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Diabetes mellitus (DM) is on the rise, necessitating the development of novel

therapeutic and preventive strategies to mitigate the disease’s debilitating effects.

Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and

mortality in diabetic patients globally. DCMP manifests as cardiomyocyte

hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing

to heart failure. Evidence suggests that non-coding RNAs, such as long non-

coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic

cardiomyopathy-related processes such as insulin resistance, cardiomyocyte

apoptosis and inflammation, emphasizing their heart-protective effects. This

paper reviewed the literature data from animal and human studies on the non-

trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and

demonstrated their future potential in DCMP treatment in diabetic patients.
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1 Introduction

1.1 Diabetes mellitus and diabetes-related cardiomyopathy

Diabetes mellitus (DM) is a group of metabolic disorders characterized by chronic

hyperglycemia and perturbed metabolism of carbohydrates, lipids, and proteins, resulting

from defects in insulin secretion and action. An estimated 9.3% of the world population

(463 million aged 20-79 years) is affected by DM, and this number is projected to

reach 10.9% (700 million people) by 2045 (1). Macrovascular complications, such as

coronary artery disease (CAD) and ischemic cardiomyopathy, are the leading causes of

cardiac death in DM patients. In addition, DM raises the risk of heart failure (HF) and
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cardiac dysfunction unaided by other risk factors, such as CAD and

hypertension (2). Also, microvascular disease and cardiac capillary

rarefaction contribute to severe cardiovascular morbidity and

mortality in DM patients (3, 4). Diabetes-related cardiomyopathy

(DCMP) represents DM-induced morphofunctional cardiac

abnormality after the presence of valvular, atherosclerotic,

congenital, or hypertensive heart disease is excluded (5–7).

Clinically, DCMP can be presented as two distinctive phenotypes,

restrictive (heart failure with preserved ejection fraction, HFpEF)

and dilated (heart failure with reduced ejection fraction, HFrEF) (8,

9). Transitioning from HFpEF to HFrEF is not mandatory (3, 9). In

HFpEF and HFrEF, the presence of DM increases the risk of

hospitalization for HF or even death (10, 11). However, the

difficulty in identifying HF is due to the asymptomatic

presentation in the early stages of DCMP (12). Furthermore,

DCMP worsens DM patients’ prognoses and raises their chance

for overt HF (13, 14).

The present challenges in the definitive diagnosis of DCMP are

the absence of specific circulating or histological biomarkers of the

disease (3, 15, 16) and insufficient guidance for managing patients

suffering from both DM and HF (15, 17). Currently, DCMP

diagnosis is most widely determined using echocardiography; to

detect changes in the myocardium structure and function (9, 18–

20). However, due to its economic costs, it is not well-suited for

routine screening of DCMP. Thus, there is an urgent need to

identify and develop novel blood-based biomarkers to identify

patients with an increased risk of developing DCMP (18).
1.2 Role of non-coding RNAs in DCMP

Dysregulation of long non-coding RNA (lncRNA) and

microRNA (miRNA) regulatory networks is emerging as an

important mechanism in the pathophysiology of DCMP (3, 21–

23). miRNAs are small, non-coding RNAs (ncRNA) that regulate

the expression of numerous genes involved in physiological

processes such as metabolism, apoptosis, differentiation, and cell

proliferation. Increasing evidence points to miRNAs’ role in the

regulation of pathophysiological alterations associated with

DCMP, such as cardiac hypertrophy (24), myocardial fibrosis

(25), oxidative stress (OS) and apoptosis (26), mitochondrial

dysfunction (27), epigenetic modification (28), cardiac electrical

remodeling (29). lncRNAs are long, non-translated transcripts with

more than 200 nucleotides involved in regulating the activity and

abundance of miRNAs through base-pairing interactions (22, 30).

lncRNAs mediate numerous physiological processes, such as

transcription regulation, RNA splicing, nuclear architecture and

compartmentalization, and nuclear-cytoplasmic trafficking (31–34).

Recent reports implicate the role of lncRNA in DM pathogenesis

and associated cardiovascular complications, such as DCMP

(35, 36).

In this review, we provide a systematic overview of DCMP

pathogenesis and progression, focusing on the specific roles of

miRNAs and lncRNAs in the pathophysiology of DCMP. Also,

we discuss novel approaches based on the use of miRNAs and

lncRNAs as targets for potential therapeutic interventions.
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2 Diabetic cardiomyopathy:
Pathogenesis, disease progression,
and clinical presentation

2.1 DCMP pathogenesis

The pathogenesis of DCMP is based on joined metabolic

conditions (hyperglycemia, hyperinsulinemia, and dyslipidemia)

that promote OS, inflammation, the formation and deposition of

advanced glycation end products (AGEs), damage and dysfunction

of mitochondria, unbalanced Ca2+ homeostasis, endoplasmic

reticulum stress (ERS), autonomic neuropathy, the renin-

angiotensin system (RAS) activation, microvascular myocardial

rarefaction, changes in gene regulation (microRNAs), and

cardiomyocyte apoptosis (2, 5, 16, 37–39).

Both types of DM are characterized by decreased insulin

signaling and changes in other signaling cascades, such as

reduced AMPK and increased PKC and MAPK signaling, with

resultant deleterious and maladaptive effects (3). DCMP’s clinical

presentation may be preceded by myocardial structure changes and

disturbed Ca2+ signaling and metabolism (2, 4, 7, 22). The

myocardial structure changes, i.e., myocardial fibrosis, are

favoured by increased collagen deposition and variations in

extracellular matrix (ECM) protein structure (40). The imbalance

between profibrotic factors, such as connective tissue growth factor

and transforming growth factor b1, and the inactivity of the ECM-

degrading enzyme metalloproteinase can lead to ECM

accumulation (41, 42). Among numerous mechanisms that favour

DM-induced cardiac fibrosis, the intriguing one is the endothelial-

to-mesenchymal transition (EndMT). EndMT is known to be

promoted by hyperglycemic conditions, and it evolves gradually,

acquiring a fibroblastic phenotype while simultaneously losing the

original phenotype of the endothelial cells (ECs). This phenotypic

change is accompanied by a progressive decline in EC activity and

the cells’ mesenchymal characteristics, such as increased ECM

protein production, becoming more pronounced. In injured

tissue, the EndMT-derived cells act as immature fibroblasts and

promote the fibrosis process (43).

