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Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic

can lead to impaired bone growth and osteoporosis. The side effects of GC on the

skeletal system are particularly serious in growing children, potentially causing

growth retardation or even osteoporotic fractures. Children’s bone growth is

dependent on endochondral ossification of growth plate chondrocytes, and

excessive GC can hinder the development of growth plate and longitudinal

bone growth. Despite the availability of drugs for treating osteoporosis, they

have failed to effectively prevent or treat longitudinal bone growth and

development disorders caused by GCs. As of now, there is no specific drug to

mitigate these severe side effects. Traditional Chinese Medicine shows potential as

an alternative to the current treatments by eliminating the side effects of GC. In

summary, this article comprehensively reviews the research frontiers concerning

growth and development disorders resulting from supra-physiological levels of GC

and discusses the future research and treatment directions for optimizing steroid

therapy. This article may also provide theoretical and experimental insight into the

research and development of novel drugs to prevent GC-related side effects.

KEYWORDS

growth hormone, growth plate, bone growth suppression, glucocorticoid (GC),
chondrocyte 3
1 Introduction

Glucocorticoids (GCs) are a class of steroid hormones that are produced naturally by

the adrenal gland and regulate various physiological processes in the body, including

metabolism, immune response, and stress response. The endogenous physiological dose of

glucocorticoid (GC) plays a key role in maintaining normal bone metabolism and
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osteogenic differentiation (1). Synthetic glucocorticoids are widely

used in medicine as anti-inflammatory and immunosuppressive

agents (2). They can be divided into long-acting, medium-acting

and short-acting based on their duration of action and half-life.

Short-acting glucocorticoids, such as hydrocortisone and cortisone,

are primarily used for replacement therapy of adrenocortical

insufficiency (3), while medium-acting glucocorticoids, such as

prednisone and methylprednisolone, are mainly used for anti-

rheumat i c d i s ea se s , au to immune d i s ea se s , immune

transplantation therapy, etc. (4, 5). Long-acting glucocorticoids,

such as dexamethasone and betamethasone, have strong anti-

inflammatory potency, long duration of action, and are preferred

for anti-allergy(6). Exogenous synthetic GCs are also commonly

used in children with progressive muscle dystrophy (7, 8) and

respiratory diseases (6). The therapeutic effect of GC has been

reported very intensively, however, the side effects particularly in

skeletal system caused by long-term or high-dose medication

cannot be ignored. Since the skeletal system of adolescents has

not yet been developed, GC can induce bone growth suppression,

resulting in a significant decrease in height (9). Currently, drugs for

the treatment of GC-induced osteoporosis cannot effectively reduce

growth suppression(10). Therefore, there is still a lack of specific

drugs to tackle GC-induced growth suppression. Recent studies

have actively explored the mechanism of GC-induced bone growth

retardation, which is a complex process involving multiple

pathways (Figure 1). GCs affects bone growth mainly through two

ways. First, GCs can affect physiological process by regulating

hormone (11, 12), growth factors (13), calcium and phosphorus

metabolism (14) and angiogenesis (15). Second, GC can affect bone

growth in cellular behaviors by inhibiting the chondrocytes in long

bone growth plate. GCs can directly inhibit chondrocyte

proliferation and differentiation (16, 17), matrix proteoglycan

synthesis(18), and cell apoptosis (Figure 2) (19). This review
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summarizes the recent studies on the pathological mechanism of

glucocorticoid-induced bone growth retardation, providing

valuable insights for the development of targeted therapies to

address this issue.
2 Advances in pathological
mechanism of bone growth disorder
in children caused by GC

