).

In the present work, we aimed to identify deregulated modules,

hub genes and transcription factors (TFs) associated with NASH by

integrating transcriptomic data with biological network analysis

between normal liver tissues and NASH tissues. We obtained five

liver transcriptome datasets from the Gene Expression Omnibus

(GEO) database (26). We first generated MergeCohort by merging

five pre-processed datasets. Based on the combining expression

matrix, differentially expressed gene (DEG) analysis was performed

to identify genes associated with NASH. After that, through

integrative analyses of co-expression gene network, functional

annotation, TF-target regulatory network and validation analysis,

we detected several promising candidate biomarkers for NASH.

Our integrative study provides a comprehensive view on the

molecular processes of NASH and may discover potential

therapeutic target for NASH treatment.
Methods

Data collection

We obtained the expressing profiles of mRNA of NASH and

normal control from the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/) (26). We searched the

microarray and next-generation sequencing (NGS) studies with

the keywords: “Fatty liver”, “Non-alcoholic”, “Gene expression”,

“Homo sapiens”, “Microarray” and “RNA sequencing”. Datasets

were selected based on the following criterial (1): Containing at least

10 total samples (2); Samples must Contain at least five patients in

both NASH group and healthy control group (3); Raw data or gene

expression profiles were available in GEO (4). Pathways related to

lipid metabolism, inflammation and fibrosis were significantly

(normalized enrichment score (NES) more than 1.0 and a false

discovery rate (FDR) below 0.25) enriched between the two groups

in the gene set enrichment analysis (GSEA) (Supplementary Tables

S2, S3), which was carried out with the Java GSEA (version 3.0) (27)

platform with the ‘Signal2Noise’metric to create a ranked list and a

‘gene set’ permutation type. The flowchart was shown in Figure 1.
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Data processing

For each dataset, we download raw expression data and pre-

processed using standard approaches. Specially, gene chip datasets

were normalized by the robust multi-average (RMA) method with

oligo/Bioconductor (28). For RNA-seq datasets, reads count

information were generated by StringTie using a Python script

(prepDE.py) and raw counts were normalized across samples

following TMM method in edgeR package. After filtering low

abundance expression genes and outlier samples, we applied the

ComBat (version 3.20.0) method in the sva R package to remove the

batch effects (29) from five datasets (GSE48452, GSE37031,

GSE61260, GSE63067 and GSE130970) and combined these five

datasets into a single cohort (MergeCohort), which contains 67

normal and 97 NASH tissue samples. Subsequently, the expression

matrix of MergeCohort was used for differentially expressed genes

(DEGs) identification between NASH and healthy control samples.

It is worth noticing that we applied Wilcoxon’s rank-sum test to

assess the differential expression, the corrected threshold was p less

than 0.05, and the absolute difference of means more than 0.3. Gene

ontology (GO) and Reactome enrichment analyses were performed

for DEGs using hypergeometric test, which is conducted by the

python package gseapy (version 0.9.16; https://github.com/zqfang/

gseapy), all gene sets of GO term and Reactome pathway were

obtained from database source of Enrichr (30). Only GO terms or

Reactome pathways were considered as significantly enriched by

using the criterion with a corresponding p value less than 0.05.
Weight gene co-expression network
construction, module detection and
preservation analysis of the
co-expression modules

5,000 transcripts with maximal variability across all patients (n

= 164) based on the median absolute deviation in the MergeCohort

were kept for WGCNA and tested by the WGCNA R package (22).

In our work, the power threshold of 5 was selected to calculate

biweight midcorrelations and weighted adjacency matrix, the soft

thresholding parameter was defined using the scale-free topology fit
Frontiers in Endocrinology 03
model. We identified the gene modules based on the ‘hybrid’

method and parameters deepSplit = 4, mergeCutHeight = 0.15

and minModuleSize = 50. Modules are identified as branches in the

dendrogram with Dynamic Tree Cut algorithm (22). Subsequently,

we assessed the relevance of a module eigengene (ME) to the disease

status using the Pearson correlation. An intramodular connectivity

(Kin) was defined to measure for each gene on the base of its

correlation with the remaining genes in a given module. Genes with

highest Kin are identified as hub genes. Cytoscape version 3.8.2 was

used for visualization. In order to understand the extent of module

preservation in MergeCohort, a publicly available expression

profiling of high throughput RNA sequencing dataset GSE135251

including 10 controls, 51 NAFL and 155 NASH was used, processed

as described above. Module preservation analysis was carried out by

using Module preservation function in WGCNA package

introduced by Langfelder et al. (31) and described in detail in

Oldham et al. (32). Moreover, to investigate the module similarity

among different cohorts, we applied hypergeometric test to evaluate

whether the genes from each MergeCohort module significantly

overlapped with the genes from each of GSE135251 module. The

overlap was regarded as significant when p value below 0.05.
Functional annotation of the modules

In order to determine the functional significance of the

identified modules, we firstly performed GO and KEGG pathway

enrichment analysis for the gene lists of each module of co-

expression network on the basis of Enrichr (30) as described

above. Moreover, we carried out disease enrichment analysis for

the gene lists of each module by using DisGeNet (33). The statistical

significance threshold level for all disease terms was p value less

than 0.05 (Benjamini-Hochberg corrected for multiple

comparisons) and we presented top 20 for each disease-associated

module. Additionally, to obtain regulatory information of

transcription factors (TFs) and target genes, Transcriptional

Regulatory Relationships Unraveled by Sentence based Text

mining (TRRUST) v2 database (https://www.grnpedia.org/trrust/)

(34) were supplied for Enrichr (30), conducted by the python

package gseapy (version 0.9.16; https://github.com/zqfang/gseapy).