Cardiomyocytes with abnormal metabolism are susceptible to

increased free fatty acid (FFA) uptake and oxidation. Increased

lipids may promote cardiomyocyte death induced by lipotoxicity

due to limited FFA oxidation (3, 44). In addition, reactive oxygen

species (ROS) and reactive nitrogen species (RNS) are produced

more frequently as a result of increased intracellular fatty acid

content and mitochondrial malfunction, which in turn increases OS

and ERS and inhibits autophagy (20, 45, 46). The interaction of

these effects causes ECM remodeling and fibrosis, along with

cardiomyocyte loss, cardiac enlargement, and inflammation (47).

Heart stiffness, poor cardiac relaxation, and diastolic dysfunction

are early signs of DCMP caused by pathophysiological anomalies

(46). In addition, accumulated lipids in ECs may decrease nitric

oxide (NO) bioavailability, promoting endothelial dysfunction and

accelerating atherosclerosis (9).

Diastolic or systolic dysfunction is encouraged by left

ventricular (LV) hypertrophy and perivascular and interstitial
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cardiac fibrosis (3, 48). On echocardiograms, LV hypertrophy

presents increased thickness in the posterior and septal walls (49).

Myocyte hypertrophy, thickening of the myocardial capillary

basement membrane, and increased interstitial and perivascular

fibrosis are confounding factors contributing to the development of

LV hypertrophy (50, 51).
2.2 Natural course and diagnostic
management of DCMP

DCMP occurs in approximately 12% of patients with DM (52).

The prevalence of HF varies between 19 and 26% in both types of

DM (3, 4). The link between type 2 DM (DMT2) and HF is

bidirectional: HF is highly prevalent in DMT2 patients, and HF

increases the risk of DMT2 (3, 53, 54). Sometimes, HF is the first

cardiovascular presentation in patients with DMT2 (9, 55). In DM

patients, the risk of a negative HF outcome is greater (56). The risks

of HF in diabetic patients are in close relation to the quality of

retrograde glycemic control, as the patients with type 1 (DMT1) and

DMT2 have a 30% and 8% increase in HF risk for each 1% increase

in glycated haemoglobin (HbA1c) level, respectively (3, 57).

DCMP’s natural course is determined by phenotype. In DCMP

with HFpEF phenotype, the LV is hypertrophied, stiff, and of

normal size. In DCMP with HFrEF phenotype, the LV is dilated

with reduced ejection fraction (9, 58). In humans, diastolic

dysfunction almost always precedes the development of systolic

dysfunction (59, 60). Metabolic abnormalities in DMT2 predispose

to the development of HFpEF DCMP, while the autoimmune

abnormalities in DMT1 favour HFrEF DCMP (9).

At present, echocardiography represents an indicative

diagnostic tool for assessing a patient with suspected DCMP (16,

61). The first echocardiographic signs of DCMP are LV diastolic

dysfunction and mechanical changes leading to HFpEF and,

ultimately, HFrEF (19). In the early stage or the restrictive HFpEF

form, the echo findings show normal LV diameters and volumes

with concentric hypertrophy, preserved systolic function (EF

≥50%), and indications of diastolic dysfunction (9). Systolic

dysfunction is a later manifestation, sometimes misdiagnosed

using standard two-dimensional echocardiography (2). Rarely, T1

cardiac MRI mapping is an initial diagnostic procedure in detecting

DCMP, as myocardial ECM in DM patients and non-DM controls

exhibit significant differences (62). In addition, the increased levels

of natriuretic peptide, inflammatory markers, and cardiac fibrosis

markers are linked to diastolic dysfunction in DCMP (16, 63, 64). In

the advanced stages of DCMP, or the dilated/HFrEF form, systolic

dysfunction (ejection fraction <50%) occurs and an increase in LV

volume (9).

Continuous inflammatory stimulation appears to be one of the

most critical factors of DM pathogenesis (65). In the acute phase of

inflammation, cytokines and acute-phase proteins (APPs) mitigate

the effects of transient inflammatory processes (66, 67). However,

prolonged inflammation results in a chronic condition where

immune response leads to tissue damage contributing to the

pathogenesis of many diseases, including atherosclerosis,

cardiomyopathy, and DM (68). Nevertheless, diagnostics of
Frontiers in Endocrinology 03
DCMP based on measurements of circulating markers of

inflammation, such as complement compounds, C-reactive

protein (CRP) and alpha-macroglobulin (a2M), and amyloid A

and P, is not sufficiently reliable, thus requiring identification of

more specific biomarkers that enable early detection of DCMP

(18, 68).