2.1 Effects of GC on endocrine hormones

2.1.1 Growth hormone (GH) and insulin growth
factor-1 (IGF-1)

GH is secreted by pituitary cells in the human brain and is

mainly regulated by growth hormone-releasing hormones secreted

by the hypothalamus. GH exerts its pleiotropic effects through

growth hormone receptor (GHR), which can be activated directly

by tyrosine kinase activation (20) or indirectly by the induction of

IGF-1 (21). Systemic corticosteroids have been shown to inhibit GH

secretion (22) and IGF-1 activity (23), and this inhibitory effect is

mediated by altering the regulation of somatostatin in the

hypothalamus (23). Recent study have demonstrated that
FIGURE 1

Effects of glucocorticoid (GC) on endocrine hormones and
cytokines. (1) GC decreases growth hormone (GH) and insulin
growth factor-1 (IGF-1) levels which in turn inhibits the chondrocyte
proliferation. (2) GC affects thyroid hormone secretion and further
inhibits the chondrocyte hypertrophy. (3) GC decreases Indian
hedgehog factor (IHH) secretion and then inhibits chondrocyte
proliferation and increases chondrocyte apoptosis. (4) GC constrains
C-type natriuretic peptide (CNP) production, which controlling the
entry of calcium ion into chondrocytes to stimulate growth. (5) GC
causes hypocalcemia through upregulation of fibroblast growth
factor 23 (FGF23) expression in bone and plasma, which in turn
inhibits chondrocyte proliferation. (6) GC inhibits estrogen (E2)
secretion, causing decreased osteoclast activity and increased
osteoblast apoptosis.
FIGURE 2

Overview of glucocorticoid-induced chondrocyte apoptosis and
matrix synthesis reduction. (1) Glucocorticoid (GC) induces direct
binding of glucocorticoid receptor (GR) to the uridine diphosphate
glucose dehydrogenase (UGDH) promoter in chondrocytes and
suppresses UGDH gene expression, a change that further resulted in
a reduced synthesis of proteoglycans (PGs) in developing
chondrocytes. (2) GC causes cell cycle inhibition by suppressing the
promyelocytic leukemia zinc finger (PLZF) gene. (3) Glucocorticoid-
induced activation of Bax and its translocation to the mitochondrial
membrane leads to subsequent induction of apoptosis. (4) GC
causes a decrease in the anti-apoptotic proteins Bcl-2 and Bcl-x in
growth plate chondrocytes. (5) GC inhibits KLF2 expression which
regulating the Runx2-mediated PI3K/AKT and Erk signaling pathways
responsible for the chondrocyte apoptosis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1119427
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hua et al. 10.3389/fendo.2023.1119427
dexamethasone (DEX) down-regulates the mRNA expression and

binding ability of GHR in growth plate chondrocytes in a dose- and

time-dependent manner, and reduces the homologous increase of

the IGF-1 receptor (IGFR) and GHR expression (24). In addition,

after DEX treatment of pregnant SD rats, several components of the

IGF-1 signaling pathway, including IGF-1 receptors, insulin

receptor substrates, and serine-threonine protein kinases, were

down-regulated in fetal rat growth plate chondrocytes (24). These

findings provide insights into the mechanism by which GC

interferes with the physiological stimulation of GH and IGF-I on

the proliferation of epiphyseal chondrocytes.

2.1.2 Thyroid hormone
Thyroid hormone (triiodothyronine, T3) is essential for bone

growth after birth by binding to nuclear receptors TRa1 and TRb1
in chondrocytes and osteoblasts (25). Impaired thyroid function can

result in abnormally thin growth plates, impaired chondrocyte

hypertrophy, short stature, delayed bone age, skeletal dysplasia,

and delayed tooth development in childhood (26, 27). Hypothyroid

rats exhibit disordered growth plates and reduced areas of

hypertrophy (28), while hyperthyroidism can lead to accelerated

ossification of long bones and cartilage (29). Clinical data indicate

that in the serum of patients with Cushing’s syndrome, both male

and female, thyroid hormone levels and free T3 are lower than those

in the normal control group (30). GC can inhibit the expression of

parathyroid hormone-related protein (PTHrP) in the growth plate,

resulting in growth retardation (19). Studies in adult mice have

shown that parathyroid hormone (PTH) can prevent GC-induced

osteoporosis, possibly by blocking osteoblast and osteocyte

apoptosis (31). Thyroxine (T4) combined with GC treatment can

increase the total growth plate length and restore GC-induced

growth inhibition (32).

