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Zhexin Zhang, Hang Zhou, Mingming Xu and Xiaoqiang Liu*
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Background: Prostate cancer (PCa) is the second most common type of cancer

and the fifth leading cause of cancer-related death in men. Androgen deprivation

therapy (ADT) has become the first-line therapy for inhibiting PCa progression;

however, nearly all patients receiving ADT eventually progress to castrate-

resistant prostate cancer. Therefore, this study aimed to identify hub genes

related to bicalutamide resistance in PCa and provide new insights into

endocrine therapy resistance.

Methods: The data were obtained from public databases. Weighted correlation

network analysis was used to identify the gene modules related to bicalutamide

resistance, and the relationship between the samples and disease-free survival

was analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

analyses were performed, and hub genes were identified. The LASSO algorithm

was used to develop a bicalutamide resistance prognostic model in patients with

PCa, which was then verified. Finally, we analyzed the tumor mutational

heterogeneity and immune microenvironment in both groups.

Results: Two drug resistance gene modules were identified. Gene Ontology and

Kyoto Encyclopedia of Genes and Genomes analyses revealed that bothmodules

are involved in RNA splicing. The protein–protein interaction network identified

10 hub genes in the brown module LUC7L3, SNRNP70, PRPF3, LUC7L, CLASRP,

CLK1, CLK2, U2AF1L4, NXF1, and THOC1) and 13 in the yellow module (PNN,

PPWD1, SRRM2, DHX35, DMTF1, SALL4, MTA1, HDAC7, PHC1, ACIN1, HNRNPH1,

DDX17, and HDAC6). The prognostic model composed of RNF207, REC8,

DFNB59, HOXA2, EPOR, PILRB, LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540,

and DPY19L2 could effectively predict patient prognosis. Genomic analysis

revealed that the high- and low-risk groups had different mutation maps.

Immune infiltration analysis showed a statistically significant difference in

immune infiltration between the high- and low-risk groups, and that the high-

risk group may benefit from immunotherapy.
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Conclusion: In this study, bicalutamide resistance genes and hub genes were

identified in PCa, a risk model for predicting the prognosis of patients with PCa

was constructed, and the tumor mutation heterogeneity and immune infiltration

in high- and low-risk groups were analyzed. These findings offer new insights

into ADT resistance targets and prognostic prediction in patients with PCa.
KEYWORDS

prostate cancer, androgen deprivation therapy, bicalutamide, immune infiltration,
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1 Introduction

Prostate cancer (PCa) is the second most common cancer and

the fifth leading cause of cancer-related death in men. In 2022,

approximately 1,414,259 new cases of PCa were diagnosed

worldwide, and 375,304 deaths were reported (1). It is expected

that the number of new cases of PCa worldwide and that of deaths

will increase to approximately 1.7 million and 499,000, respectively,

by 2030 (2). The growth and development of the prostate depend on

androgens, which play a predominant role in the development of

PCa (3). Therefore, androgen deprivation therapy (ADT) is the

first-line therapy for inhibiting PCa progression. Despite an 80–

90% initial efficacy, virtually all patients receiving ADT eventually

develop castrate-resistant prostate cancer (CRPC) (4). The data

indicate that the median survival of patients with CRPC is about 14

months (range 9–30). Moreover, about 15–33% of patients with

non-metastatic CRPC would develop metastases within 2 years,

contributing to the mortality load of PCa (5). Thus, it is crucial to

understand the mechanism of ADT resistance and identify related

therapeutic targets to help improve the prognosis of patients

with PCa.

Among ADTs, bicalutamide belongs to the first generation of

non-steroidal antiandrogen drugs, which can effectively block

androgen receptor (AR) activity and tumor invasion in androgen-

responsive PCa and has been widely used in clinical practice (6).

Over time, drug resistance has emerged in patients with PCa. Recent

studies have found that AR mutations, protocadherin B9, and the

microtubule-associated protein tau contribute to bicalutamide

resistance (7–9). However, the underlying mechanisms remain

unclear. Therefore, identifying biomarkers of bicalutamide

resistance and potential therapeutic targets may greatly contribute

to choosing treatment options.