2.2.1 miRNAs and lncRNAs as potential
biomarkers for DCMP

Circulating miRNAs and lncRNAs have been recently proposed

as novel type of biomarkers for the diagnosis of cardiovascular

disease (CVD), primarily due to their involvement in epigenetic

mechanisms that underpin the progression of cardiomyopathies

(69–71). Crucial attributes that support their use as potential

biomarkers are their abundance and long-term stability in various

body fluids (72, 73). In recent years, mounting evidence based on

observation of expression patterns of various miRNAs and

lncRNAs using high-throughput sequencing methodologies points

at their use as reliable and reproducible prognostic and diagnostic

biomarkers for various diseases, including DCMP. For instance,

numerous clinical and experimental studies proposed various

circulating miRNAs as biomarkers for diabetes prognosis (74–76)

and the diagnosis of myocardial infarction, cardiac hypertrophy,

and myocardial fibrosis (77–80). Similarly, several lncRNAs have

been reported to play a crucial role in cardiovascular complications

of diabetes and were implicated as potential biomarkers for DCMP

(23, 81–83). In the following sections of this review, we provide a

more detailed overview of specific miRNAs and lncRNAs emerging

as novel, reliable DCMP biomarkers, thus representing valuable

addition to existing prognostic and diagnostic tools for DCMP.
2.4 Treatment of DCMP

Stringent control of DM and the treatment of HFpEF or HFrEF

is the cornerstone of DCMP management. DCMP is not a rare

cardiovascular complication of DM (16). Using tissue Doppler

strain analysis and measurements of peak systolic velocity, almost

every fifth patient with DM was diagnosed with systolic dysfunction

after excluding CAD or hypertension (49). Novel oral agents

currently used in DM management (i.e., sodium-glucose

cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide 1

receptor agonists (GLP1-RAs)) enable a reduction in

hospitalization rates for HF in DM patients independently of the

presence of HF at baseline (84, 85). SGLT2 inhibitors exert

antioxidative, antiapoptotic, and anti-inflammatory effects and

decelerate atherosclerosis (86).
3 miRNAs in diabetic cardiomyopathy

3.1 General characteristics of miRNA

miRNAs represent small (17-25 nucleotides), single-stranded

non-coding RNA molecules that regulate gene expression (87).

Theoretically, a single miRNA could bind to over 1000 target
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mRNAs, and various miRNAs could regulate the expression of the

same target transcript (88, 89). Since each miRNA may target

several mRNAs, it has been estimated that miRNAs may regulate

the expression of up to 60% of protein-coding genes in humans

(90). Until 2019, the miRBase database (miRBase Release 22.1,

https://www.mirbase.org/) reported entries of 38 589 miRNAs in

271 species, including 2654 mature human miRNAs (91).

Increasing evidence supports the significant roles of miRNAs in

regulating the mechanisms responsible for the pathophysiology of

numerous diseases, including cardiovascular diseases, obesity,

different types of cancer, and diabetes (73, 92–98).

miRNAs biogenesis is a multistep process that starts with

primary miRNA (pri-miRNA) transcription by RNA polymerases

II and III in the nucleus, which is subsequently processed by the

nuclear endoribonuclease DROSHA or by components of the

splicing machinery (99) to approximately 70 nucleotides long

precursor (pre-miRNA) molecules that are exported to the

cytoplasm by exportin 5 and Ran-GTPase. Additional processing

by type III endoribonuclease DICER associated with RNA-binding

proteins yields mature double-stranded miRNAs. The guide strand

of mature miRNAs associates with Argonaute (AGO) proteins or

chaperones HSC70/HSP90 to form the minimal miRNA-induced

silencing complex (miRISC) that binds to the target mRNA’s

complementary sequences called miRNA response elements

(MREs). MiRNAs mainly interact with the target mRNAs’ 3′
untranslated regions (UTR) to induce translational repression and

mRNA deadenylation (100–102), but interactions of miRNAs with

5′ UTR, gene promoters, and coding sequences have also been

observed (103). It is generally assumed that the interaction of

miRNAs with coding regions and 5′ UTR silence gene expression

(104, 105), while binding of miRNAs to promoter regions can

trigger transcription (106).
3.2 Role of miRNAs in cardiomyocyte
hypertrophy and myocardial apoptosis

3.2.1 miRNAs expression and glycemic
status in DCMP

The involvement of miRNAs in DM-associated pathophysiological

processes in the myocardium is supported by findings that more

than 300 different miRNAs have altered expression in DCMP (23).

Expression of numerous miRNAs influences cardiomyocyte

survival by modulating response to OS and inflammation

(107, 108). In addition, levels of different miRNAs correlate with

glycemic status, i.e., ‘miRNAs’ synthesis is influenced by high

glucose levels (109, 110). This effect is likely mediated by

endonucleases DROSHA and DICER, which is supported by a

recent study by Lam et al. demonstrating that high glucose reduces

DROSHA protein levels (111). Also, Chavali et al. measured the

levels of pro-inflammatory tumour necrosis factor-alpha (TNFa),
anti-inflammatory interleukin-10 (IL-10), DICER, and miRNAs in

hearts of Akita, a genetic mice model for diabetes, and C57BL/6J

(WT). The study reported increased mRNA and DICER levels in

Akita’s hearts compared to the wild-type ones (112). Subsequent

miRNA array analysis showed significant downregulation of several
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miRNAs, including miR-872, miR-744, miR-542-3p, miR-500,

miR-499, miR-494, miR-455, miR-451, miR-450, miR-433, miR-

384-3p, miR-345-3p, miR-338, miR-148, miR-142-3p, miR-130,

and let-7a. Only one miRNA, miR-295, was found to be

upregulated (112), which is in agreement with data from

Baseler et al. showing increased levels of miR-295 in DMT1

myocardium (113).

The development of DCMP depends on several mechanisms

mediated by mitogen-activated protein kinase (MAPK)-mediated

signaling pathways, including inflammation, OS, and extracellular

fibrosis. Of particular importance is p38 MAPK which is activated

during cardiomyocyte hypertrophy, apoptosis, inflammation, OS,

and conditions of metabolic abnormalities (114–117). Increasing

evidence demonstrates that p38 MAPK expression is perturbed in

the heart in diabetic conditions and that inhibiting p38 MAPK

activation with its inhibitor atorvastatin or in a transgenic animal

model prevents DCMP development (118, 119). Furthermore,

dysregulated miRNAs in the hearts of diabetic mice appear to be

primarily associated with the MAPK signaling pathway. For

instance, in vitro inhibition of p38 MAPK decreases miR-373

expression, and miR-373 was shown to be significantly

downregulated in the cardiac tissue of diabetic mice. Additionally,

experiments with rat cardiomyocytes exposed to high glucose in

vitro and transfected by miR-373 show miR-373 overexpression

accompanied by hypertrophy and decreased transcription factor

MEF2C, suggesting that the MEF2C gene is the target of miR-373.

