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Introduction: Nonalcoholic steatohepatitis (NASH), also known as metabolic

steatohepatitis, is a clinical syndrome with pathological changes like alcoholic

hepatitis but without a history of excessive alcohol consumption. NASH is closely

related to metabolic disorders such as obesity, insulin resistance, type 2 diabetes

mellitus, and hyperlipidemia. Its main characteristics are hepatocyte steatosis with

hepatocyte injury and inflammation. In severe cases, it can develop into liver

cirrhosis. At present, there is no special treatment for NASH. Theabrownin (TB) is

the main pigment substance in fermented tea. Theabrownin has beneficial effects

on lipid metabolism and intestinal flora. However, the effect of theabrownin on

NASH has not been studied.

Methods: This study was aimed at exploring the effects of theabrownin from

Fuzhuan brick tea on NASH. 8-week-old mice were randomly assigned to three

groups and fed with chow diet (CD), methionine and choline sufficient (MCS) diet

(MCS Ctrl), which is a Methionine/choline deficient (MCD) control diet, and MCD

diet. After 5 weeks of feeding, theMCD groupmicewere randomly divided into two

groups and were gavaged with double distilled water (MCD Ctrl) or theabrownin

(MCD TB) (200mg/kg body weight, dissolved in double distilled water) every day for

another 4 weeks respectively, while continuing MCD diet feeding.

Results: We found that theabrownin treatment could not improve liver mass loss

and steatosis. However, theabrownin ameliorated liver injury and decreased liver

inflammatory response. Theabrownin also alleviated liver oxidative stress and

fibrosis. Furthermore, our results showed that theabrownin increased hepatic

level of fibroblast growth factor 21 (FGF21) and reduced the phosphorylation of

mitogen-activated protein kinase p38 in MCD diet-fed mice.
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1 Introduction

With the globalization of obesity and its related metabolic

syndrome, nonalcoholic fatty liver disease (NAFLD) has become an

important cause of chronic liver disease in developed countries such

as Europe and the United States and rich regions in China (1).

According to the degree of pathological changes and whether the

pathological liver tissue is accompanied by inflammatory reaction and

fibrosis, NAFLD can be divided into simple fatty liver, non-alcoholic

steatohepatitis (NASH) and NASH-related cirrhosis (2). The

pathogenesis of NAFLD is complex, which have not been fully

elucidated by the current research. A well-known " multiple hit"

hypothesis is proposed for explaining the onset and development of

NAFLD (3). According to this theory, NAFLD is caused by many

factors, including hormones secreted by adipose tissue, insulin

resistance, dietary factors, intestinal flora, and genetic and

epigenetic factors. Physical inactivated lifestyle and over-eating

related unhealthy eating habits will lead to liver fat accumulation.

Excess fat storage in the peripheral and liver leads to inflammation of

adipose tissue and liver. The liver, peripheral adipose tissue and

intestine interact through cytokines, while the liver is at the central

stage of metabolic regulation. Lipids, particularly free fatty acids

derived from the periphery, overflow in hepatocytes, leading to

mitochondrial and peroxisomal dysfunction and enhanced

oxidative stress. The enhanced reactive oxygen species (ROS) causes

hepatocyte damage, which triggers macrophage infiltration in liver.

When this inflammatory process becomes chronic, further metabolic

deterioration and fibrosis will follow (4–6). At present, the prevalence

of NASH in the population is 3-5% (1, 3, 4). So far, there are currently

no approved pharmacological therapies for NASH (7). Therefore, it is

urgent to explore new targets and methods to prevent NASH and liver

fibrosis. Looking for food functional factors to reduce liver

inflammation and fibrosis may be a potential effective method to

prevent and treat NASH.

Fibroblast growth factor 21 (FGF21), a metabolic regulator, is a

peptide hormone (8), which can be produced by liver, fat tissue and

pancreas (9). Recent studies have found that FGF21 is related to the

pathogenesis and development of NAFLD. FGF21 can inhibit the

progression of nonalcoholic fatty liver disease (10). A study has

shown that exercise can stimulate the production of FGF21 in

muscle and subsequently promote the lipophagy in the liver, thus

playing an important role in improving NAFLD (11). Astaxanthin, a

nutrient-related substance, can improve liver mitochondrial function

and ameliorate NAFLD through up-regulating FGF21/PGC1 a
pathway (12). Supplementation of Bifidobacterium can improve

hepatic steatosis and steatohepatitis via elevating expressions of the

receptors of FGF21 to increase the sensitivity of FGF21 (13). NAFLD

can also be improved by subcutaneous injection of FGF21 (14).