2.1.3 Estrogen
Estrogen is primarily secreted by the ovaries or produced by the

conversion of male hormones by aromatase. The regulation of

estrogen on long bone is mainly manifested in two aspects, either

through a synergistic effect with other hormones such as GH (33),

or by directly binding to estrogen receptors (ERs) to control the

physiological process of long bone growth plate (34, 35). Studies

have shown that after GC intervention in rats, estrogen levels tend

to decrease (36). Estrogen can regulate osteoblast activity and

apoptosis (37, 38), effectively inhibit osteoclast-mediated bone

resorption (39), and maintain the balance between osteogenesis

and osteoclastogenesis. Insufficient estrogen secretion can disrupt

this balance, resulting in growth plate ossification disorder.

Therefore, the occurrence of growth and development disorders

caused by GC may be related to its synergistic effect with estrogen.
2.2 Effect of GC on fibroblast
growth factor 23 (FGF23)

Fibroblast growth factor 23 (FGF23) is a hormone synthesized

by bone cells that regulates the ‘bone-kidney’ axis and calcium

phosphate metabolism (40–42). FGF23 reduces serum phosphate
Frontiers in Endocrinology 03
levels by inhibiting proximal tubular phosphate reabsorption and

intestinal phosphate absorption (43), while also reducing plasma

calcitriol levels by down-regulating the expression of the renal 1-a
hydroxylase and up-regulates 24-hydroxylase (44). These

mechanisms explain the hypophosphatemia effect of FGF23. FGF

receptors are expressed in most tissues including chondrocytes, and

regulate their proliferation, differentiation, and mineralization (45–

47). GC can up-regulate the expression of FGF23 in bone and

plasma, activating FGFR3 receptors and contributing to GC-

induced growth disorders via the FGF23/Klotho/FGFR3 pathway

(48). However, some studies suggest that dexamethasone and

prednisolone can down-regulate FGF23 transcription and FGF23

protein synthesis in the osteoblast-like cells and strongly reduce

plasma FGF23 concentration in C57BL/6 mice (49).
2.3 Effects of GC on Indian
hedgehog factor (IHH)

IHH belongs to the hedgehog protein family and is a

morphogenetic protein that plays a crucial role in embryonic

formation and development. IHH is a regulator of chondrocyte

differentiation rate (50) and is necessary for the osteoblast lineage in

developing long bones, working in conjunction with other factors

(such as BMPs) to induce osteoblast differentiation (51). However,

studies have shown that GCs can inhibits the proliferation of

growth plate chondrocytes and promote their apoptosis by

blocking the Ihh/PTHrP signaling pathway in vitro. These

findings suggest that GC-mediated IHH disorders may lead to

growth plate dysplasia (52).
2.4 Effect of GC on C-type
natriuretic peptide (CNP)

CNP plays an important role in cartilage growth and

endochondral bone growth. CNP and its receptor guanylyl cyclase

B (GC-B) are effective stimulators of endochondral bone growth.

Cartilage-specific CNP or GC-B knockout mice have significantly

shorter bones (53). Loss-of-function mutations in natriuretic

peptide receptor (NPR)-B, which encodes for CNP receptor GC-

B, have been discovered in extreme dwarfing (54), highlighting the

importance of CNP in human cartilage growth. CNP promotes

bone growth by facilitating the entry of calcium ions into the growth

plate chondrocytes through the NPR2-PKG-BK channel and

TRPM7 channel-CaMKII axis (55). Studies have shown that high

doses of DEX in young male rats significantly reduced the

concentration of NT-proCNP, a marker of CNP production (13,

56), and reduced the thickness of the growth plate and bone length.
2.5 Effects of GC on vascularization

The epiphysis adjacent to the hypertrophic zone is the site of

vascular and osteocyte invasion and longitudinal bone growth.