In addition, ChIP-X Enrichment Analysis 3 (ChEA3) database

(https://maayanlab.cloud/chea3/) (35) was adopted to further

validate the significantly enriched transcription factors over

module genes. After obtaining TF–target regulatory relationships,

a TF-target network, which contained TFs regulating Turquoise

modules’ genes, was reconstructed.
Single cell RNA-sequencing analyses

We investigated the expression patterns of top 25 hub genes in

Turquoise module using scRNA-seq analyses of human liver tissues

from public scRNA-seq data (GSE136103) (36). In our study, only

four samples including two healthy liver tissue samples

(GSM4041156 and GSM4041159) and two NAFLD liver tissue

samples (GSM4041162 and GSM4041163) were analyzed with
FIGURE 1

Flowchart.
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Seurat package (version 3.1.5) (37). First, 2000 highly variable genes

(n = 2,000) were identified using the R package SCTransfom

(version 0.2.1). Subsequently, principal component analysis was

performed, and the appropriate principal components (PCs) for

dimensionality reduction were decided using the JackStraw

function. Clusters were identified with the Seurat function

FindClusters with the resolution set at 0.4. This method resulted

in 18 clusters, which were visualized by Uniform Manifold

Approximation and Projection (UMAP) analysis. Clusters were

then annotated by using the expression of known genes. We

annotated cell types based on cell markers and the R package

SingleR (36, 38).
Results

Information of included GEO datasets

According to the previously established inclusion criteria,

GSE48452, GSE37031, GSE61260, GSE63067 and GSE130970

were included in this study. There are 104 NASH patients and 70

controls in these five datasets. After outlier removal, 97 NASH

patients and 67 controls were retained in the following analysis. The

detail information of the five datasets was shown in Supplementary

Table S1. In order to eliminate the bath effect from different

platforms and batches, we used the combat function to eliminate

the batch effect from five datasets. A total of 12579 genes were

detected by merging different platforms. Before removing the batch

effect, samples were clusters in batch according to the top two

principal components (PCs) of the expression values before

normalization (Figure S1A). In contrast, when the samples from
Frontiers in Endocrinology 04
five platforms were merged, the overall expression in the samples

was uniformly distributed based on principal component analysis,

suggesting that the batch effect caused by different platforms that

had effect on the estimation of molecular biological differences was

successfully corrected (Figure S1B). In addition, we used dataset

GSE135251 as the validation dataset in this study.
Identification of DEGs in the NASH patients

Principle component analysis plot of the gene expression matrix

of five combined dataset (MergeCohort) distinguished between

NASH and control group is shown in Figure 2A. Total of 831

DEGs (Benjamin-Hochberg adjusted p value < 0.05, absolute

difference of mean > 0.3) among control and NASH in

MergeCohort were identified, consisting of 600 upregulated and

231 downregulated DEGs (Figure 2B; Supplementary Table S4).
Function and pathway enrichment analysis
of DEGs

In the present study, we performed GO and Reactome pathway

enrichment analysis to determine the potential functions of 831

DEGs in the pathogenesis of NASH. The biological process analysis

(Figure 2C; Supplementary Table S5) revealed that in the NASH,

these genes were associated with multiple immunity-related

pathways, such as the cytokine-mediated signaling pathway, cellular

response to cytokine stimulus and neutrophil activation involved in

immune response. Several ECM-related pathways were also enriched

such as extracellular matrix organization and extracellular structure
B

C

D

A

FIGURE 2

Overview of combining gene expression profiles in healthy controls and nonalcoholic steatohepatitis (NASH) patients. (A) Principle component plot
of samples based on top 500 most variable gene expression from combining gene expression profiles (MergeCohort). NASH patients are marked in
red; healthy controls are marked in green. (B) Volcano plot of differentially expressed genes (DEGs) between NASH patients and healthy controls.
DEGs are listed in Supplemental Table S4. 600 genes upregulated and 200 genes downregulated are shown in red and blue, respectively. (C) Top 10
enriched biological functions of DEGs determined by Gene Ontology (GO) enrichment analysis. (D) Top 10 enriched Reactome pathways of DEGs
determined by Reactome pathway enrichment analysis.
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organization. Moreover, metabolic process, such as cholesterol

metabolic process, fatty acid metabolic process, cholesterol

biosynthetic process and other biological process (Supplementary

Table S5) were also identified. Reactome pathway analysis was

performed to investigate the pathway based on the DEGs

(Supplementary Table S6). The top 10 pathways are shown in

Figure 2D. Among them, metabolism, metabolism of lipids and

lipoproteins, extracellular matrix organization, immune system,

chemokine receptors bind chemokines were significantly enriched.

Therefore, the outcomes above suggested that metabolism, ECM-

related pathways and immunity-related pathways play an important

role in development and procession of NASH.
WGCNA and identification of module
associated with NASH disease status

To capture discrete groups of co-expression genes correlated

with NASH status and to integrate the identified expression

divergences into a higher system level context, a co-expression

network analysis (WGCNA) was conducted based on the top 5000

median absolute deviation (MAD) genes from the MergeCohort.

Keep to the scale-free topology criterion, b=5 was considered in this

study (Figure 3A). According to dynamic tree cut, the hierarchical

clustering dendrogram resulted in 17 different gene modules, as
Frontiers in Endocrinology 05
displayed in Figure 3B. 909 genes failed to fit within a distinct group

and were assigned to the Grey module which was neglected in the

present study. The size of modules ranged from 86 (Grey60

module) to 734 (Turquoise module) (Figure 3C). DEGs

enrichment in each module was shown in Figure 3D, in which

upregulated genes was mostly significantly enriched in Turquoise

(n = 233, p = 1.93 × 10-44), and followed by Cyan (n = 54, p = 1.24 ×

10-15), Grey60 (n = 40, p = 2.05 × 10-13), Tan (n = 48, p = 1.59× 10-9)

and Magenta (n = 47, p =2.77 × 10-4), downregulated genes was

significantly enriched in Black (n = 107, p = 9.25 × 10-86) and Brown

module (n = 68, p = 1.07 × 10-24). To investigate which co-

expression modules are associated with NASH status, we then

correlated the expression of eigengenes (genes representing the

expression profile of each module) with NASH status. The

relationship between all the modules and the NASH status are

displayed in a correlation heatmap, in which Y-axis corresponds to

groups of genes (modules) and the X-axis represents the NASH

status (Figure 3E). Of the 17 co-expression modules, 11 WGCNA

modules to be correlated with NASH status at a Pearson correlation

(p < 1.47 × 10-3), which is determined based on Bonferroni

correction. Among them, nine modules (Cyan, Grey60,

Turquoise, Magenta, Purple, Lightcyan, Tan, Midnightblue and

Blue) were positively correlated with NASH disease status, two

modules (Black and Brown) were negatively associated with NASH

disease status (Figure 3E).
B

C D E

A

FIGURE 3

WGCNA network and module identification. (A) Soft-thresholding calculation of MergeCohort. The left panel displays the scale-free fit index versus
soft-thresholding power. The right panel shows the mean connectivity versus soft-thresholding power. Power 5 was selected, for which the fit index
curve flattens out upon reaching a high value (> 0.9). (B) The Cluster dendrogram of co-expression network modules from WGCNA depending on a
dissimilarity measure (1-TOM). The leaves in the tree represent genes and the colors in the horizontal bar indicate co-expression module determined
by the dynamic tree cut algorithm. (C) Number of genes in each module. (D) Enrichment of upregulated and downregulated DEGs in each module.
(E) Heatmap showing the association between module eigengenes (rows) and NASH disease status (column). Associated p values were computed
using the cor.test R function. The color scale in the heat map represents the magnitude of the Pearson correlation coefficients. Number in each cell
contained corresponding correlation coefficient and p value (in brackets). WGCNA, weighted gene correlation network analysis; TOM, topological
overlap matrix.
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Functional characterization of co-
expression modules of interest