Theabrownins (TB), the main pigment substance in fermented tea

(15), are water-soluble phenolic compounds (15, 16). It is generally

considered to be formed by further oxidative polymerization of tea

polyphenols Theaflavins (TFs), Thearubigins (TRs), and its color is

brown or maroon (17, 18). Fuzhuan brick theabrownin is a kind of

theabrownin, which extracted from Fuzhuan brick tea. A previous

study showed that Fuzhuan tea can significantly alleviate liver lipid

deposition and inflammation, as well as improving intestinal flora in
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rats fed with high-fat diet (19). Fuzhuan tea supplementation can also

improve arterial stiffness in mice (20). Fuzhuan brick tea also contains

probiotics, such as Eurotium cristatum, which can improve intestinal

flora in obesity and metabolic disorder (21, 22). Theabrownin

extracted from Fuzhuan tea can also ameliorate disorders of lipid

and glucose metabolism in obese mice (23).

Although there is many evidence showed that theabrownin is

associated with improving obesity-related diseases, the effect of

theabrownin on NAFLD has not been fully understood. More

importantly, the effect of theabrownin extracted from Fuzhuan

brick tea on NASH and its mechanism has not been studied.

Therefore, in this study, we investigated the effect of theabrownin

extracted from Fuzhuan brick tea on MCD diet-induced NASH mice

and the mechanism under it.
2 Materials and methods

2.1 Animal experiments

4-week-old C57BL/6J male mice were obtained from Beijing Vital

River Laboratory Animal Technology Corporation (Beijing, China)

and were housed at 23°C, with 50% humidity and on a 12 h light−dark

cycle. After more than a month of adaptive feeding, 8-week-old mice

were randomly assigned to three groups and fed with chow diet (CD),

methionine and choline sufficient (MCS) diet (MCS Ctrl), which is a

MCD control diet, andMCD diet. MCS andMCD diet are products of

Research Diets, Inc (New Brunswick, NJ). In this experiment, we fed

mice with MCD diet for 5 weeks to induce NASH model. After 5

weeks of feeding, the MCD group mice were randomly divided into

two groups and were gavaged with double distilled water (MCD Ctrl)

or theabrownin (MCD TB) (Lander Biotech, Xi’an, China) (200mg/kg

body weight, dissolved in double distilled water) every day for another

4 weeks respectively, while continuing MCD diet feeding. CD group

contains 5 mice, MCS Ctrl group contains 11 mice, MCD Ctrl group

and MCD TB group contain 7 mice each. Body weights were recorded

once a week during the experimental period. At the end of

experiments, mice were sacrificed under anesthesia and blood

samples and the liver were collected. Bloods samples were

centrifuged at 12000 rpm and 4°C for 5 min. One part of liver

tissue was fixed in the 10% neutral formalin for pathological

observation and the rest of liver tissue was frozen in the liquid

nitrogen and reserved at -80℃ for further research. All procedures

were approved by the Institutional Animal Care and Use Committee

at Shandong University and performed in conformance with

the guide.
2.2 Measurement of TG

The levels of Triglyceride (TG) in serum and liver tissues were

determined by Liquid Sample Triglyceride (TG) Content Assay Kit

(Applygen Technologies Inc, #E1003) and High Fatty Sample

Triglyceride (TG) Content Assay Kit separately (Applygen

Technologies Inc, #E1025). The TG level of serum was determined
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following the manufacturer's instructions. Liver tissues were

homogenized in lysis solution, and then let the lysate stand for 10

minutes. One part of the lysate was heated at 70°C for 10 minutes and

then centrifuged at 2000rpm at room temperature for 5 minutes. The

supernatant was used for enzymatic determination following the

manufacturer's instructions. The remaining part of the lysate can be

quantified by the BCA protein quantitative kit (Beyotime

Biotechnology, #P0010). The final levels of liver TG were

normalized by protein concentration.
2.3 Measurement of ALT and AST

The serum levels of Alanine aminotransferase (ALT) and Alanine

aminotransferase (AST) were determined by using ALT kit (Nanjing

Jiancheng Biotechnology, #C009-2-1) and AST kit (Nanjing

Jiancheng Biotechnology, #C010-2-1) respectively.
2.4 Measurement of MDA

Liver tissues were homogenized in phosphate-buffered saline

(PBS) then centrifuged at 12000 rcf and 4 °C for 15 minutes. The

supernatant was used for determination of Malondialdehyde (MDA)