Vascular endothelial growth factor (VEGF) is a crucial angiogenic
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factor expressed in many tissues and cell types (57), including

growth plate cartilage (57, 58). Studies have shown that

dexamethasone affects VEGF expression in epiphyseal

chondrocytes, and prednisolone treatment in piglets severely

disrupts vascular invasion of the growth plates (59). Additionally,

GC treatment induces senescence and increases the cell apoptosis of

vascular endothelial cells in the metaphysis of the long bones (60,

61). Furthermore, GC treatment severely interferes with VEGF

expression in hypertrophic chondrocytes, impairing normal

invasion of blood vessels from the metaphysis to the growth plate

and bone formation at the cartilage-bone junction. These effects can

alter the kinetics of endochondral ossification, leading to GC-

induced growth retardation (59, 62).

Recent studies have highlighted the crucial role of

vascularization in regulating longitudinal bone growth during

endochondral ossification. Romeo et al. reported that proteases

released from type H endothelial cells, rather than osteoclasts, are

critical for absorbing cartilage and promoting to longitudinal bone

growth (63). This suggests that vascular-associated osteoclasts can

stimulate endothelial cells to help digest cartilage templates, thereby

regulating vascular growth during endochondral ossification.

However, Wang et al. found that treatment with prednisolone

significantly reduced the number of CD31 and Emcn double-

positive H-type vessels in 8-week-old C57BL/6 mice (64).

Moreover, dexamethasone inhibited the formation of H-type

vessels in the bones of female offspring rats before and after birth

through the PDGFRb/FAK pathway. In vitro administration of high

concentrations of dexamethasone also inhibited the angiogenesis of

endothelial progenitor cells. These findings suggest that GCs can

inhibit the development of H-type blood vessels in the bone tissue,

leading to the inhibition of long bone development (15). Therefore,

GCs can have negative effects on vascularization and angiogenesis,

which are essential for normal bone growth and development.
2.6 Direct effect of GC on growth
plate chondrocytes

As one of the main components of cartilage matrix,

proteoglycans (PGs) play an important role in cartilage

formation, matrix stability and cell proliferation during early

embryonic development (65, 66). Uridine diphosphate glucose

dehydrogenase (UGDH) is a key enzyme in the synthesis of PGs

in various cell types and involved in maintaining the articular

cartilage homeostasis and the development of osteoarthritis.

Silencing UGDH gene with specific siRNA significantly reduced

the PGs content in human chondrocytes (67). Studies have shown

that rat maternal exposure to dexamethasone induces GR to directly

bind to the UGDH promoter in fetal rat growth plate chondrocytes,

recruiting HDAC1 and Sp3, inducing H3K9 deacetylation, and

inhibiting UGDH gene expression. These results in reduced PGs

synthesis in developing chondrocytes, leading to disrupted fetal

long bone development (18). Therefore, GCs have negative effects

on PG synthesis, which is essential for normal cartilage and

bone development.
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Chondrocytes are initially derived from limb mesenchyme