Because we were more concerned about the modules whose

expression was different between NASH and control group, we

compared the eigengenes from NASH samples to the expression of

control in every module, and these results were used to further

assess whether the modules were associated with NASH status.

Modules Cyan, Grey60 and Turquoise exhibited an upregulation of

the eigengenes in NASH, whereas module black showed lower

expression in NASH (Figure 4A). In order to investigate whether

the co-expression modules cover the information associated with

validated networks, the existing data on protein-protein

interactions from the STRING database was used to test the

biological characteristics of the detected modules in this study. All

the modules showed significant enrichment in interactions (p <

0.01), therefore indicating that the modules detected in the present

work are biologically relevant (Supplementary Table S7). In

addition, the NASH status positively correlated modules showed

much higher average node degree (AND), particularly module

Turquoise (AND = 22.4).
Frontiers in Endocrinology 06
We then conducted GO and KEGG pathway enrichment of the

NASH-associated modules to further investigate the gene functions by

Enrichr. Top biological process and KEGG pathway in each module

are shown in Table 1. Turquoise module was upregulated in NASH

patients, contained hub genes related to immune response (CD53,

LAPTM5, LCP1, NCKAP1L, C3AR1 and FGL2) (Figure 4B), and

enriched for GO categories to cytokine-mediated signaling pathway,

neutrophil activation involved in immune response and neutrophil

degranulation (Figure 4B). Grey60 module with hub genes such as

FDFT1, NSDHL, IDI1, SQLE, ACSS2, SREBF2, HMGCR, FASN, LSS,

ACAT2, FADS1, FADS2 and ELOVL6 was upregulated in NASH

(Figure 4C), which were mainly participating in cholesterol and lipid

metabolic process (Figure 4C). The majority of the GO terms enriched

in module Cyan were primarily related to extracellular matrix

organization and extracellular structure organization (Figure 4D),

including hub genes related to fibrosis (PDGFA, LOXL4, MSN,

LAMA3 and AKR1B10) (Figure 4D). However, the majority of the

GO terms enrich in Black module were related to cellular amino acid

catabolic and primary alcohol metabolic process (ACADSB, AASS and

ALDH6A1) (Figure 4E). The complete annotation for each module

can be found in Supplementary Tables S8, S9.
B

C

D

E

FA

FIGURE 4

Functional characterization of co-expression modules of interest identified by WGCNA. (A) Box and Whisker plots representing the expression of
module eigengenes Turquoise, Grey60, Cyan, Black between NASH (n = 97) and healthy control (n = 67) samples. Data are presented as median
with first and third quartiles as the box edges. Differences between group were estimated by Student’s t test. (B–E) The network of hub genes
(module genes within the top 25 genes with the highest intromodular connectivity values (kWithin)) (left panel) and top GO terms (right panel) of the
modules Turquoise (B), Grey60 (C), Cyan (D) and Black (E) are shown. In the network diagrams, node sizes correspond to kWithin in the module. For
the bars plot, the bars in the GO enrichment results represent the -log10(pvalue). (F) Scatterplots of module eigengenes show positive correlation
between Turquoise and Cyan, and negative correlation between Grey60, Cyan, Turquoise and Black, respectively.
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We next explored the relationship of eigengenes among the

annotated modules. Upregulated immune Turquoise module was

positively correlated with Cyan module related to fibrosis (r = 0.32,

p = 3.0 × 10-5) (Figure 4F), suggesting that Turquoise module related

to immune response that drives fibrosis in NASH, which confirmed

the results of previous studies (20). Interestingly, Cyan, Grey60 and

Turquoise modules was negatively correlated with Black module that

is enriched in amino acid metabolic processes (Figure 4F). The high

negatively correlation (r = -0.77, p = 2.0 × 10-33) between the

upregulated fibrosis module Cyan and downregulated Black

module that is enriched in metabolic processes (Figure 4F), which

indicated that perturbations in amino acid metabolism are likely

involved in NASH pathogenesis (39, 40).
Module preservation analysis indicates
the presence of NASH-associated
co-expression module function in
immune response

To find out whether the identified modules were common in

another dataset, we examined the module preservation statistics
Frontiers in Endocrinology 07
between the MergeCohort and one recently published large NASH

datatset GSE135251 (13). In particular, we assumed co-expression

modules of MergeCohort as reference dataset and the co-expression

modules of GSE135251 as test dataset. We utilized the principle

described in (22). The score of Zsummary more than 10 represents

strongly preserved module, less than 2 denotes non-preserved

module while the value between 2 and 10 implies moderately

preserved module. We plotted the scatterplot of Zsummary scores

against the sizes of MergeCohort modules (Figure 5A). All modules

have a Zsummary statics greater than 2, suggesting that all modules

were preserved in GSE135251. The lowest preservation is the Red

module (Zsummary = 6.37). Particularly, MergeCohort module

Turquoise (MergeCohort_Turquoise) exhibited Zsummary

preservation score (Zsummary = 42.68) higher than 40. To

provide a more intuitive picture of the preservation of each co-

expression module identified, we evaluated module overlaps of

MergeCohort and GSE135251 (Figure 5B), we found that

MergeCohort_Turquoise show the most significantly overlapping

with GSE135251 module Turquoise (GSE135251_Turquoise).

Moreover, we discovered a highly positively correlation between

the intromodular connectivity of 289 genes overlapped in

MergeCohort_Turquoise and GSE135251_Turquoise (Spearman’s
TABLE 1 Top GO and pathway enrichment in each module.