following the manufacturer's instructions. The remaining part of the

lysate can be quantified by BCA protein quantitative kit (Beyotime

Bio-technology, #P0010). The final levels of liver MDA were

normalized by protein concentration.
2.5 Detection of liver reactive oxygen
species level

Liver tissues were fixed in 10% neutral formalin, dehydrated and

paraffin-embedded and cut into 5 mm thick sections. The sections of

liver tissue were incubated with dihydroethidium solution (DHE, 1

mmol/L, Beyotime Biotechnology, # S0063) at 37°C in the dark for 30

min following the manufacturer's instructions. The fluorescence was

measured under the excitation of 580 nm using a fluorescence

microscope (EVOS FL, Thermo Fisher Scientific) (24).
2.6 Histological analysis

Liver tissues were fixed in 10% neutral formalin, dehydrated and

paraffin-embedded and cut into 5 mm thick sections for hematoxylin

and eosin (H&E), Immunohistochemistry (IHC), Masson’s

Trichrome and Picrosirius Red staining. Hepatic fibrosis was

analyzed by Masson’s Trichrome, Picrosirius Red staining, and IHC

staining for smooth muscle actin (SMA). After that, staining was

observed under microscope. For IHC, the antibodies contained F4/80

(1:400) (Cell Signaling Technology, #70076), Ly-6G (1:400) (Santa

Cruz Biotechnology, #sc-53515), IL-1b (1:400) (Cell Signaling

Technology, #12242), SMA (1:400) (Santa Cruz Biotechnology, #sc-

53142), Fibroblast growth factor 21 (Affinity Biosciences, #DF8947),

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling

Technology, #4370), p44/42 MAPK (Erk1/2) (137F5) (Cell Signaling
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Technology, #4695). Image J software (National Institutes of Health,

Bethesda, Maryland) was used for quantification.
2.7 Western blot analysis

Lysates prepared from frozen liver samples were used for western

blot. The level of phospho-NF-kB p65 (Ser536) (Cell Signaling

Technology, #3033), NFkB p65 (Cell Signaling Technology, #8214),

the stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/

JNK) (Cell Signaling Technology, #9252), phospho-SAPK/JNK

(Thr183/Thr185) (Cell Signaling Technology, #9251), IL-1b
(Cell Signaling Technology, #12242), Phospho-p38 MAPK (Thr180/

Tyr182) (Cell Signaling Technology, #4511), p38MAPK (Cell Signaling

Technology, #8690), FGF21 (Affinity Biosciences, #DF8947), Collagen

1 a 1 (Santa Cruz Biotechnology, # sc-293182),Collagen 3 a 1 (Santa

Cruz Biotechnology, #sc-271249), Smooth muscle ac-tin (Santa Cruz

Biotechnology, #sc-53142) and Tubulin (Cell Signaling Technology,

#2125) were analyzed as described (25, 26).
2.8 Real-time quantitative polymerase
chain reaction