during embryonic development and are located in three different

areas of the growth plate: quiescent zone, proliferative zone and

hypertrophic zone (68). The quiescent zone contains self-renewing,

slowly proliferating chondrocytes that produce highly proliferating

chondrocytes that form columns along the bone axis and form a

proliferative zone (69). Growth plate senescence is caused by the

qualitative and quantitative consumption of stem cell-like cells in

the quiescent zone, excessive GC can preserve the proliferative

capacity of the growth plate by slowing down the proliferation rate

of chondrocytes in the quiescent zone and the consumption of these

cells (70). GC treatment of precartilaginous cell line ATDC5

inhibited cell cycle and caused the chondrocyte growth arrest

(71). Knockdown of Plzf gene by shRNA alleviated GC-induced

cell cycle arrest. This explains the phenomenon of long bone catch-

up growth after GC treatment cessation (72, 73). The growth of the

long bone is the result of continuous downward proliferation and

differentiation of growth plate chondrocytes. Different in vitro and

in vivo studies have revealed the strong inhibitory effect of DEX on

chondrocyte proliferation (16, 74). Dexamethasone inhibits KLF2

expression in rat tibial growth plate chondrocytes and promotes

dexamethasone-induced proliferation inhibition and its apoptosis

by targeting the Runx2-mediated PI3K/AKT and Erk signaling

pathways (75). DEX acts in a gene-specific manner in cartilage. It

promotes the expression of extracellular matrix (ECM) and

metabolic transcripts necessary to maintain the phenotype of

chondrocytes, and down-regulates cytokines and growth factors

that stimulate cartilage to bone transformation (76). Therefore, GC-

treated ATDC5 cells showed reduced nodule formation, no alkaline

phosphatase (ALP) and alcian blue-positive ECM and matrix

mineralization (77). The above results suggest that GC has the

effect of inhibiting proliferation, differentiation, and matrix

mineralization of growth plate chondrocytes.

Chondrocyte apoptosis is closely related to systemic GC

treatment. The application of dexamethasone in rats can lead to

apoptosis by activating caspase-3 in the three regions of the growth

plate (75). In vitro DEX treatment of HCS-2/8 chondrocytes resulted

in a significant increase in apoptosis, which was due to increased

caspase-3 cleavage and activation of caspase-8 and -9 by cleavage of

the pro-apoptotic factor Bid (78). In addition, DEX induced Bax

activation and translocation to the mitochondrial membrane, which

subsequently induced apoptosis (79, 80), protecting Bax-deficient

mice from dexamethasone-induced apoptosis and growth retardation

of growth plate chondrocytes (79). At the same time, the anti-

apoptotic proteins Bcl-2 and Bcl-x in each layer of growth plate

chondrocytes were significantly reduced after GC treatment (19).

Therefore, anti-apoptotic proteins and pro-apoptotic proteins of the

Bcl-2 family may be the key factors of DEX-induced growth plate

chondrocytes apoptosis (81).
2.7 Effect of GC on hyperactivation
of osteoclasts

GCs have been shown to have significant effects on osteoclasts

during bone growth. GCs stimulate osteoclast differentiation and
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activity, leading to increased bone resorption and decreased bone

formation. This can result in reduced bone mineral density and

increased risk of fractures, particularly in children and adolescents

who are still growing (82, 83). GCs alter the expression of genes

involved in osteoclast differentiation and activity, including

RANKL, OPG, and NFATc1 (84). GCs activate osteoclasts via

secondary hyperparathyroidism and enhance the maturation and

activation of osteoclasts. GCs can both increase osteoclast lifespan

by inhibiting osteoclast apoptosis and induce increased osteoclastic

bone resorption (85). Recent studies highlight a crucial role of

reactive oxygen species (ROS) in osteoclast formation and function

by modulating receptor activator of NF-kB ligand (RANKL)-

induced signaling, which eventually leading to osteoclast

hyperactivity in GC-induced osteonecrosis of the femoral head

(ONFH) (86), suggesting antioxidant therapy as a potential

alternative to prevent GC-induced ONFH by suppressing ROS

level and thereby inhibiting osteoclasts. Additionally, GC may

exert diverse effects on osteoclasts when used for the treatment of

inflammatory diseases. For example, temporal use of GCs may

relieve rheumatoid arthritis (RA) progress, while long-term use of

GCs may lead to excessive bone resorption via activating

osteoclasts, suggesting a central role of immune system in

regulating bone metabolism in RA (87, 88).
3 Therapeutic strategies for skeletal
growth inhibition caused by GC

3.1 General treatment precautions

Since GC use is the most common iatrogenic cause of bone

growth inhibition in children, but this side effect can be largely

prevented. The first step is to minimize the use of oral GC in terms

of dose and duration. If GC treatment is considered necessary,

prevention of bone growth inhibition should also be considered. For

patients who need to use GC, when the condition is stable, priority

should be given to the treatment of local, short-term, low-dose and

alternate-day administration, and short-acting GC with less

inhibitory effect on bone growth should be selected as far as

possible (89). A clinical study found that (90), compared with

short-term administration once a day in the morning, taking 5 mg

prednisolone once in the evening can inhibit 24-hour growth

hormone secretion. Therefore, compared with taking exogenous

GC at night, taking in the morning has less effect on growth rate.