Thus, p38 MAPK/miR-373/MEF2C was proposed as a regulatory

pathway in glucose-dependent cardiomyocyte hypertrophy

(Table 1) (120).

LV miRNA profiling, from streptozotocin-induced diabetic

mice, with or without intensive glycaemic control by slow-release

insulin implants, demonstrated differential expression of 316

miRNAs. Among the dysregulated miRNAs, downregulation of

miR-1 and upregulation of miR-19b, miR-27a, miR-34a, miR-

125b, miR-146a, miR-155, miR-210, miR-221 was significant

(127). Surprisingly, most dysregulated miRNAs’ expression

remained significantly altered after normalization of the glucose

levels in diabetic mice. Ingenuity Pathway bioinformatic analysis

shows the dysregulated miRNAs were involved in physiological

processes such as hypertrophic growth (miR-212, miR-221, miR-

125b, miR-29a, miR-214, miR-133a, miR-199a, miR-150, miR-1),

apoptosis (miR-320b, miR-378, miR-34a), fibrosis (miR-125b, miR-

150, miR-199a, miR-29b, miR30a) (Figure 1), OS (miR-155, miR-

27a, miR-125b, miR-19b, miR-221, miR-210, miR-146a, miR-34a),

autophagy (miR-133a, miR-221, miR-212, miR30a), and heart

failure (miR-423, miR-499, miR-199a). Of particular importance

is a set of downregulated miRNAs associated with OS. For instance,

miR-221, upregulated in the diabetic myocardium, was suggested to

have a key role in the progression of diabetic myocardial damage

after restoring normoglycemia, whereas miR-34a may be

responsible for cardiac ageing in DM (127). Normalization of

glucose levels failed to restore the downregulated miR-1, whose

dysregulation is associated with arrhythmias, myocardial

hypertrophy, myocardial infarction, and cell reprogramming

(126–128). Mir-1 directly targets junctin, a component of the

ryanodine receptor Ca2 + release channel complex, and abolishes
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TABLE 1 The roles of miRNAs and lncRNAs in DCMP.

ncRNA Expression Target Signaling
pathway

Pathophysiological
mechanism

Experimental model References

miRNAs

mir-373 ↓ MEF2C P38 MAPK Cardiomyocyte
hypertrophy

STZ-induced diabetes mouse model,
neonatal rat myocytes

(118–120)

mir-30c ↓ PGC-1b,
Cdc42,
Pak1

PPARa,
p53-p21

Cardiomyocyte
hypertrophy
OS

STZ-induced diabetes mouse model,
neonatal rat cardiomyocytes

(121, 122)

mir-203 ↓ PIK3CA PI3KT/Akt Cardiomyocyte
hypertrophy
OS
Fibrosis
Apoptosis

STZ-induced diabetes mouse model (123)

mir-1 ↓ Junctin Ryanodine receptor
calcium release
channels

OS STZ-induced diabetes mouse and rat
models

(124–128)

miR-503 ↑ Nrf2 Nrf OS
Apoptosis

STZ-induced diabetes Wistar rats, rat
primary cardiomyocytes

(129)

miR-22 ↓ Sirt1 Sirt1 OS
Apoptosis

STZ-induced diabetes mouse model,
embryonic cardiac myoblast cellline
(H9c2 cells)

(129)

mir-21 ↑ LAZ3,
PDCD4

PPARa, Nrf2,
NF-kB

OS
Inflammation
Apoptosis

STZ-induced diabetes mouse model,
neonatal rat myocytes

(114, 130–
132)

miR-150-5p ↑ Smad7 NF‐kB,
TGF‐b1

Inflammation
Fibrosis

HG-induced diabetes model, rat cardiac
fibroblasts

(78, 133–137)

lncRNAs

KCNQ1OT1 ↑ miR-214-
3p, CASP1

TGF-b1/Smad Inflammation, fibrosis STZ-induced diabetes mouse model,
human blood serum from diabetic
patients

(138, 139)

H19 ↓ miR-675,
VDAC1,
DIRAS3

mTOR Inflammation
Apoptosis

STZ-induced diabetes rat model,
neonatal rat myocytes

(134, 140)

MALAT1 ↑ miR-26a,
HMGB1,
SAA3

TLR4/NF-kB Inflammation
Apoptosis

Human adult ventricular cardiomyocytes
(AC16 cell line), STZ-induced diabetes
mouse model

(140–142)

NONRATT007560.2 ↑ miR-208a TNFa Inflammation
Apoptosis
OS

HG-induced diabetes model, rat
cardiomyocytes

(143–145)

HOTAIR ↓ mir-34,
Sirt1

PI3K/Akt Inflammation
Apoptosis
OS
Fibrosis

STZ-induced diabetes mouse model, rat
cardiomyocytes

(146, 147)