Total RNA was isolated from liver tissues by using a commercial kit

(RNAeasy™ Animal RNA Isolation Kit with Spin Column, Beyotime

Biotechnology, # R0027), and 1 mg total RNA was reversed transcribed

to cDNA with First-Strand cDNA Synthesis Kit (Accurate Biology,

#AG11728) according to instruction book suggested by the

manufacturer. Real-time PCR was performed with LightCycler 480

Real-Time PCR System (Accurate Biology, #AG11701) following the

manufacturer's instructions. The sequences of primers used in this

study are listed in Table 1.
2.9. Statistical analysis

All experimental numeric data are presented as mean ± standard

error of the mean (SEM). One-way ANOVA and least significance

difference (LSD) method as a suitable post-hoc test was used to determine

the differences among groups by using SPSS 26 (IBM, SPSS, USA) and a

p-value of < 0.05 was considered statistically significant.
3 Results

3.1 Theabrownin does not change body
weight, liver weight and liver lipid deposition
in MCD diet-fed mice

Liver steatosis is the initial manifestation of NAFLD. To

investigate the effect of theabrownin on fat deposition in NASH

mice, 8 weeks old mice were fed with CD, MCS or MCD diet for 5

weeks. In MCD diet feeding, mice were randomly divided into two

groups and were gavaged with water or theabrownin for another 4

weeks separately. Body weight in MCD diet-fed mice significantly

decreased compared to mice fed with MCS diet and CD (Figure 1A).
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Theabrownin didn’t influence the body weight of MCD-fed mice

compared to control group (Figure 1A). In addition, theabrownin

could not change the liver size (Figure 1B), liver weight (Figure 1C)

and liver coefficient (Figure 1D), compared to MCD diet-fed control

mice. Mice fed with MCD diet develop severe hepatic steatosis, which

is manifested by increased hepatic triglyceride levels (27, 28).

Similarly, in the current study, MCD diet can significantly increase

the content of triglyceride (TG) in liver of mice (Figure 1E). However,

theabrownin cannot reduce the level of TG in liver (Figure 1E), nor

can it reduce the content of triglyceride in serum (Figure 1F).

Moreover, the mRNA levels of lipogenic genes such as acetyl-CoA

carboxylase (ACC), fatty acid synthase (FAS), and sterol regulatory

element-binding protein-1c (SREBP1c) in the liver of mice fed with

MCD diet were lower than those fed with MCS diet (Figure 1G). It

indicated that rather than the increase of de novo lipogenesis in liver,

fats from adipose tissue lipolysis transported to liver may contribute

to the high TG levels in MCD diet-fed mice (29). Consistently, in our

study, almost no white adipose tissue was found in mice fed with

MCD diet. It suggested that adipose tissue lipolysis may happen in

MCD diet-fed mice. In addition, theabrownin did not change the

mRNA levels of lipogenic genes in MCD diet-fed mice (Figure 1G).

The mRNA level of carnitine palmitoyltransferase 1A (CPT1A),

which was a key enzyme in for fatty acid oxidation, was not shown
Frontiers in Endocrinology 04
difference between MCS and MCD diet-fed mice and was not altered

by administration of theabrownin (Figure 1G). This data indicated

that theabrownin did not alleviate loss of liver mass and liver steatosis

in NASH mice.
3.2 Theabrownin improves liver injury and
inflammation in MCD diet-fed mice

Although theabrownin has no effect on hepatic fat accumulation

in MCD diet-fed mice, we wanted to figure out whether theabrownin

influenced liver injury and inflammation in NASH. MCD diet can

induce severe liver injury and inflammatory response (30). To

determine whether theabrownin influenced liver function, we

measured AST and ALT in serum. Consistent with previous studies,

the ALT and AST levels in serum were significantly increased in MCD

diet-induced NASH mice, while theabrownin reduced the high serum

level of ALT (Figure 2A). Although theabrownin has no obvious effect

on serum AST level, the decreasing trend of AST level was seen in

MCD diet-fed mice treated with theabrownin (Figure 2B). The results

indicated that theabrownin could alleviate liver injury. Except fat

accumulation, NASH is also characterized by liver inflammation (6).