With the advent of high-throughput sequencing and

bioinformatics, researchers can classify and analyze a large

number of samples, explore tumor characteristics and

heterogeneity, and find new personalized markers. Based on these

methods, hub genes associated with PCa progression and

recurrence and CRPC have been identified (10, 11). However,

only a few studies have used bioinformatics to explore the key

genes and mechanisms underlying ADT resistance in PCa.
02
In the present study, our purpose is identifying hub genes related

to bicalutamide resistance in PCa. These genes may be related to

endocrine therapy resistance in patients with PCa and may be

potential targets for reversing such resistance. Later we constructed

a risk model to predict the prognosis of patients with PCa based on

samples and analyzed tumor mutational heterogeneity and immune

infiltration in high- and low-risk patient groups. Altogether, our

findings provide new insights into ADT resistance and prognostic

prediction in patients with PCa, which will help establish

personalized treatment regimens and drug choice.
2 Materials and methods

2.1 Data acquisition

Transcriptome and clinical data from The Cancer Genome

Atlas - Prostate Adenocarcinoma (TCGA-PRAD) dataset were

downloaded from the Xena database (https://xena.ucsc.edu/).

After excluding samples without disease-free survival (DFS),

Gleason score, and T stage, 483 samples were included in this

study. RNA-seq data were converted to transcripts per million to

remove the effect of sequencing depth. TCGA-PRAD single

nucleotide mutation data were downloaded from the Genomic

Data Commons - The Cancer Genome Atlas website (https://

portal.gdc.cancer.gov/). A total of 1832 differentially expressed

genes in PCa were obtained from the GEPIA2 database (http://

gepia.cancer-pku.cn/detail.php?clicktag=degenes).
2.2 Weighted correlation network analysis
and predictive analysis of drugs

The pRRophetic package (12) was used to analyze the

transcriptome data of the 483 samples to predict the bicalutamide

resistance of each sample. Subsequently, we performed WGCNA

(13) to further identify the gene modules related to drug resistance.

We set a soft threshold of 10, and each gene module included at

least 30 genes. Finally, 49 samples were discarded owing to outliers,

and 6 gene modules were obtained. Univariate Cox regression
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analysis was used to predict the relationship with DFS in the

sample modules.
2.3 Gene ontology and Kyoto
encyclopedia of genes and genomes
pathway enrichment analyses

GO and KEGG analyses of the brown (218) and yellow modules

(163) were annotated using the Metascape (14) website (http://

metascape.org/gp/index.html#/main/step1). Concomitantly, the

key hub genes in these modules were identified via the protein–

protein interaction network (PPI). These key hub genes were

identified with the MCODE plugin of Cytoscape, and statistical

significance was set at p < 0.05.
2.4 Prognostic model establishment

To further determine the prognostic model for drug resistance

genes, univariate Cox regression analysis was used for all genes in

the brown and yellow modules, and 89 prognostic genes were

identified. We included these genes in the prognostic model,

which consisted of 12 genes and was constructed using the

LASSO algorithm. The risk score was calculated as (risk

coefficient × gene expression level). Subsequently, the samples

were divided into a training set and a validation set at a 1:1 ratio,

and the low- and high-risk groups were divided by the median risk

score. The Kaplan–Meier (KM) curve was used to describe the DFS

of the low- and high-risk groups, and statistical significance was set

at p < 0.05. Receiver-operating characteristic (ROC) curves were

used to demonstrate the predictive efficacy of the training and

validation sets for 1, 3, and 5 years.
2.5 Mutational landscape diagram

The single-nucleotide mutation data of TCGA-PRAD were

processed using the maftools package (15). The 10 most mutated

genes were determined for the high- and low-risk groups.
2.6 Immunoassay

Twenty-eight tumor immune cell markers were obtained from

published articles and seventeen immune pathways were obtained

from the IMMPORT website (https://www.immport.org/home).