ANRIL ↑ HBEGF,
CDH5

TNFa Inflammation
Apoptosis
OS
Fibrosis

STZ-induced diabetes rat model (148, 149)
F
rontiers in Endocrino
logy
 05
↑/↓indicates the up/down-regulation of ncRNA expression.
ANRIL, Antisense Noncoding RNA gene at the INK4 locus; CASP1, caspase-1; Cdc42, Cell Division Cycle 42; CDH5, cadherin 5; DIRAS3, DIRAS Family GTPase 3; H19, H19 imprinted
maternally expressed transcript; HBEGF, Heparin-Binding EGF-like Growth Factor; HG-high glucose; HMGB1, High Mobility Group Box 1; HOTAIR, HOX Transcript Antisense Intergenic
RNA; LAZ3, Lymphoma-associated zinc finger 3; MALAT1, Metastasis Associated Lung Adenocarcinoma Transcript 1; MAPK, Mitogen-Activated Protein Kinases; MEF2C, Myocyte Enhancer
Factor 2C; mTOR, Mammalian Target of Rapamycin; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; Nrf2, Nuclear factor erythroid 2–related factor 2; OS, Oxidative
stress Pak1, P21 Activated Kinase 1; PGC-1b, Peroxisome Proliferator-activated receptor-g co-activator 1 beta; PDCD4, programmed cell death 4 gene; PI3KT/Akt, Phosphatidylinositol 3-
kinase/protein kinase B; PIK3CA, Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PPARa, Peroxisome Proliferator-Activated Receptor alpha; SAA3, Serum Amyloid A3;
Sirt, Sirtuin; STZ, Streptozotocin; TGF‐b1, Transforming Growth Factor b; TLR4, Toll-Like Receptor 4; TNFa, Tumour Necrosis Factor alpha; VDAC1, Voltage-Dependent Anion Channel 1.
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its expression (Table 1) (126). In high glucose conditions, decreased

levels of miR-1 result in an elevated expression of junctin, which is

associated with perturbed Ca2 + handling, consequently causing

arrhythmia and cardiac hypertrophy (124, 125).

The study by Constatino et al. suggests that failure to restore

normal levels of dysregulated miRNAs in diabetic myocardium

upon achieving normoglycemia may explain the progression of

diabetic cardiovascular complications. It confirms the concept of

metabolic memory, which was previously proposed but is

insufficiently documented at the molecular level (150). Inhibition

of OS-related miRNAs (miR-221, miR-210, miR-155, miR-146a,

miR-125b, miR-34a, miR-27a, miR-19b) identified in this study

may serve as a potential novel therapeutic strategy, leading to the

amelioration of adverse effects of hyperglycaemic memory in

diabetic myocardium.

3.2.2 miRNAs involvement in PPAR and
Nrf signaling

Sufficient evidence supports the role of miRNAs in modulating

cell response to OS, which plays a vital role in the progression of

diabetic myocardial dysfunction (122, 150). The activation of Nrf2,

a transcriptional factor acting as an essential regulator of OS genes,

is increased in DM models due to excessive ROS accumulation

(151). Also, transcriptional factors activated by fatty acids, such as

PPARa, exhibit anti-inflammatory activity by decreasing the

expression of pro-inflammatory genes (152). Several studies

report synergistic action of Nrf2 and PPARa signaling pathways

(153, 154), where PPARa pathway activation leads to Nrf2

activation via PGC-1a (155). Yin et al. reported that miR-30c has

a protective role in diabetic cardiomyopathy via PPARa (122).

miR-30c levels were downregulated in the T2D1 diabetic model

leading to an increased expression of PGC-1b, a direct target of mir-

30c, resulting in metabolic disturbances, cardiac lipotoxicity, and

augmented ROS production (122). The overexpression of miR-30c

reduced myocardial lipid accumulation and excessive ROS

production, improved glucose utilization, and attenuated

cardiomyocyte apoptosis and cardiac dysfunction in vitro and db/

db mice (122). Another study reported that miR-30c overexpression

in rat cardiomyocytes under high-glucose treatment was

accompanied by the downregulation of prohypertrophic genes

Cdc42 and Pak1, leading to cardiomyocyte hypertrophy

attenuation (156). MiR-30c is also linked to the p53-p21 pathway

involved in cardiomyocyte hypertrophy and apoptosis in DCM, and

its effects may be amplified by miR-181a (121). Cardiomyocyte

miR-30c overexpression in the DCM model led to an increased LV

ejection fraction and reduced LV mass compared to controls (135).

The attenuation of cardiac dysfunction by miR-30c overexpression

suggests that miR-30c may be a potential therapeutic target for

DCM treatment (122).

Regulation of PPARa and Nrf2 activation is also associated with

miR-21 and LAZ3 gene, a transcriptional repressor that interferes

with NF-kB signaling, thus regulating inflammation (132). LAZ3

expression is decreased in rat cardiomyocytes and diabetic mouse

hearts (Gao, 157). LAZ3 silencing upregulates expression of miR-21,

which targets PPARa, consequently downregulating PPARa and
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Nrf2 signaling pathway and promoting an inadequate response to

the OS. Gao et al. proposed that treatments based on miR-21

inhibitors may positively affect DCMP management (Gao, 157).

However, the results of other studies conflict with this conclusion

and suggest that overexpression of miR-21 may be a promising

therapeutic approach for the treatment of DCMP (131). It was

found that miR-21 overexpression protects against ROS-induced

damage in cardiac myocytes via another target gene, PDCD4, and in

cardiac nonmyocyte cells such as fibroblasts, diminished miR-21

expression reduces abnormal heart remodeling (130, 158).

Increased levels of cardiac OS biomarkers observed in

cardiomyocytes of diabetic mice were significantly decreased

upon miR-21 treatment and phospho-Akt and phospho-

endothelial Nitric Oxide Synthase (eNOS) overexpression

suggesting that miR-21 attenuates cardiac hypertrophy by

reducing ROS levels and increasing available NO (131). It appears

that miR-21 may have different roles in different cell types and

pathophysiological conditions, requiring further studies on human

subjects to explain the reported contradictory findings.

Perturbed levels of several other miRNAs in the diabetic

myocard ium, such as upregula t ion of miR-503 and

downregulation of miR-22, were observed in vivo and in vitro

DCMP models (Table 1). Those miRNAs are suggested to impair

the ability of Nrf2 to prevent the adverse effects of excessive ROS

accumulation observed in DM. miR-503 upregulation is associated

with Nrf2 activation that can be further enhanced through the

phase II enzyme inducer CPDT, an enzyme complex with a

protective role against OS by promoting antioxidative ‘enzymes’

expression (129). Decreased expression of miR-503, accompanied

by increased Nrf2 levels and reduced development of

cardiomyopathy, was observed in diabetic rats treated with CPTD

compared to a control group (129). In the case of miR-22, whose

levels were decreased in the myocardium of streptozotocin-induced

diabetic mice, it was reported to target 3’- untranslated repeats of

Sirt1 and upregulate its expression (Table 1) (159). In a diabetic

animal model, overexpression of miR-22 was associated with

decreased ROS levels, elevated SOD, and amelioration of blood

glucose levels, LV end-diastolic pressure, ejection fraction, and

‘cardiomyocytes’ apoptosis (129).