Next, we investigated the effect of theabrownin on NASH related

inflammation. Consistent with the above result, H&E staining of liver

sections shows that theabrownin did not alleviate liver steatosis in

MCD diet-fed mice. However, theabrownin significantly reduced the

lobular inflammation in liver (Figures 2C, D). Moreover, IHC staining

of the macrophage marker F4/80 and neutrophils marker Ly-6G

showed that theabrownin significantly decreased macrophage and

neutrophils infiltration (Figures 2F–H). Real-time Quantitative

polymerase chain reaction assay showed that theabrownin

significantly reduced the mRNA levels of pro-inflammatory genes

monocyte-chemoattractant protein 1 (MCP1) and intercellular

adhesion molecule 1 (ICAM-1) (Figure 2E). It further proved that

theabrownin reversed the immune cells infiltration induced by MCD

diet. We further confirmed the activation of NFkB and JNK by

western blot analysis. Theabrownin reduced the increase of

phosphorylation of NFkB p65 and JNK induced by MCD diet in

liver (Figures 3A–C). Interleukin 1 beta (IL-1b), which is a key

mediator of the inflammatory response, sends signals through IL-1

receptors widely expressed in different liver cell subsets to promote

liver inflammation and fibrosis (6). In MCD diet-induced NASH

mice, the level of IL-1b was remarkably enhanced, while theabrownin

significantly reduced it (Figures 2F , I). It indicated that theabrownin

decreased inflammatory response in NASH mice. These results

suggest that theabrownin can improve liver injury and hepatic

inflammation in MCD diet-fed mice.
3.3 Theabrownin reduces hepatic oxidative
stress and fibrosis in MCD diet-fed mice

Oxidative stress plays a crucial role in the pathogenesis and

progression of NASH (31). Next, we investigated the effect of

theabrownin on oxidative stress in the liver of NASH mice.

Dihydroethidium (DHE) is a fluorescent probe for the detection of
TABLE 1 Primers for RT-PCR.

Genes Primers Sequences

ACC1 Forward CGCTCGTCAGGTTCTTATTG

Reverse TTTCTGCAGGTTCTCAATGC

FAS Forward GGAGGTGGTGATAGCCGGTAT

Reverse TGGGTAATCCATAGAGCCCAG

SREBP1c Forward GGAGCCATGGATTGCACATT

Reverse GGCCCGGGAAGTCACTGT

CPT1A Forward CTACATCACCCCAACCCATATT

Reverse GATCCCAGAAGACGAATAGGTT

MCP-1 Forward GAAAACTGAGGCACCAAGGG

Reverse AGGTGGAGAGTGATGTTGGG

ICAM-1 Forward GCTACCATCACCGTGTATTCG

Reverse AGGTCCTTGCCTACTTGCTG

COL1A1 Forward CGGATAGCAGATTGAGAACATCCG

Reverse CGGCTGAGTAGGGAACACACA

FN Forward CGGAGAGAGTGCCCCTACTA

Reverse CGATATTGGTGAATCGCAGA

TGFb1 Forward GACTCTCCACCTGCAAGACCAT

Reverse GGGACTGGCGAGCCTTAGTT

FGF21 Forward ATGGAATGGATGAGATCTAGAGTTGG

Reverse TCTTGGTGGTCATCTGTGTAGAGG

36B4 Forward GGCTGACTTGGTTGCTTTGG

Reverse AGCAAAGGAAGAGTCGGAGG
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ROS generation. ROS production in the liver of MCD diet-fed mice

much higher than that of MCS diet fed mice (Figures 4A, B).

Theabrownin significantly reduced the ROS production in MCD

diet-fed mice (Figures 4A, B). The levels of MDA in liver, which is

considered a biomarker for oxidative damage of lipids, was

dramatically increased in MCD diet fed mice, compared to MCS

diet-fed mice, while theabrownin significantly decreased it in MCD

diet-fed mice (Figure 4C). The results indicated that the theabrownin

could downregulate oxidative stress in the NASH mice. Fibrosis is a

hallmark of NASH (32). Next, we investigated the effect of

theabrownin on NASH related fibrosis. Masson staining and

Picrosirius Red staining in liver sections showed that MCD diet

induced to develop liver fibrosis in mice, which can be alleviated by

theabrownin (Figures 5A–C). The activation of extracellular signal-

regulated kinase (ERK), which is a key component of MAPK signaling
Frontiers in Endocrinology 05
pathway, is associated with the development of liver fibrosis (33).