Follow-up of children with severe conditions requiring high-dose

GC, especially in the first 1-2 months of initial treatment, the

changes of plasma GH, IGF-1, C-type natriuretic peptide, amino-

terminal Pro-CNP, blood glucose, insulin, blood calcium and other

biochemical indicators can be monitored. Through the analysis and

evaluation of endocrinologists, the growth status of children can be

determined and vitamin D and calcium should be supplemented

routinely (91).

At present, no drug has been approved by the FDA for clinical

treatment of bone growth retardation caused by GC. However,

there are medications that can be used to help mitigate the effects of

glucocorticoids on bone growth. These medications may be
Frontiers in Endocrinology 05
prescribed off-label by a healthcare provider to help address the

issue of bone growth retardation (Table 1).
3.2 Listed clinical drugs

3.2.1 Recombinant growth hormone (rhGH)
In addit ion to inhibit ing bone growth, long-term

administration of pharmacological doses of GC can also cause

muscle atrophy (92). Short-term administration of rhGH to

normal volunteers has shown an inhibitory effect of prednisone

on acute catabolism of protein (93, 94). Administration of rhGH

significantly antagonizes the side effects of long-term GC

administration, such as protein consumption, osteoporosis, and

hyperlipidemia (95). rhGH can also improve growth of children

receive GC treatment after liver transplantation (96). A 5-year

prospective open study found that (97) children receiving GC

treatment, after 36 months, rhGH group height standard

deviation score change preliminary analysis significantly increased

by (0.80 ± 1.03), but two patients experienced treatment-related

adverse reactions: one case with poor compliance, the other case

with mild hyperglycemia. Studies have shown that rhGH therapy is

effective in increasing height in children with long-term GC

treatment and is tolerable. However, many potential risks are still

existing in rhGH treatment, including undetermined risks such as

increased intracranial pressure, malignant tumors, femoral head

spondylolisthesis, insulin resistance, and type 2 diabetes, which

limit its large-scale use. More preclinical studies are still needed to

verify the safety and efficacy of rhGH in GC-induced growth

disorders (98).

3.2.2 Recombinant human insulin-like
growth factor-1

Insulin-like growth factor-I (IGF-I) is naturally produced by

many tissues, including liver and skeletal muscle. It is the main

mediator of growth hormone (GH) for normal bone growth and is

also important for muscle cell regeneration and survival (99, 100).

In preclinical studies, rhIGF-1 is beneficial in animal models of

muscle injury, wasting and aging (101, 102). Clinically, rhIGF-1 is

approved for the treatment of growth disorders in children with

severe primary IGF-I deficiency (103, 104). Studies have shown that

DEX impairs longitudinal growth by inhibiting chondrocyte

proliferation, while IGF-I can stimulate chondrocyte hypertrophy

and reverse the inhibitory effect of DEX on growth (105). Claire L

Wood et al. used growth hormone and insulin-like growth factor-1

to rescue the growth retardation of x-linked muscular dystrophy

(mdx) mice treated with GC (106).
3.3 Unlisted drugs

3.3.1 C-type natriuretic peptide (CNP)
As mentioned above, CNP transcripts and their receptor NPR-B

are expressed in chondrocytes of growth plates (56). Daily

subcutaneous injection of CNP-53 can activate bone growth and

reverse the growth inhibition caused by GC treatment in mice (107).
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At present, CNP-like drugs have entered phase II clinical trials in

humans (108–110). Preliminary data show that recombinant CNP is

safe for children and can improve the growth rate of children with

chondrodysplasia. Up till now, there are no adverse reactions and

allergic reactions related to bone growth. This data shed light on

the clinical application of CNP in the treatment of GC-induced

growth disorders.