3.2.3 miRNAs-mediated modulation of PI3K/Akt
and NF‐kB signaling pathways

PI3K/Akt signaling pathway has a crucial role in the

pathogenesis of insulin resistance and DCMP development,

regulating multiple physiological processes, such as cell growth,

the proliferation of cardiomyocytes, and apoptosis (160). PI3KT/

Akt regulates the nuclear factor-kB (NF‐kB) transcriptional activity
that regulates cellular activities related to immune responses and

inflammation (161). Also, PI3KT/Akt is involved in platelet

activation, which is associated with TGF-b1 release that promotes

atrial fibrosis in cell culture and ventricular fibrosis in a mouse

model (162, 163). It was reported that upregulation of miR-203

inhibits activation of the PI3KT/Akt pathway by targeting PIK3CA

and is associated with reduced cardiac hypertrophy, myocardial

apoptosis, fibrosis (Figure 1), and levels of ROS in myocardial
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tissues of diabetic mice (Table 1) (123). Another study reported that

NF‐kB activity and IL‐1b production are significantly increased in

cardiac fibroblasts under high glucose conditions and are

accompanied by upregulation of miR-150-5p, which negatively

regulates Smad7 expression at the post-transcriptional level (137).

Since Smad7 was shown to suppress TGF‐b1 signaling (164), miR-

150-5p inhibition attenuates ‘cardiomyocytes’ fibrosis and

inflammation mediated by NF‐kB and TGF‐b1/Smad pathways.

In addition, miR‐150‐5p involvement in the inflammatory cytokine

production, the development of T and B lymphocytes, and vascular

remodeling and fibrosis are well established (Table 1) (133, 136,

165, 166). It was suggested that miR-150-5p should be considered a

promising target for DMCP treatment since its knockdown reverses

cardiac remodeling (23, 137).
4 lncRNAs RNA and DCM

4.1 General characteristics on lncRNAs

lncRNAs are heterogenous RNA transcripts with more than 200

nucleotides that are not translated into proteins (167) but can

interact with DNA, RNA and proteins via base pairing or chemical

interactions, thus exhibiting more versatile roles compared to

miRNAs. RNA polymerase II transcribes lncRNAs from exonic,

intergenic, or distal protein-coding regions of the genome into pre-

mature lncRNAs that are polyadenylated at the 3’-end and capped

on the 5’-end with methyl-guanosine (168). The precursor lncRNA

undergoes alternative splicing either by interacting with specific

splicing factors or forming RNA-RNA duplexes with pre-mRNA

molecules (169). lncRNAs regulate gene expression at the
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transcriptional, translational and post-translational levels (30,

170) by binding to DNA-binding proteins (171), recruiting

epigenetic complexes during DNA methylation (172), and serving

as precursors of miRNAs (173). Their function depends on the

cellular location; lncRNAs expressed in the nucleus regulate gene

expression via recruitment of transcription factors or epigenetic

complexes (174) whereas cytoplasmic lncRNAs participate in

modulation of the mRNA stability and translation and post-

translational modifications (175–177). lncRNAs are further

classified as signal, guide, decoy, and scaffold lncRNAs depending

on their cellular function. Signal lncRNAs respond to specific

stimuli at distinct subcellular locations whereas guide lncRNAs

direct ribonucleoprotein complexes to specific targets (33). Decoy

lncRNAs bind and sequester regulatory proteins such as

transcription factors (178), while scaffold lncRNAs have a

structural role in chromatin organization as platforms for

assembling ribonucleoprotein complexes (179). It has been

estimated that the human genome contains over 16000 lncRNAs

(Gencode-Human Release 27, https://www.gencodegenes.org/

human/) (180). However, despite this remarkable number, the

number of functional lncRNAs remains questionable, although

they express valuable cellular properties (168, 181).
4.2 Roles of lncRNAs in diabetic
cardiomyopathy

Although there are fewer reports in the literature regarding

lncRNAs’ connection to DCMP compared to miRNAs, recent

evidence strongly supports the equally important emerging role of

lncRNAs in DCMP pathophysiology (Figure 1). Levels of several
FIGURE 1

miRNAs and lncRNAs are implicated in regulating cardiac hypertrophy, apoptosis, and fibrosis. miRNAs are marked in red, whereas lncRNAs are
marked in blue color. miRNAs, microRNAs; lncRNA, long non-coding RNAs. Created with Biorender.com.
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lncRNAs are perturbed in serum and myocardial biopsy of patients

with DCMP (182, 183). For instance, the plasma level of the

lncRNA, the steroid receptor RNA activator (SRA), is decreased

in DM patients with CVDcompared to DM patients without any

associated complications and healthy subjects. Furthermore, a 5-

year follow-up study demonstrated that perturbed levels of SRA

correlate with an increased incidence of cardiovascular disease in

DM patients (184). Accumulating evidence shows that lncRNAs

participate in the modulation of multiple pathways associated with

OS and inflammation, which are implicated as important factors in

DCMP development and progression, myocardial injury, cardiac

hypertrophy, and diabetic vascular complications (142). HOX

transcript antisense RNA (HOTAIR) has a crucial role in the

CVD pathophysiology (185), and its expression is significantly

downregulated in myocardial tissues and serum of patients with

DCMP compared to DM patients and healthy controls (146).

HOTAIR expression was also decreased in the hearts of

streptozotocin-treated mice, whereas its overexpression decreased

OS and inflammation and improved cardiac function (147).