Module Category Term P-value FDR

Black GOTERM_BP Cellular amino acid catabolic process 2.37 × 10-12 3.95 × 10-09

Blue GOTERM_BP Extracellular matrix organization 6.18 × 10-37 1.57 × 10-33

Brown GOTERM_BP Cellular amino acid catabolic process 5.27 × 10-09 1.06 × 10-05

Cyan GOTERM_BP Extracellular matrix organization 4.82 × 10-07 5.88 × 10-04

Grey60 GOTERM_BP Secondary alcohol biosynthetic process 2.39 × 10-32 1.54 × 10-29

Lightcyan GOTERM_BP T cell activation 4.17 × 10-13 3.44 × 10-10

Magenta GOTERM_BP DNA metabolic process 2.69 × 10-45 3.48 × 10-42

Midnightblue GOTERM_BP IRE1-mediated unfolded protein response 7.75 × 10-16 6.39 × 10-13

Purple GOTERM_BP Regulation of glycogen metabolic process 2.31 × 10-06 3.06 × 10-03

Tan GOTERM_BP Neutrophil degranulation 8.86 × 10-16 7.05 × 10-13

Turquoise GOTERM_BP Cytokine-mediated signaling pathway 3.47 × 10-39 8.55 × 10-36

Black KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 2.94 × 10-05 3.85 × 10-03

Blue KEGG_PATHWAY ECM-receptor interaction 3.54 × 10-19 8.42 × 10-17

Brown KEGG_PATHWAY Glycine, serine and threonine metabolism 2.24 × 10-08 5.78 × 10-06

Cyan KEGG_PATHWAY Mitophagy 9.22 × 10-04 0.11

Grey60 KEGG_PATHWAY Steroid biosynthesis 1.01 × 10-14 8.99 × 10-13

Lightcyan KEGG_PATHWAY Primary immunodeficiency 1.14 × 10-17 1.39 × 10-15

Magenta KEGG_PATHWAY DNA replication 5.62 × 10-27 7.20 × 10-25

Midnightblue KEGG_PATHWAY Protein processing in endoplasmic reticulum 3.05 × 10-21 2.75 × 10-19

Purple KEGG_PATHWAY Axon guidance 1.62 × 10-04 3.11 × 10-02

Tan KEGG_PATHWAY Cytokine-cytokine receptor interaction 4.47 × 10-12 8.81 × 10-10

Turquoise KEGG_PATHWAY Osteoclast differentiation 2.48 × 10-18 6.45 × 10-16
fr
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correlation = 0.62, p = 1.3 × 10-9) (Figures 6A, B), which indicated

those two modules have similar co-expression pattern.

To comprehensively evaluate the biological functions related to

MergeCohort_Turquoise and GSE135251_Turquoise, we next

calculated the statistical significance of enrichment of genes with

the association in disease-related gene sets from the DisGeNET

database (33) and KEGG pathway gene sets. We observed that genes

in MergeCohort_Turquoise and GSE135251_Turquoise were

significantly enriched by liver disease-related gene sets (liver

cirrhosis) and multiple immune disease-related gene sets

(autoimmune disease, immunosuppression and inflammatory
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bowel disease) (Figure 6C; Supplementary Tables S10, S11).

Interestingly, these two modules were also significantly enriched

in atherosclerosis and arteriosclerosis. Notably, we observed that

genes in MergeCohort_Turquoise, which shows the highest module

similarity with GSE135251_Turquoise (289 out of 734;

hypergeometric test p value = 5.33 × 10-168) (Figure 6A) are both

significant enriched in phagosome, osteoclast differentiation, cell

adhesion molecules, antigen processing and presentation, B cell

receptor signaling pathway (Figure 6D). In addition, the

MergeCohort_Turquoise was upregulated in NASH and is also

the third most significant module, and showed the greater number
BA

FIGURE 5

Module preservation of MergeCohort in GSE135251 dataset. (A) Preservation Zsummary statistics of MergeCohort in GSE135251 dataset. Each point
represents a module. Point color reflects the module color as used in Figures 3B–E of MergeCohort. Points are also labeled by the name of the
module. The dashed blue and red lines indicate the rough thresholds for week (Z = 2) and strong (Z = 10) evidence of module preservation. (B)
Overlaps of MergeCohort and GSE135251 modules. Each axis is labelled by the corresponding module name. The size of each dot represents the
number of overlapping genes in the intersection of corresponding MergeCohort and GSE135251 modules while the color implies -log10 of the
hypergeometric enrichment p value.
B
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FIGURE 6

Functional enrichment of MergeCohort_Turquoise and GSE135251_Turquoise module. (A) Venn diagram displays number of genes overlapped
between MergeCohort_Turquoise and GSE135251_Turquoise module. (B) Spearman’s correlation between the kWithin of common genes (n = 289)
overlapped between each module. Top 25 hub genes with the highest kWithin from MergeCohort_Turquoise module are shown. (C) Dot-plot
heatmap shows top 20 significantly enriched disease by genes in each module. The size of each dot represent the gene counts enriched in each
disease term. (D) Dot-plot heatmap shows top 20 significantly enriched KEGG pathways by genes in each module. The size of each dot represents
the -log10 of p value for each KEGG pathway term.
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of statistically differential expressed genes, with 233 of the 734 genes

being upregulated (fold change > 1.2; p < 0.05) and none

significantly downregulated (Figure 3D). Considering all these

results, we will choose the co-expression Turquoise module from

MergeCohort for further analysis.
Validation of hub genes in
Turquoise module

Hub genes were upregulated in the liver from NASH patients.

Focusing on the MergeCohort_Turquoise module, we firstly

explored the top 25 hub genes including CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN that had

a high intramodular connectivity (K.in). The expression level of

those core genes were all upregulated in four cohorts (GSE130970,

GSE48452, GSE61260 and GSE63067) involved in this study

Figure 7A, suggesting that these hub genes may play fundamental

role in NASH development. The PPI network of these 25 hub genes

was showed in Figure 7B.

Hub genes were positively correlated with clinical characteristics.

We further investigated the relationship between the changes in
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expression of these 25 hub genes and the histological phenotype in

GSE130970 (Figure 7C). Our results demonstrated that each of the 25

key genes were positively correlated with the NAFLD activity score,

and FPR3 has the highest correlation (r = 0.53, p = 1.49 × 10-4). LCP1

gene was the most associated gene with steatosis grade (r = 0.46, p =

1.16 × 10-3) and the lobular inflammation grade (r = 0.32, p = 3.06 ×

10-2). Moreover, FPR3 associated most with the cytological

ballooning grade (r = 0.53, p = 1.82 × 10-4). SRGN was the most

relevant gene with the fibrosis stage (r = 0.35, p = 1.84 × 10-2).