3.3.2 Endogenous anti-apoptotic protein
humanin (HN)

HN is a polypeptide composed of 24 amino acids and was

originally found to be a neuroprotective factor (111). HN has also

been reported to exert anti-inflammatory (112) and anti-apoptotic

effects by blocking the activation of pro-apoptotic proteins Bax

(113) and Bak (114). HN treatment has shown promising results in

preclinical models of diabetes (115), stroke(116), atherosclerosis

(117) and Alzheimer’s disease(118). HN analogues (HNG) prevent

bone growth retardation, chondrocyte apoptosis and proliferation

inhibition by up-regulating the Hedgehog pathway without

interfering with the anti-inflammatory effects of DEX(119).
3.4 Chinese medicine on GC growth
inhibition treatment prospects

According to traditional Chinese medicine theory, the kidney as

the body’ s innate foundation, is also the root of the five organs of

yin and yang, namely ‘yin and yang secret, spirit is the rule’. Yin and

yang balance is fundamental to maintain normal physiological

activities. GC is a kind of hormone secreted by adrenal cortex,
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which can be regarded as the nature of ‘pure yang’. GC under

physiological dose has the meaning of ‘less fire generates qi’. In the

case of long-term use of exogenous hormones beyond physiological

dose, this kind of ‘pure yang’ medicine is easy to ‘overcome yang

and consume yin’, which affects the introversion of yin essence and

cannot play its nourishing role, resulting in kidney yin deficiency.

When the human body are weak for a long time, it is easy to

produce blood stasis, which hinders the generation and distribution

of fresh blood, and reacts on deficiency, deficiency, and blood stasis,

which accumulating in the body, disturbing the body’s qi, blood, yin

and yang, and finally causes metabolic disorders. These in turn

affect the nutrition and metabolism of the body organs(120, 121).

Improving the body’s nutritional metabolism and blood stasis may

have a certain preventive effect on the side effects of GC. Clinical use

of traditional Chinese medicine can slow down the heat and yin

caused by a large number of GC symptoms and signs, kidney

strengthening medicine can promote growth and development

and make children grow taller (122). Studies have shown that

nourishing yin and purging fire Chinese medicine regulates bone

development and maturation by regulating the expression of

growth plate ER-a and IGF-1R (123). Shen Huansi et al. utilized

Shengdi and tortoise shell, the traditional Chinese medicine for

nourishing yin and clearing heat, to antagonize the growth

retardation induced by dexamethasone in rabbits, possibly by

regulating IGF-1 in the growth plate to reduce the inhibitory

effect of DEX on the growth plate (124). Traditional Chinese

medicine believes that oysters are beneficial to yin and yang,

astringency and astringency to preserve kidney essence (125).

According to the study, fermented oysters rich in g-aminobutyric

acid (GABA) promoted growth hormone (GH) circulation and
TABLE 1 Emerging drugs under investigation in clinical trials for bone growth inhibition.

Type of drug Drug name
Route of

administration Pharmacological action

GH analogue Recombinant growth hormone
Subcutaneous
injection

Supplement growth hormone
Inhibit protein metabolism

IGF-I analogue
Recombinant human insulin-like growth
factor-1

Subcutaneous
injection

Insulin-like growth factor-I supplementation
Stimulate chondrocyte hypertrophy

CNP transcription
products C-type natriuretic peptide

Subcutaneous
injection Stimulate CNP receptors on growth plate chondrocytes

Anti-apoptotic protein
Endogenous anti-apoptotic protein
humanin

Subcutaneous
injection Block the activation of apoptotic proteins

Traditional Chinese
medicine

Nourishing yin and cleaning heat
Chinese medicine Oral Regulate the expression of growth plate ER-a and IGF-1R