HOTAIR was reported to serve as a molecular sponge of miR‐

34a, which targets Sirt1 (Table 1) (147, 186). HOTAIR was also

shown to ameliorate DCMP by increasing the viability of

cardiomyocytes via PI3K/Akt pathway activation (146).

In a study by Yu et al. (145), differentially expressed lncRNAs

during cardiomyocytes’ OS and apoptosis induced by high glucose

were identified by RNA sequencing. Consequent functional studies

showed that inhibition of lncRNA NONRATT007560.2 reduces

ROS generation and apoptosis, suggesting its important role in

developing cardiomyopathy. In addition, it was observed that

NON-RATT007560.2 have binding sites for miR-208a (145),

which was previously associated with the perturbed cardiac

remodeling in the myocardium of DMT2 patients (144). Xu et al.

found that NONRATT021972 siRNA treatment of DM rats

decreased the elevated TNF-a expression and abolished serine

phosphorylation of IRS-1 in superior cervical ganglion cells,

whereas downregulation of NONRATT021972 restored decreased

heart rate variability in diabetic rats (Table 1) (143).

Another lncRNA, KCNQ1OT1, whose expression is increased in

the serum of diabetic patients, as well as in high glucose-induced

cardiomyocytes in vitro, and cardiac tissue of T1DM streptozotocin-

induced diabetic mice, has been associated with pathophysiological

mechanisms leading to cardiac dysfunction (138, 139, 183). A study

by Coto et al. revealed that the increased levels of KCNQ1OT1 induce

TGF-b1, p-Smad2 and p-Smad3 expression and are accompanied by

collagen deposition, activation of fibrotic formation and cardiac

remodeling, ultimately resulting in deterioration of LV function.

The inhibition of KCNQ1OT1 expression significantly ameliorated

cardiac function and reduced remodeling via TGF-b1/Smads

pathway (138). Another study showed that KCNQ1OT1 silencing

improves cardiac function by decreasing apoptosis via targeting miR-

214-3p and caspase-1 gene, which leads to reduced cell death and

abnormalities in cytoskeletal structure as decreased calcium overload

(Table 1) (183).

lncRNA H19 also regulated cardiomyocyte apoptosis in diabetic

cardiomyopathy (134). Li et al. reported that expression of H19 was

significantly downregulated in the myocardium of diabetic rats,
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whereas its overexpression reduced OS, inflammation and apoptosis,

leading to an improvement of LV function (134). In cultured

cardiomyocytes transfected with H19 siRNA, decreased expression

of H19-derived miR-675 was observed. VDAC1 gene, involved in

cardiomyocyte apoptosis and the progression of cardiac muscle

dysfunction, was identified as a target of H19/miR-675-mediated

downregulation (134). Another study reported that overexpression

of H19 epigenetically silences DIRAS3 (DIRAS Family GTPase 3),

promotes mTOR (mammalian target of rapamycin) phosphorylation,

and inhibits autophagy in cardiomyocytes exposed to high glucose

(Table 1) (140).

lncRNAs are also implicated in cardiomyocyte injury via

activation of NF-kB and TNF signaling pathways. In obesity, DM

and other metabolic disorders, excessive amounts of saturated fatty

acids, such as palmitic acid (PA), may be deposited in

cardiomyocytes causing lipotoxic damage (2, 187). Upregulation

of inflammatory factors TNFa and IL-1b and lncRNA metastasis-

associated lung adenocarcinoma transcript 1 (MALAT1), which

plays a crucial role in cardiomyocytes ischemia-reperfusion

damage, was shown in PA-treated cardiomyocytes (82). MALAT1

knockdown increased the viability of PA-treated cardiomyocytes

and reduced TNF-a, IL-1b, myocardial damage markers such as

lactate dehydrogenase (LDH) and CK-MB, and apoptosis (142).

MALAT1 specifically binds to miR-26a, inhibiting the

inflammatory signaling pathway Toll-like receptor 4 (TLR4)/NF-

kB by binding to its target gene, HMGB1. Thus, MALAT1

inhibition alleviates lipotoxic myocardial injury via the miR-26a/

HMGB1/TLR4/NF-kB axis (142). Downregulation of MALAT-1

also reduces inflammation under high glucose conditions. A study

by Puthanveetil et al. reports significant upregulation of MALAT1

in endothelial cells exposed to high glucose levels (141). Increased

MALAT1 levels were associated with a parallel increase in TNF-a,
interleukin 6 (IL-6) and serum amyloid antigen 3 (SAA3), an

inflammatory ligand and target of MALAT1. These findings

suggest that MALAT1 regulates glucose-induced upregulation of

inflammatory mediators IL-6 and TNF-a by activating SAA3 (141).

The level of lncRNA Antisense Non-coding RNA in the INK4

Locus (ANRIL) is increased in peripheral venous blood from DMT2

patients with acute myocardial infarction (188). ANRIL was shown

to regulate the expression of HBEGF and CDH5 genes involved in

vascular permeability, leukocyte migration, and associated

inflammation (148). ANRIL level is increased in the hearts of

diabetic rats, and its silencing is associated with reduced levels of

LDH, CK-MB, and inflammatory cytokines TNFa, IL-6, and IL-1b,
suggesting that ANRIL inhibition improves cardiac function

(Table 1) (149).
5 Therapeutic applications of lncRNAs

RNA-based therapies offer several significant advantages

compared to other types of treatments: they allow simultaneous

targeting of multiple protein-coding genes, restoration of

homeostasis by fine-tuning of ncRNAs expression to their

physiological concentrations, targeting of genes that are

inaccessible to other therapeutic, and circumvention of drug
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resistance (189, 190). Manipulation of miRNA levels in vivo is

achieved by two main strategies: restoration of downregulated

miRNA levels by synthetic double-stranded miRNAs molecules

called miRNA mimics or viral vectors expressing miRNA;

inhibition of miRNAs activity by anti-miRNA antisense

oligonucleotides (ASOs, antimiRs) or competitive miRNA

inhibitors (Figure 2). miRNA mimics have the same sequence as

an endogenous miRNA and may simultaneously target multiple

mRNAs (191). So far, two miRNA mimics, miR-34 mimic MRX34

(192, 193) and the miR-16 mimic MesomiR-1 (194), have been

tested in clinical trials for potential cancer treatment. Interestingly,

as previously mentioned, miR-34 and mir-16 have been implicated

in DCMP physiopathology.