Additionally, C3AR1 showed significant correlation with all the

clinical parameters, especially higher correlation with the

cytological ballooning grade (r = 0.51, p = 2.94 × 10-4).

Hub genes were upregulated in the liver from the choline

deficient L-amino acid defined high fat diet (CDAHFD) model of

NASH in mouse. Furthermore, to explore the significance of the

hub genes in mouse, we mined public available microarray data

(GSE120977) (41) to validate the mRNA levels of the

abovementioned genes, except Hla-dra, Clic2 and Fpr3 gene

which was lacking in the dataset. Intriguingly, several of the hub

genes displayed either a significant or a trending higher expression

in mouse individuals fed with CDAHFD diets at 12 weeks

compared with the controls. For instance, 14 genes, namely Cd53,
B
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FIGURE 7

Validation of hub genes in MergeCohort_Turquoise module. (A) Heatmap shows the expression patterns of top 25 hub genes in human liver tissues
according to four datasets (GSE130970, GSE48452, GSE61260 and GSE63067). The numbers in heatmap represent log2 value of fold change
between NASH patients and healthy controls. (B) The protein-protein interactions among top 25 hub genes were retrieved by the STRING database.
(C) Heatmap shows the Person correlation coefficients of top 25 hub genes and clinical parameters of NAFLD according to GSE130970 dataset. p
values are overlaid on the heatmap (**p < 0.01 and ***p < 0.001). (D) Heatmap shows the expression patterns of top 25 hub genes in mouse liver
tissue according to GSE120977 dataset. The numbers in heatmap represent log2 value of fold change between the CDAHFD and chow diet control
group. CDAHFD, choline deficient L-amino acid defined high fat diet.
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Laptm5, Nckap1l, C3ar1, Hck, Mpeg1, Cybb, Iqgap1, Dock2, Plek,

Fcer1g, Igsf6, Ptprc and Havcr2, which were strongly upregulated in

mouse fed with CDAHFD chow (Figure 7D), supporting the notion

that these hub genes were also activated during progression of

mouse NASH model.
Identification of cell clusters contributions
to the NASH-associated Turquoise module
integrating single-cell RNA-seq analysis

To investigate how potential hub genes identified in

MergeCohort_Turquoise module change within specific cell

populations during NASH progression, we carried out an

integrated scRNA-seq analysis using publicly available scRNA-seq

data from healthy and cirrhotic liver samples. Clustering revealed 17

populations of cells comprising 10 distinct cell types (Figures 8A, B;

Supplementary Figure S2). We identified Endothelial cells,

macrophages, cholangiocytes, NK cells, T cells, mesenchyme,

dendritic cells, B cells, fibroblasts, and hepatocytes within the

scRNA-seq data based on the expression of lineage specific markers

as annotated with integration of discoveries from human liver cell

atlas and the annotation analysis with SingleR. The expression

patterns of the top 25 genes in the MergeCohort_Turquoise

module were analyzed by scRNA-seq analyses of liver tissues.

Those key genes in MergeCohort_Turquoise module including
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CD53, LCP1, LAPTM5, PTPRC and SRGN expressed by distinct

immune cells such as microphages, NK cells, T cells, dendritic cells

and B cells, and most of them, namely FGL2, HCK, MPEG1, CYBB,

CSF1R, IGSF6, CPVL and HLA-DRA were mainly expressed by

macrophages, dendritic cells (Figure 8C; Supplementary Figure S3),

which indicated that the macrophages and dendritic cells play an

important role in the pathogenesis of NASH.
Identification of TFs that regulate the
Turquoise modules

The results of the analysis above showed that hub genes in

MergeCohort_Turquoise module were enriched in immunity.

Because co-expressed genes tend to be co-regulated by the

common transcription factors (TFs), we further conducted TFs

enrichment analysis (hypergeometric test) using the genes from the

MergeCohort_Turquoise and GSE135251_Turquoise modules to

obtain key regulatory genes, based on TRRUST database

(34). Our results indicated that NFKB1, SPI1, RELA, CIITA,

HIVEP2, SP1, RFXANK, RFXAP, RFX5, IRF1 are the top 10

most significantly enriched TFs in MergeCohort_Turquoise module

(Figure 9A). Moreover, we adopted ChEA3 database (35)

to validate the significantly enriched transcription factors

over MergeCohort_Turquoise module genes. As a result,

ChEA3 analysis identified 27 of the 33 significant TFs for
B
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FIGURE 8

Assessment of the expression patterns of hub genes in MergeCohort_Turquoise module in different types of cells using publicly available healthy and
cirrhotic scRNA-seq from dataset GSE136103. (A) UMAP visualization of different cell clusters from healthy (n = 2) and cirrhotic (n = 2) human livers.
(B) UMAP visualization of cell types from healthy (n = 2) and cirrhotic (n = 2) human livers. Cells were annotated as endothelial cells, macrophages,
cholangiocytes, NK cells, T cells, mesenchyme, dendritic cells, B cells, fibroblasts, and hepatocytes based on the expression of lineage markers. (C)
Dot plot shows the expression patterns of top 25 hub genes in different types of liver cells. Size of the dot indicates proportion of the cell population
that expresses each gene. Color represents level of expression. UMAP, uniform manifold approximation and projection.
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MergeCohort_Turquoise module genes with TRRUST database, the

other six TFs were part of their targets (Table S12). We also found

that NFKB1, SPI1, RELA, CIITA, SP1, RFXANK, RFXAP, RFX5,

TRERF1, ELF1, STAT3, ERG, ETS1, ILF3, CEBPA, HDAC1 and IRF8

are significantly enriched TFs in both MergeCohort_Turquoise and

GSE135251_Turquoise module (Figure 9A). Furthermore, we

observed significantly increased of hepatic expression of RFX5,

ILF3, NFKB1, STAT3, ELF1, SPI1, ETS1 and CEBPA in NAFL and

NASH compared to the control group (p < 0.05) (Figure 9B).