MCD diet significantly increased the expression and the

phosphorylation of ERK, while theabrownin significantly reduced

the phosphorylation of ERK in liver, as shown from IHC staining

(Figures 5D–G) and western blot (Figures 5I, J). Theabrownin also

obviously reduced the high a-SMA level induced by MCD diet

(Figures 5D, H). In addition, theabrownin significantly reduced the

high mRNA levels of fibrogenesis genes collagen type I alpha 1

(Col1A1), fibronectin (Fn) and transforming growth factor-beta 1

(TGFb1) in liver of MCD diet-fed mice (Figure 6D). Furthermore, the

protein levels of Col1A1 and collagen type III alpha 1 (Col3A1) in the

liver of MCD diet-fed mice were dramatically up-regulated, while

theabrownin significantly decreased the levels of Col1A1 and Col3A1

(Figures 6A–C). Together, theabrownin reduced hepatic oxidative

stress and fibrosis in MCD diet-fed mice.
A B

D

E F

G

C

FIGURE 1

Theabrownin does not change body weight, liver weight and liver lipid deposition in MCD diet-fed mice. (A) The change of body weight. (B) Liver
morphology. (C) Liver weight. (D) Liver coefficient. (E) Liver TG level. (F) Serum TG level. (G) mRNA levels of ACC, FAS, SREBP1c, and CPT1A. n=5-11 mice
per group. The data are mean ± s.e. (error bars). *p < 0.05, **p < 0.01, ***p < 0.001, MCS Ctrl vs MCD Ctrl.
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3.4 Theabrownin increases the expression of
FGF21 and reduces the phosphorylation of
p38 in MCD diet-fed mice

p38, which is a mitogen-activated protein kinase (MAPK), is

responsive to stress stimuli. p38 is a downstream molecule of FGF21

that can inhibit p38 phosphorylation (34). In order to uncover the

therapeutic mechanism of theabrownin in treating NASH, we

measured the levels of FGF21 mRNA and protein, as well as the
Frontiers in Endocrinology 06
phosphorylation of p38 in the liver. We found that the levels of FGF21

mRNA and protein in the liver of MCD diet-fed mice might be a little

higher than that of MCS diet-fed mice (Figures 7 A, F), but there was

no statistical difference. Theabrownin significantly increased the

expression of FGF21 in the liver of MCD diet-fed mice, which can

be seen by the results of FGF21 mRNA level, protein level, and

immunohistochemical staining (Figures 7A–F). Meanwhile,

theabrownin can reduce the high phosphorylation level of p38

induced by MCD diet in liver (Figures 7E,G)
A B

D E

F

G

I

H

C

FIGURE 2

Theabrownin improves liver injury and inflammation in MCD diet-fed mice. (A) Serum ALT level. (B) Serum AST level. (C) Liver section for H&E staining.
(D) Quantification of lobular inflammation. (E) mRNA levels for MCP-1 and ICAM-1. (F) Liver section for IHC with F4/80, Ly-6G, and IL-1b. (G–I)
Quantification of positive area for F4/80, Ly-6G, and IL-1b. n=5-11 mice per group. The data are mean ± s.e. (error bars). **p < 0.01, ***p < 0.001, MCS
Ctrl vs. MCD Ctrl; ††, p<0.01, †††, p<0.001 MCD Ctrl vs. MCD TB.
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4 Discussion

NASH is characterized by steatosis, inflammation, and fibrosis of

the liver (6, 35). The progress of NASH is accompanied by the

deposition of lipids in the liver, which leads to lipotoxicity (36, 37).

In this study, we used MCD diet to induce NASHmouse model. As an

experimentally common NASH model, the disease phenotypes of

MCD-induced NASH model are different when compared with

patients with NASH. However, MCD-induced NASH model is very

similar to human NASH histology (38). Like previous studies, we
Frontiers in Endocrinology 07
found that mice fed with MCD showed weight and liver weight loss

(39, 40), but theabrownin could not reverse these changes. Although

MCD diet can mimic the pathological changes of human NASH well,

it is different from obesity-induced NASH. MCD-fed mice show

lower serum triglyceride (39, 41), which was confirmed in this study.

Previous studies have shown that theabrownin can improve lipid

metabolism and therefore reduce the high triglyceride concentration

in liver and serum of mice induced by high fat or high-sugar diet (18,

42, 43). Interestingly, MCD-fed mice showed high liver lipid

deposition but low expression of ACC, FASN and SREBP1c in liver.
A

B C

FIGURE 3

Theabrownin reduces liver pro-inflammatory response. (A) The phosphorylation and protein levels of NFkB p65 and JNK. (B) Quantification of JNK
phosphorylation. (C) Quantification of NFkB p65 phosphorylation. AU, arbitrary units. n=5-11 mice per group. The data are mean ± s.e. (error bars).
**p < 0.01, MCS Ctrl vs. MCD Ctrl; †††, p<0.001 MCD Ctrl vs. MCD TB.
A

B C

FIGURE 4

Theabrownin reduces hepatic oxidative stress in MCD diet-fed mice. (A) Liver section for ROS generation (DHE level). (B) Quantification of positive area
for DHE. (C) Liver MDA level. n=5-11 mice per group. The data are mean ± s.e. (error bars). ***p < 0.001, MCS Ctrl vs. MCD Ctrl. †, p<0.05, †††, p<0.001
MCD Ctrl vs. MCD TB.
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It indicated that rather than the increase of de novo lipogenesis in

liver, fats from adipose tissue lipolysis overflow to liver may

contribute to the high TG levels in liver of MCD diet-fed mice (22).