ASOs are single-stranded DNAmolecules entirely complementary

to one specific target mRNA and may act by arresting protein

translation via steric hindrance, causing RNase H-mediated mRNA

degradation or altering pre-mRNA splicing by interfering with cis-

splicing (195–197). AntimiRs are ASOs with full or partial

complementarity to an endogenous miRNA that prevents its

interaction with the target genes. When antimiRs are conjugated to

cholesterol for improved intracellular delivery, they are called

antagomiRs (198). Two miR-122 antimiRs, miravirsen (SPC3649; b-
D-oxy-LNA) and RG-101 (N-acetylgalactosamine-conjugated ASO),

have been clinically tested in the context of the development of

potential hepatitis C virus therapeutics (199). Anti-miR-92a (MRG-

110) was clinically tested for its ability to promote angiogenesis and

improve wound healing (197). It should be mentioned that the

instability of RNA therapeutics, combined with their inability to

cross cell membranes due to their negative charge, required various

chemical modifications to improve their pharmacokinetics and

pharmacodynamics properties (197, 200, 201). First-generation
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modifications improved stability by replacing phosphodiester with

phosphorothioate (PT) backbone linkages. Second-generation

modifications improved bioavailability while reducing toxicity and

immunostimulation by replacement of the 2′-O-alkyl group of the

sugar moieties with 2′-O-Me, 2′-MOE or 2′-F. Third-generation
modifications are based on modifications of the furanose ring to

create peptide nucleic acids (PNAs), locked nucleic acids (LNAs),

and phosphoramidite morpholino oligomers (PMOs). All currently

approved RNA therapeutics for clinical investigations have second or

third-generation chemical modification (197).

Several antimiRs were tested in experimental animal models in

the specific context of DCM. For instance, the administration of

antagomiR-155 decreased cardiac infiltration of inflammatory

mediators and ameliorated myocardial damage and overall cardiac

function (202). However, it was observed that estrogen deficiency in

DCM mice increased inflammation due to the excessive infiltration

by pro-inflammatory M1 macrophages (203). Estrogen-dependent

DCM aggravation was successfully prevented by treatment

antagomiR-155 conjugated to gold nanoparticles, improving the

heart’s structure and function. It was suggested that a therapeutic

approach based on miR-155 inhibition might serve as a promising

strategy for ameliorating cardiac function in DCM (203). Also, in the

post-infarcted heart of a preclinical animal model, it was shown that

an intracoronary injection of antagomiR-92 encapsulated in poly

(lactic-co-glycolic acid) stimulated angiogenesis and improved

myocardial function (204).

lncRNA-targeting therapeutics have recently become the focus

of investigations, but so far, no such therapeutic has entered clinical

trials. lncRNAs are currently extensively studied as clinical

biomarkers for various diseases, but it could be envisioned that

they may serve as novel targets for RNA interference (RNAi) and
FIGURE 2

Therapeutic approaches based on miRNAs and lncRNAs. Non-coding RNAs as therapeutics in diabetes-induced cardiomyopathy. AGO2, Argonaute
RISC Catalytic Component 2; ASO, antisense oligonucleotide; DM, diabetes mellitus; RISC, RNA-induced silencing complex; RNAi, RNA interference.
Created with BioRender.com.
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CRISPR/Cas9 gene-editing interventions. RNAi approach is based

on the use of exogenous double-stranded small interfering RNA for

specific knockdown of target RNAs by engaging a degradation

pathway that involves DICER, a multiprotein RNA induced

silencing complex (RISC) and the endonuclease AGO2 (205).

Several lncRNAs were successfully knocked down using the RNAi

in vitro. However, their silencing in vivo remains challenging, partly

due to the lack of efficient delivery methods (190, 206). Clustered

Regularly Interspaced Short Palindromic Repeats/associated

protein-9 nuclease (CRISPR/Cas9) can be used for editing the

whole human genome, including ncRNAs. CRISPR/Cas9 RNA-

guided editing platform consists of a Cas9 nuclease that binds to a

conserved sequence consisting of three nucleotides, called proto-

adjacent motif (PAM), and a short CRISPR RNA (crRNA) that acts

as a guide for Cas9, together with an adaptor trans-activating RNA

(tracrRNA). The crRNA and tracrRNA can be fused to create the

single-guide RNA that can direct Cas9 to any target in the proximity

of the PAM sequence (207–209) and create a double-stranded DNA

break. The CRISPR/Cas9 platform was used to target the expression

of miRNAs implied in various pathophysiological conditions (73,

210, 211), but it can also be employed for lncRNA overexpression or

transcriptional repression. CRISPR/Cas9 platform has been used for

high-throughput profi l ing of lncRNAs associated with

pathophysiological conditions, especially in oncology (212).

Successful use of this editing platform for lncRNA manipulations

may require targeting the lncRNA splice acceptor/donor sites (157,

213), precise delivery of CRISPR to specific tissues, and improved

control of its off-target effects (214).
Conclusions

miRNA and lncRNA deregulation, in addition to their

association with systemic and organ-specific inflammation (via

interactions with PPAR and Nrf2, as well as PI3KT/Akt and NF-

kB), qualify them as important DCMP diagnostic and treatment

tools. Future extensive research must identify miRNAs and

lncRNAs as biomarkers and therapeutic targets shared by

different components of the metabolic disease cluster.
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