Next, the regulatory networks were constructed for the enriched

TFs and associated target genes in each of the modules (Figures 9C,

D). We observed that RFX5 and ILF3, an important transcriptional

factor mainly expressed in the liver, upregulated from mild to

advanced NASH, regulates the expression of genes involved in

antigen processing and presentation of exogenous peptide antigen

via MHC class II, including HLA-DQB2, HLA-DOA, HLA-DMA,

HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA.

Notably, the gene expression of RFX5 and ILF3 positively correlated

with MHCII gene expression (Figure 9E). We found 41 genes are

regulated by the NFKB1 transcription factor. As known, NFKB1

regulates the expression of genes associated with cytokine-mediated
signaling pathway (e.g., TNF, CXCL10, MMP9 and TGFB1) and

immune response (e.g., CD74, CD58, CD80 and CD86) (Figure 9C).

Moreover, STAT3 regulates the expression of gene in Wound

healing involved in inflammatory response, including HMOX1,

TIMP1, TGFB1 and F2R. Interestingly, SPI1 regulated gene

involved in immune effector process (e.g., CTSG, CD68, IFIT3

and IL18) including hub genes (CYBB and HCK) in

MergeCohort_Turquoise module. SP1 regulated gene involved in

cell activation (e.g., TIMP1, LTF, FGL2 and LYZ).

For further analysis the expression of the hub genes and key TFs

in vitro models of NASH, we retrieved public available RNA-seq

data (the RNA-seq data of L02 hepatocytes (PRJNA726826) and

murine primary hepatocytes (PRJNA726846) treated with palmitic

acid and oleic acid (PAOA) for 0h, 12h and 24h, respectively (42)),

we found hub genes (CD53 and SRGN) and key TFs (NFKB1, ELF1

and EST1) displayed higher expression in L02 hepatocytes treated

with PAOA (Figure S4A). Moreover, we observed that hub genes

(Lcp1 and Fcer1g) and key TFs (Ilf3, stat3 and Est1) showed

increased expression in murine primary hepatocytes with PAOA

treatment (Figure S4B). Together, these TFs and target genes

identified in our study provide a promising list for investigators
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FIGURE 9

Regulatory relationship between enriched transcription factors and their target genes in NASH-associated module. (A) Dot-plot heatmap shows
enriched transcription factors in MergeCohort_Turquoise and GSE135251_Turquoise module. The size of each dot represents the -log10 of adjusted
p value for each transcription factor. (B) Boxplots shows mRNA hepatic expression of the enriched transcription factors including RFX5, ILF3, NFKB1,
STAT3, ELF1, SPI1, ETS1 and CEBPA according to GSE135251 dataset. The p value was calculated by Student’s t test. (C, D) The regulatory networks
between enriched transcription factors and associated target genes in MergeCohort_Turquoise (C) and GSE135251_Turquoise module (D),
respectively. Red color represents transcription factors, blue color represents target hub genes, grey color represents other target genes. (E) Pearson
correlations for mRNA hepatic expression of transcription factors (RFX5 and ILF3) and associated target genes (HLA-DQB2, HLA-DOA, HLA-DMA,
HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA) in GSE135251 dataset. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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or companies interested in conducting preclinical study into the

mechanisms of and treatments for NASH both in vitro and in vivo.
Discussion

The global epidemic of NASH is a serious public health

problem, the pathogenesis of NASH still remains unclear.

Moreover, although liver biopsy currently remains the reference

standard for diagnosis of NASH, it is an intrusive operation with

risks and many shortcomings. Thus, identifying novel non-invasive

biomarkers in NASH is of paramount importance in the prevention

and therapy of this disease.

Thanks to the rapid development of high-throughput

sequencing technology and gene chip technology, more and more

researchers are actively pursuing molecular markers using data

mining and analysis of sequencing data or gene chips to the

diagnosis and treatment of disease (19, 43, 44). In our study, we

analyzed gene expression profiles of NASH patients and normal

controls from five independent GEO data sets. The batch of various

platforms or batches is removed. DEGs were identified between

normal liver tissues and NASH tissues, based on 831 DEGs between

Normal-NASH group, we performed GO and Reactome pathway

analysis to explore underlying mechanism of NASH. The results

showed that enriched pathways were involved in metabolism

pathways, inflammatory response and immune response,

extracellular matrix organization (Figures 2C, D), conforming

their association with NASH development and progression.

Subsequently, we constructed a co-expression network and

identified 17 different modules by WGCNA, among which 11

modules were significantly associated with the status of NASH.

DEG numbers showed a significant enrichment in seven important

modules (Figure 3D). The results of this study indicated that the

identified modules are biologically rational, majority of which are

enriched for specific GO terms and KEGG pathways, sharing some

commonality with the existing literature. For example, module

Black and Brown, are markedly negative correlated with NASH

status. Both the Black and Brown were most significantly enriched

in cellular amino acid catabolic process. Recent studies showed that

deregulation in amino acid metabolism seem to be involved in the

appearance of NASH (39, 45). In addition, previous research has

demonstrated that lipid metabolism significantly altered during

NASH progression (46). Our data found Grey60 module that was

significantly upregulated in NASH, enriched in the lipid

metabolism pathways, encompassing hub genes related to

cholesterol metabolism (FDFT1, NSDHL, IDI1, SQLE, MVD,

HMGCS1, HMGCR and LSS) as well as fatty acid metabolism

(FASN, ELOVL6, FADS1, FADS2, ACACA, ELOVL6, PKLR and

THRSP) (Figure 4C). Similarly, previous biological network analysis

identified cholesterol synthesis genes in human NAFLD (e.g.,

FDFT1, NSDHL, IDI1, SQLE, MVD, HMGCS1 and HMGCR) and

fatty acid metabolism genes (e.g., Fasn, Thrsp and Pklr) in NAFLD

mouse model that were also reported to be deregulated by (47) and

(18), respectively. Thus, despite the differences in study design, the

three studies coverage on a number of key biological findings.
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Inflammation is an important factor driving NASH

progression. Our current systematic transcriptomic analysis also

highlighted the importance of the Turquoise module in modulating

NASH occurrence and development. This study found that the

immune-related pathways were mostly enriched in the Turquoise

module, which contained the highest number of differentially

deregulated genes (Figure 3D). Moreover, we demonstrated the

highest preservation of the Turquoise module between

the MergeCohort and validation dataset GSE135251 (Figure 5A).