Consistently, in our study, almost no white adipose tissue was found

in mice fed with MCD diet. It suggested that adipose tissue lipolysis
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may happen in MCD diet fed mice. Moreover, theabrownin had no

effect on liver lipid deposition and the expressions of lipogenic genes.

Inflammation plays a vital role in the occurrence and development

of NAFLD/NASH (6, 44). Liver inflammation can activate and recruit

inflammatory cells like macrophages to infiltrate liver, which in turn
C
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FIGURE 5

Theabrownin reduces hepatic fibrosis in MCD diet-fed mice. (A) Liver section for Masson and Picrosirius Red staining. (B, C) Quantification of positive
area for Masson and Picrosirius Red staining. (D) IHC for ERK, ERK phosphorylation, and a-SMA. (E) Quantification of IHC positive area for ERK.
(F) Quantification of IHC positive area for ERK phosphorylation. (G) Quantification of ERK phosphorylation from IHC (normalized by total ERK).
(H) Quantification of positive area for a-SMA. (I) Protein levels of ERK and ERK phosphorylation. (J) Quantification of ERK phosphorylation from western
blot. AU, arbitrary units. n=5-11 mice per group. The data are mean ± s.e. (error bars). ***p < 0.001, MCS Ctrl vs. MCD Ctrl. †, p<0.05, ††, p<0.01, †††,
p<0.001 MCD Ctrl vs. MCD TB.
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aggravates inflammatory responses (45). Therefore, reducing liver

inflammation plays a key role in preventing the progression of

NAFLD/NASH (44, 46). Other studies show that tea extract can

improve the inflammation of NAFLD induced by high-fat diet (47).

Moreover, Both Fuzhuan brick tea and theabrownin from Fuzhuan

brick tea showed beneficial effects on obesity (23, 48–50). Although

theabrownin has been reported to have beneficial effects on the

improvement of obesity-related inflammatory diseases, most animal

models used are limited to steatosis without obvious inflammation and

NASH progression. In the current study, theabrownin has been shown

to ameliorate liver injury and reduce inflammatory response, including

reducing macrophage and neutrophil infiltration, inhibiting activation

of NF k B and JNK signaling pathways, and decreasing expression of

inflammatory cytokines in MCD diet-fed mice. Oxidative stress is

closely related to immune cell response. NASH is characterized by

adaptive immune cell infiltration in the liver and the presence of

circulating antibodies against antigens derived from oxidative stress

(51). In NAFLD/NASH, lipid peroxidation which produces oxidized

phospholipids mainly contributes to oxidative stress in liver. MDA is

one of the final products of polyunsaturated fatty acid peroxidation. The
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increase of free radicals will lead to excessive production of MDA. MDA

levels are often referred to as markers of oxidative stress. High levels of

MDA were associated with hepatic steatosis and inflammation in

NAFLD/NASH (52). In our study, MCD diet significantly enhanced

the levels of ROS and MDA in mice, while theabrownin apparently

reversed the elevation of ROS and MDA. Hepatic chronic oxidative

stress and inflammation are important factors to advance the transition

fromNAFLD to NASH via activating hepatic stellate cells and promotes

fibrosis (53, 54). TGFb-1 is the most potent fibrogenic cytokine and a

key driver of HSC activation and liver fibrosis. In NASH, TGFb-1
stimulates the expression of a-SMA, which increase the levels of