The ssGSEA algorithm (16) was used to calculate the enrichment

scores of the 28 immune cells and 17 immune pathways in the

sample. The Wilcoxon test was used to identify the difference

between the immune cell fractions and pathway scores of the

high- and low-risk groups. Furthermore, the expression of 39

immune checkpoint molecules was also examined for differences

between these two groups using the Wilcoxon test, and statistical

significance was set at p < 0.05.
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2.7 Statistical analysis

All statistical analyses were performed using R version

4.1.1. Specific statistical methods are referred to in the above

Methods subsections.
3 Results

3.1 Identification of gene modules
associated with bicalutamide resistance

Identification of bicalutamide resistance-related genes can help

urologists personalize drug choice for patients with PCa. To identify

key genes, we calculated the half-maximal inhibitory concentration

(IC50) of bicalutamide for each sample in the TCGA-PRAD

dataset. WGCNA was constructed based on 1832 differentially

expressed genes in PCa. A total of 434 samples were included in

subsequent analyses, while 49 were excluded (Figure 1A). In the

scale-free network, the soft threshold was set to 10 (Figure 1B). The

gene matrix was transformed into an adjacency matrix and an

adjacency topology matrix. At least 30 genes were identified in each

module. The characteristic genes of each module were calculated

and the close modules were integrated into a new module. WGCNA

identified six gene modules, as shown in Figure 1C. Subsequently,

we calculated the correlation between each module, each sample,

and the IC50 values for bicalutamide (Figure 1D and

Supplementary Table 1). The brown and yellow modules

displayed strong positive correlations with the IC50 values for

bicalutamide (r = 0.5, p = 2e−29; r = 0.27, p = 7e−09). The

brown and yellow genes are shown in Supplementary Tables 2, 3,

respectively. Subsequently, we used univariate Cox regression to

analyze the correlation between the gene expression of each module

and DFS. The brown and yellow gene modules were highly

correlated with the prognosis of patients with PCa (HR > 1,

Figure 1E). In summary, we identified brown and yellow gene

modules that were closely associated with the IC50 values of

bicalutamide and DFS, suggesting that these two gene modules

may be associated with resistance to endocrine therapy.
3.2 GO and KEGG analyses

To further identify the biological processes in which genes in

the brown and yellow modules are involved, GO and KEGG

enrichment analyses were carried out. As shown in Figure 2A, the

genes in the brown module were mainly involved in mRNA

processing, RNA splicing, XBP1(S) activation of chaperone genes,

and microtubule-based movement. PPI analysis showed that 10

genes (LUC7L3, SNRNP70, PRPF3, LUC7L, CLASRP, CLK1, CLK2,

U2AF1L4, NXF1, and THOC1) are hub genes of the brown module

(Figure 2B). Conversely, the genes in the yellow module were

mainly related to mRNA processing, cilium organization, protein

modification by small protein conjugation, and herpes simplex

virus 1 (HSV-1) infection (Figure 2C). The 13 hub genes in the
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yellow module include were PNN, PPWD1, SRRM2, DHX35,

DMTF1, SALL4, MTA1, HDAC7, PHC1, ACIN1, HNRNPH1,

DDX17, and HDAC6 (Figure 2D). Taken together, both brown

and yellow module genes are involved in RNA splicing, suggesting

that RNA splicing may be an important factor in endocrine

resistance. These hub genes may be potential targets for reversing

resistance to endocrine therapy.
3.3 Establishing a prognostic risk model

Univariate Cox regression analysis was used to calculate the

prognostic risk of the brown and yellow module genes

(Supplementary Table 4), which yielded 204 genes with survival

values. A prognostic model was constructed using LASSO

regression analysis (Figures 3A, B). The obtained prognostic
Frontiers in Endocrinology 04
model comprised RNF207, REC8, DFNB59, HOXA2, EPOR,

PILRB, LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540, and

DPY19L. All the included samples were randomly divided into a

training cohort and a test cohort (242:241), and the training cohort

was divided into low- and high-risk groups according to the median

risk score (121:121) (Figure 3C). The KM curve in the training

cohort showed that high-risk patients had a worse prognosis than

low-risk patients (p = 0.011, Figure 3D). More patients in the high-

risk group suffered recurrence or death, and a shorter survival

period (Figure 3E). Heat map analysis revealed elevated expression

levels of the 12 risk genes in high-risk patients (Figure 3F).