The top hub genes overexpression in NASH samples and linking

immune-related pathways belonged to CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, FGL2, PLEK, HLA-DRA, FPR3 and SRGN,

which also showed positive correlation with histological grade

(Figure 7C). Further validation by mouse NASH model, the

expression of CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, FGL2,

PLEK and SRGN were significantly upregulated (Figure 7D). The

role of CD53, C3AR1, NCKAP1L and FGL2 genes in regulation of

immune responses has recently been proposed in previous studies.

CD53 is a member of the tetraspanin membrane protein family that

may be involved in transmembrane signal transduction (48). CD53

has been reported to associate with liver inflammation and insulin

sensitivity (49). LAPTM5 is a transmembrane protein which is

preferentially expressed in immune cells, and it acts as a positive

regulator of proinflammatory signaling pathways in macrophages

(50). Previous study revealed that LAPTM5 could interact with

CDC42, and promote its degradation, then suppressed the

activation of MAPK signaling pathway, hence ameliorated NASH

in mouse (51). Besides, LAPTM5 has been shown to be significantly

upregulated in HCC tissues compared to normal liver tissues, and

Pan et al. reported that LAPTM5 could remarkably accelerate

autophagic flux by promoting fusion of lysosomes with

autophagosomes to drive lenvatinib resistance in HCC (52).

Moreover, C3AR1 is a G protein-coupled receptor (GPCR)

protein, which participates in the complement system and can

stimulate the production of IL-1b and TGFb (53). Interestingly,

Han et al. found that C3ar1 knockout mice showed drastically less

severe fibrosing steatohepatitis, concomitantly with reduced hepatic

stellate cells (HSCs) activation when compared with the wildtype

littermates (54). In addition, the mRNA level of LCP1 in liver tissue

of NAFLD patients was strongly increased (300%) compare to the

control group in a previous GWAS study (55), and Miller et al. used

proteomic method to describe the proteome of NAFLD and

observed that LCP1 performed well in distinguishing the disease

state from control group, NAFL from NASH and fibrosis grading

(56). Notably, our study also found that the Turquoise module

including hub gene HLA-DRA, displayed higher expression in

NASH, which associated with NAFLD loci found by GWAS, and

genetic variants of HLA−DRA has been recently reported to affect

hepatitis development in a Korean population (57). Additionally, it

has been shown that SRGN, CD53, NCKAP1L, LCP1, EVI2B,

MPEG1 and TYROBP may be potential pathological target gene

for NAFLD and NASH, which is highly similar to our Turquoise

module (58).

It should be noted that NASH is regarded as an inflammatory

subtype of NAFLD with steatosis and evidence of hepatocyte injury

and interactions between multiple immune cells. Increasing
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evidence has demonstrated the high heterogeneity and plasticity of

macrophage populations in human liver (59). For example,

Ramachandran et al. adopted scRNA-seq approach to discover a

disease-associated TREM2+/CD9+ macrophage population that

was remarkably expanded in human cirrhotic livers. Therapeutic

inhibition of CCR2+ bone marrow-derived macrophages has been

reported to alleviate inflammation and fibrosis in mouse NASH and

fibrosis in human disease (36, 60). Similarly, our integrated scRNA-

seq analysis revealed that the hub genes in the Turquoise module

were mainly enriched in macrophage and dendritic cells,

conforming the importance of which during NASH progression.

For instance, our study found that expression of FGL2 was elevated

in macrophages and dendritic cells (Figure 8C). A recent study

demonstrated that Fgl2 expression in the livers of both humans and

mice with NASH was significantly increased along with the

accumulation of hepatic macrophages (61). Moreover, we found

that the expression of CSF1R gene, a marker for pan-macrophages

reported to be involved in hepatic fibrosis, was also considered as a

potential marker for hepatocarcinogenesis (62). By analyzing the

association between LCP1 and immune cells, Zhang et al. found

LCP1 was significantly positively related to memory B cells as well

as M1 macrophages (58). Our study also observed that hub gene

HLA-DRA was higher expressed in both macrophages and dendritic

cells (Figure 8C). Intriguingly, previous reports examining human

NASH livers using single-cell RNA sequencing reported that M-

Mac-1 included three genes, HLA-DRA, HLA-DQA2 and HLA-

DQB2 (63), which was related to NAFLD loci (57, 64, 65). Further,

recent study reported that cDC-related gene expression signatures

in human livers were associated with NASH pathology (66). These

findings emphasized the importance of further studies of the

subpopulations of inflammatory macrophages and dendritic cells

in NASH progression. However, more single-cell transcriptome

data focusing on NASH progression among NASH patients are

needed in future studies.

Several studies involving transcription factors have indicated

therapeutic effects in NASH (67, 68), for example, transcription

factors including PPARs, LXR and FXR are mainly known for their

roles in altering lipid metabolism in NAFLD/NASH development.

Agonists of PPARs and FXR have been investigated extensively in

mouse models (69, 70), clinical trials presently are ongoing to test

the effects of these drugs for potential NASH treatments. In

addition, PPARs, LXR and FXR not only regulate lipid

metabolism but also exert anti-inflammatory functions via direct

and indirect mechanisms as shown by the suppression of several

proinflammatory genes (71–74). Therefore, the detection of an

immune-related transcription factor seems to be essential for the

identification of novel therapeutic targets in NAFLD/NASH. In

present study, we observed that the immune-related module

enriched TFs including NFKB1, STAT3, RFX5, ILF3, ELF1, SPI1,

ETS1 and CEBPA, the expression of which enhanced with NASH

progression (Figure 9B). Among the TFs, NFKB1, STAT3, SPI1,

ETS1, CEBPA and ELF1 have been reported to be linked to NAFLD/

NASH by literature searching.

NF-kB is a protein complex that plays a central role in

regulating the expression of cytokines and chemokines, and

recent studies suggest that NF-kB is highly activated both in mice
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and patients with NASH (75, 76). NFKB1 (p105/p50), a member of

NF-kB family, emerging evidence suggests that NF-kB1-gene-
coded proteins p105 and p50 have critical regulatory activities of

inflammatory responses (77, 78). Previous study have showed that

Nfkb1-deficient mice enhanced NASH progression to fibrosis by

favouring NKT cell recruitment (79). In addition, Jurk et al.

reported that loss of Nfkb1 in mouse promoted ageing-related

chronic liver disease, featured by steatosis, hepatitis, fibrosis and

HCC (80), which point to the possible relevance of polymorphisms

in human NFKB1 gene as a risk factor for the progression of

inflammatory disease (81).