Traditional Chinese
medicine Oysters Oral

Promote growth hormone (GH) circulation and insulin-like growth factor-1
(IGF-1) expression

Traditional Chinese
medicine Salvia miltiorrhiza Oral

Protective effect on vascular endothelial cells
Improve blood circulation in the uterus and placenta obvious estrogen-like
effect

Traditional Chinese
medicine Resveratrol Oral

Suppress vascularization
Delay chondrocyte senescence

Traditional Chinese
medicine Phlomis umbrosa Oral

Protective effect on vascular endothelial cells
Improve blood circulation in the uterus and placenta obvious estrogen-like
effect
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insulin-like growth factor-1 (IGF-1) expression in young rats (126,

127), and increased the height and body length of the growth plate.

Salvia miltiorrhiza is a commonly used traditional Chinese

medicine for promoting blood circulation and removing blood

stasis (128). Studies have found that Salvia miltiorrhiza has a

protective effect on vascular endothelial cells in rats with blood

stasis syndrome (129, 130). Clinical studies have found that

Danshen can also treat pregnancy with fetal growth restriction

(FGR), possibly by improving blood circulation in the uterus and

placenta (131). At the same time, Danshen also has obvious

estrogen-like effect, making it a potential alternative to estrogen

in treating skeletal system disorders caused by estrogen reduction

(132). Resveratrol is a natural antioxidant, which plays an

important role in orthopedic diseases such as osteoarthritis (133),

osteoporosis (134) and nerve injury repair (135). Resveratrol has

been found to have the potential to improve longitudinal bone

growth, which is associated with delayed growth plate fusion,

resulting in increased final length (136). At the same time,

resveratrol also has the effect of inhibiting the apoptosis of

growth plate chondrocytes and delaying epiphyseal closure (137).

Phlomis umbrosa has the functions of detumescence, muscle

growth, tendon continuation and bone grafting. It was found that

the mixture of Phlomis umbrosa, Astragalus membranaceus and

Acanthopanax senticosus could increase the longitudinal bone

growth rate of growing rats, improve the quality of bone

trabeculae, and enhance the microstructure of bone trabeculae

and cortical bone during growth (138). Donghun Lee et al.used

the extract of Phlomis gracile to treat female adolescent rats and

found that it increased the longitudinal bone growth rate and

promoted the proliferation and differentiation of chondrocytes by

up-regulating the expression of local IGF-1 and BMP-2 in the

growth plate (139).

In summary, Chinese medicine has a comprehensive, multi-

targeted and broad-spectrum effect in promoting bone growth. It

can promote bone growth by affecting the GH-IGF axis, inhibiting

the apoptosis of growth plate chondrocytes and delaying the closure

of the growth plate. Although Chinese medicine has significant

effects on promoting bone growth and development, the current

studies are mostly animal experiments and lack of standardized

clinical trials. In addition, compound formulas have variable effects

and complex mechanisms, and the current research on single drug

is mainly based on its extracts. Future studies should focus on the

elaboration of multi-target Chinese medicine treatment from

molecular biology and cell biology, combined with multicenter,

large sample, double-blind, randomized controlled clinical studies.
4 Conclusion

This systematic review provides a comprehensive summary of

recent research progress in the mechanism of GC-induced growth

suppression in children. Long-term application of GCs have

negative effects on the systemic endocrine system and local long
Frontiers in Endocrinology 07
bone growth plate, leading to growth suppression. Currently, there

are no effective drugs to combat the negative effects of GC, and only

rational application of GC and nutritional supplements are available

for prevention. The complexity of its mechanism of affecting growth

disorders requires further explorations and efforts to dissect its

exact molecular mechanism. In conclusion, the most effective

prevention and treatment method of GC-induced growth

disorders remains rational GC use. Off-label use of medications,

such as rhGH, may be prescribed to help address the bone growth

retardation, but additional clinical trials are needed to verify their

safety and efficacy.
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