Subsequently, ROC curves were used to evaluate the prognostic

efficacy of the 12-gene in patients with PCa. As shown in Figure 3G,

the area under the curve (AUC) scores of the 12 genes prognostic

model in the training cohort for 1-, 3-, and 5-year survival

prediction were 0.582, 0.635, and 0.671, respectively.
A

B

D E

C

FIGURE 1

Identification of gene modules associated with bicalutamide resistance. (A) Sample clustering. (B) Scale-free fit index for various soft-thresholding
powers. Mean connectivity for various soft-thresholding powers. (C) Dendrogram of all differentially expressed genes clustered based on
dissimilarity. (D) Correlation between the 6 gene modules with the bicalutamide IC50 values. (E) Forest plot of univariate survival analysis for the 6
modules.
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3.4 Validation of the prognostic model

The same results were validated in the test cohort, which was

divided into low and high-risk groups according to the median risk

score (121:120; Figure 4A). The KM curves for the test cohort are

shown in Figure 4B (p = 0.0052). The high-risk group tended to

have a worse prognosis (recurrence or death) and higher risk of

gene expression (Figures 4C, D). The AUC scores of the prognostic

model for predicting 1-, 3-, and 5-year survival in the test cohort
Frontiers in Endocrinology 05
were 0.632, 0.681, and 0.681, respectively (Figure 4E). In conclusion,

the prognostic model we constructed can predict the prognosis of

patients with PCa.
3.5 Mutational landscape diagram

To determine the heterogeneity between the high- and low-risk

groups in patients with PCa, we studied the mutation landscape
A B

D

E

F

G

C

FIGURE 3

Construction of the bicalutamide-resistance gene-based risk prognostic model in the training cohort. (A, B) Construction of the LASSO regression
model based on the 12 predictive genes. (C) Distribution of the risk scores. (D) The KM analysis of PFS in the high- and low-risk groups. (E) Survival
status. (F) Expression of the 12 predictive genes. (G) ROC analysis to evaluate the predictive efficiency.
A B

DC

FIGURE 2

GO and KEGG enrichment analyses of bicalutamide-resistance genes and hub gene identification. (A) GO and KEGG analyses of the brown module.
(B) Hub genes of the brown module. (C) GO and KEGG analyses of the yellow module. (D) Hub genes of the yellow module.
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diagram of the two groups. By displaying the 10 most mutated genes

in the identified PRAD database, we observed a significantly

different landscape between the high- and low-risk groups

(Figures 5A, B). The frequencies of SPOP and TP53 mutations

were significantly higher in the high-risk group than in the low-risk

group (13% vs. 10% and 12% vs. 10%, respectively), while the TTN

mutation rate was significantly lower (8% vs. 14%). The high-risk

group also presented mutations in KMT2D, FOXA1, and RYR1 (8%,

6%, and 6%, respectively). Conversely the low-risk group presented

MUC16, SYNE1, and FOXA1 mutations (9%, 7%, and 7%,

respectively). In summary, genomic heterogeneity was identified

between the low- and high-risk populations.
3.6 Immune infiltration analysis

In tumors, the immune microenvironment is closely related to

endocrine resistance (17). Therefore, we assessed the presence of 28

immune cell types in TCGA-PRAD samples (Figure 6A). Violin

plots showed that the high-risk group had a higher immune

infiltration (Figure 6B). Activated B cells, activated CD8 T cells,

CD56dim natural killer (NK) cells, central memory CD4 T cells,

and plasmacytoid dendritic cells were significantly increased in the

high-risk group. We also assessed the presence of 17 immune-

related signaling pathways (Figure 6C). The violin plot shows that

antimicrobials, chemokines, cytokines, and TNF family members

receptors are increased in the high-risk group (Figure 6D). Finally,

we analyzed the expression levels of immune checkpoints in the two

groups (Figure 6E). CD200, CD200R1, CD86, LAG3, LAIR1,
Frontiers in Endocrinology 06
LGALS9, NRP1, TIGIT, TNFRSF18, TNFRSF25, and TNFSF14

were significantly upregulated in the high-risk group. In

summary, the high- and low-risk groups showed different

immune infiltration, and the high expression of immune

checkpoint molecules in the high-risk group suggests that the

high-risk group may benefit from immune checkpoint blockade.
4 Discussion

PCa is a solid malignant tumor in males with high morbidity,

mortality, and heterogeneity (18). ADT is the treatment of choice

for PCa at virtually all stages (19). Nonetheless, almost all patients

receiving ADT eventually develop CRPC (4), thereby hindering the

therapeutic efficacy of the initial ADT plan. Consequently, it is

crucial to identify genes related to ADT resistance in PCa and

explore the mechanisms of this resistance. To date, only a few

studies have been conducted in this direction.