STAT family members with inflammatory biological functions

notably STAT1 and STAT3 have been linked to NAFLD and NASH.

Grohmann and colleagues demonstrated that the oxidative hepatic

environment in obesity restrained the STAT1 and STAT3

phosphatase TCPTP, which led to potentiate STAT1 and STAT3

signaling, and further increase the risk of developing NASH and

HCC in the setting of nutritional excess (82). On the other hand, the

suppression of TCPTP, coupled with heightened STAT1 and STAT3

signaling, were easily detectable events in the livers of patients with

NASH (82). Moreover, a recently study revealed that dampening

IL6/STAT3 activity alleviated the I148M-mediated susceptibility to

NAFLD, while boosting it in wild-type liver cultures enhanced the

development of NAFLD (83). Additionally, downregulation of

STAT3 expression can activate autophagy and inhibit the

inflammatory response of NASH (84, 85). Interestingly, other

transcription factor such as SPI1, ETS1 and CEBPA have been

described to be a promising target for NASH prevention and

treatment. Liu et al. applied proteomics strategy to identify SPI1

as critical TF, SPI1 expression was positively related to resistance

indicator HOMA-IR and the inflammatory marker TNFA in

human liver biopsies, and inhibition of SPI1 ameliorated

metabolic dysfunction and NASH (86). It has been proven that

Ets1 acted as a positive regulator of TGF-b1 signaling, which

accelerated the development of NASH in mice (87). Notably,

Vujkovic et al. recently presented a GWAS study and identified

77 genome-wide loci significantly associated with NAFLD

(diagnosed using elevated ALT as a proxy for NAFLD), of

interest is that for nine SNPs, the cATL risk allele was associated

with lower BMI including CEBPA (65).

There are few studies of RFX5, ELF1 and ILF3 that have been

reported at present in the field of NAFLD and NASH. RFX5, a

classical transcription regulator of MHCII gene expression in the

immune system. It has been previously shown that RFX5 displayed

higher transcriptional activity in both human NASH and mouse

model of NASH (68). Interestingly, RFX5 mRNA has previously

been shown overexpressed in HCC compared with non-tumor

tissue, which promoted HCC progression via transcriptionally

activating KDM4A, TPP1 and YWHAQ (88–90). Moreover, our

results also showed that RFX5 are the prominent regulators of

expression of HLA class II genes in the immune-related module.

Interestingly, RFX5 was recently reported to enhance surface

expression of HLA-DR molecules, which promoted tissue

macrophages-dependent expansion of antigen-specific T cells in

rheumatoid arthritis (91). In addition, ELF1 regulated hub gene

CYBB in MergeCohort_Turquoise module, the mechanism of TAZ-
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induced Cybb leading to liver tumor formation in NASH has been

well defined (92).

ILF3, also known as NF90/NF110, encodes a double-stranded

RNA (dsRNA)-binding protein which can regulate gene expression

and stabilize mRNA (93, 94). Recent studies have reported insights

into the possible physiological roles of ILF3 in dyslipidemia, the

cardiovascular system, neurodegenerative disorder as well as in

tumorigenesis and progression of different cancers. Zhang et al.

demonstrated that ILF3 together with another eight transcription

regulators control late-onset Alzheimer’s disease (LOAD) risk genes

HLA-DRB1 and HLA-DQA1 expression in human microglial cells

(95). Moreover, there is evidence that ILF3 could have an important

role in inflammatory pathophysiology in vivo, Nazitto et al. identified

ILF3 as negative regulator of innate immune response and dendritic

cell (DC) maturation, and found that knockdown of ILF3 led to

significantly elevated expression of genes (CD86, CD80 andHLA-DR)

associated with DC maturation in the primary human monocyte-

derived DCs during stimulation with viral mimetics or classic innate

agonists (96). In addition, previous studies have revealed the essential

roles of deregulated lncRNA ILF3 divergent transcript (ILF3-AS1) in

HCC, Bo et al. found that ILF3-AS1 expression was significantly

increased in HCC tissues and also associated with prognosis of HCC

patients, and knockdown of ILF3-AS1 expression suppressed HCC

cell proliferation, migration and invasion (97). Yan et al. also

observed that ILF3-AS1 silencing inhibited the hepatocellular

carcinoma tumor growth (98). However, the regulation roles of

RFX5 and ILF3 on HLA-DR molecules in the progression of NASH

have also not been well defined. Therefore, our results provide a very

meaningful direction for future research.

In summary, unlike previous studies with limitation of a few

human NASH transcriptome data or focusing on individual genes

influencing NASH progression, our network-driven strategy

generated a comprehensive and unbiased view of the modules,

hub genes and critical transcriptional factors associated with NASH.

In particular, the Turquoise module and regulators involving

immune-related pathways especially transcription factor RFX5

coordinating antigen processing and presenting function in

NASH progression deserve further attention. The main limitation

of present study is that all conclusions are based on transcriptomic

data from human and lack verification from relevant experiments in

vitro/in vivo disease models. Nevertheless, it provides useful and

novel molecular candidates in dysregulated pathways for NASH

prognosis and therapeutic targets.
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component; PC2, second principal component.
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Integrated scRNA-seq analysis. (A) Significant principal components (PCs)
were determined via the JackStraw function in Seurat R-packages. PCs 1-17

were used for graph-based clustering (resolution = 0.4) to identify distinct

clusters. (B) UMAP visualization of scRNA-seq data from four healthy (n = 2)
and cirrhotic (n = 2) human livers annotated by liver sample. (C) UMAP

visualization of cirrhotic and healthy control groups annotated by liver
disease status. UMAP, uniform manifold approximation and projection.
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levels of those hub genes are expressed by the color transition from red
to grey.

SUPPLEMENTARY FIGURE 4

Assessment of the expression patterns of hub genes and key TFs in

MergeCohort_Turquoise module in vitro models of NASH using publicly
available RNA-seq data of L02 hepatocytes (PRJNA726826) and murine

primary hepatocytes (PRJNA726846) treated with palmitic acid and oleic
acid (PAOA) for 0h, 12h and 24h, respectively. Heatmap shows the expression

patterns of hub genes and key TFs in in L02 hepatocytes (A) and mouse

primary hepatocytes (B) with PAOA treatment for 12 h and 24 h (1 technical
replicate of 3 biological replicates for each group).
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