extracellular matrix proteins such as Fn and collagens, accelerating

hepatic fibrosis (55). The ERK signaling pathway plays a key role in

regulating the main phenotypic response of fibroblasts, driving liver

fibrosis by targeting HSC (56). In liver macrophage, ERK stimulation the

secretion of TGFb-1 to activate HSC (57). We found MCD diet

increased phosphorylation of ERK and levels of a-SMA, Col1A1, and

Col3A1, promoting fibrosis in liver. Theabrownin remarkably reduced

phosphorylation level of ERK and the levels of TGFb, a-SMA, Col1A1,

and Col3A1, as well as fibrosis induced by MCD diet.
A

B

D

C

FIGURE 6

Theabrownin reduces hepatic levels of collagen and glycoprotein in MCD diet-fed mice. (A) Protein levels of COL1A1 and COL3A1. (B) Quantification of
COL1A1 level. (C) Quantification of COL3A1 level. (D) mRNA levels of COL1A1, Fn, and TGFb-1. AU, arbitrary units. n=5-11 mice per group. The data are
mean ± s.e. (error bars). *p < 0.05, ***p < 0.001, MCS Ctrl vs. MCD Ctrl. †, p<0.05, ††, p<0.01, †††, p<0.001 MCD Ctrl vs. MCD TB.
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FGF21 is an important regulator of energy homeostasis and a

potential therapeutic target for metabolic diseases. FGF21 plays

many beneficial metabolic roles such as increasing energy

expenditure, b-oxidation, adiponectin secretion, and improving

insulin resistance (58–61). FGF21 is an important potential target

for the treatment of NAFLD/NASH. Previous studies have shown

that FGF21 knockout or inhibitor of FGF21 can exacerbate the

development of NAFLD/NASH (10, 62, 63), while pharmacological

administration of FGF21 can effectively improve NAFLD/NASH

(14, 64, 65). However, under pathological conditions of NAFLD/

NASH, the expression of FGF21 would be increased in liver, which
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may be due to the "FGF21 resistance" phenomenon caused by the

body's desire to improve the disease state by increasing FGF21. Just

like in some patients with type 2 diabetes, the serum insulin level

increases. We found in MCD diet-fed mice, the level of FGF21 was

increased but not significantly compared to MCS diet-fed control

mice. Theabrownin increased the level of FGF21 in MCD diet-fed

mice. p38, which is a downstream molecule of FGF21, is activated in

the livers of mouse models of obesity. It has been demonstrated that

p38 might have a regulatory role in hepatic gluconeogenesis and

lipogenesis (66, 67). Here, we found MCD diet stimulated p38

phosphorylation, which indicated that p38 activation was
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FIGURE 7

Theabrownin increases the expression of FGF21 and reduces the phosphorylation of MAPK p38 in MCD diet-fed mice. (A) IHC for FGF21. (B) FGF 21 protein levels
from western blot. (C) Quantification of IHC positive area for FGF21. (D) Quantification of FGF 21 protein levels from western blot. (E) p38 protein level and p38
phosphorylation. (F) FGF21 mRNA level. (G) Quantification of p38 phosphorylation (normalized by total p38). AU, arbitrary units. n=5-11 mice per group. The data
are mean ± s.e. (error bars). ***p < 0.001, MCS Ctrl vs. MCD Ctrl. †, p<0.05, ††, p<0.01, †††, p<0.001 MCD Ctrl vs. MCD TB.
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increased in NASH mouse model. A study showed that

pharmacological administration of sulforaphane can increase the

expression of FGF21 and reduce the phosphorylation level of p38 in

liver, thus improving nonalcoholic fatty liver disease (34).

Pharmacological administration of FGF21 to vascular smooth

muscle cells can prevent calcification of vascular smooth muscle

cells by inhibiting p38 signaling pathway (68). Administering

analogues of FGF21 to adipocytes reduced loss of mature

adipocytes and decreased phosphorylation levels of p38 (69). In

addition, administration of analogues of FGF21 can alleviate liver

fibrosis and reduce the phosphorylation level of p38 in liver of

NASH mice (70). In our study, we observed theabrownin decreased

p38 activation in MCD diet-fed mice.
5 Conclusion

In this study, we found that theabrownin had no effect on MCD-

induced liver steatosis, but it showed a beneficial effect on liver injury,

inflammatory response, oxidative stress, and fibrosis. Further study

showed that theabrownin increased the level of FGF21 and reduced

the phosphorylation of p38 in liver of MCD diet fed mice.
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32. Simon J, Nuñez-Garcıá M, Fernández-Tussy P, Barbier-Torres L, Fernández-
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