In this study, through a comprehensive analysis of transcriptome

data and bicalutamide IC50 values of samples from the TCGA-

PRAD dataset, we identified two gene modules, brown and yellow,

that are associated with bicalutamide treatment resistance. To

explore how these genes are involved in bicalutamide resistance in

patients with PCa, GO and KEGG enrichment analyses were

performed. The results showed that these genes are mainly

involved in mRNA processing and RNA splicing, and are also

involved in the XBP1(S) activates chaperone genes, microtubule-

based movement, positive regulation of voltage-gated potassium

channel activity, macroautophagy, protein modification by small
A B

D

E

C

FIGURE 4

Validation of the prognostic model in the test cohort. (A) Distribution of the risk scores. (B) The KM analysis of PFS in the high and low-risk groups.
(C) Survival status. (D) Expression of the 12 predictive genes. (E) ROC analysis to evaluate the predictive efficiency.
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protein conjugation, and HSV-1 infection. Previous studies have

found that many aberrant mRNA splice variants are upregulated in

PCa, which further aggravates the disease by promoting

proliferation, metastasis, tumor growth, anti-apoptosis, and drug

resistance (20). Selective cleavage of AR is an important mechanism

of drug resistance in PCa. Among the 20 different AR splice variants

identified, Arv7 is the most common (21). ARv7 mRNA levels in

patients with PCa have been shown to help predict responsiveness to

ADTs, such as enzalutamide and abiraterone (22). C-MYC signaling

is highly activated in the progression of PCa, which needs XBP1(S).

Expression of XBP1(S) is strongly correlated with PCa prognosis

(23). Zucchini et al. found that nine functional groups associated

with high liver/bone/kidney alkaline phosphatase activity, including

microtubule movement, are strongly associated with tumor

aggressiveness (24). Voltage-gated potassium channels can regulate

cancer cell proliferation, and their inhibition via piperine can have a

therapeutic effect in PCa (25). Nguyen et al. found that autophagy is

an important mechanism of CRPC resistance to AR inhibitors (such

as bicalutamide and enzalutamide), and blocking autophagy
Frontiers in Endocrinology 07
significantly reduced the survival of PCa cells in vitro and in vivo,

suggesting the great potential of autophagy inhibitors in the

treatment of patients with CRPC (26). Tokarz et al. developed

inhibitors of small ubiquitin related modified protein (SUMO)

specific proteases (SENPs). In vitro and in vivo experiments have

shown that SENPs are a suitable target for anti-tumor therapy (27).

HSV-1 is also involved in tumorigenesis (28). Therefore, we

speculate that the brown and yellow module genes play an

important role in drug resistance and PCa progression through

these pathways.

We performed PPI analysis of the two resistance-related gene

modules separately, and identified 23 hub genes (LUC7L3,

SNRNP70, PRPF3, LUC7L, CLASRP, CLK1, CLK2, U2AF1L4,

NXF1, THOC1, PNN, PPWD1, SRRM2, DHX35, DMTF1, SALL4,

MTA1, HDAC7, PHC1, ACIN1, HNRNPH1, DDX17, and HDAC6).

HNRNPH1 knockdown has been shown to reduce the expression of

AR and its splice variant AR-V7 (or AR3). Small interfering RNA

silencing of HNRNPH1 sensitizes PCa cells to bicalutamide and

inhibits prostate tumorigenesis in vivo (29). HDAC6 deacetylates
A

B

FIGURE 5

Heterogeneity of tumor mutations between the high and low-risk groups. (A) Mutational landscape diagram in the high-risk group. (B) Mutational
landscape diagram in the low-risk group.
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various cytoplasmic proteins and participates in protein

degradation, protein transport, cell migration, and metastasis.

Zhou et al. studied a novel AR/HDAC6 dual inhibitor, which

showed a more potent anti-proliferative effect on PCa cells than

an AR antagonist (MDV3100) (30). High expression levels of

THOC1 (31), PNN (32), MTA1 (33), DDX17 (34), and CLK1 (35)

have been shown to promote PCa progression. Niklaus et al. found

that DMTF1 expression is related to increased cisplatin resistance in

breast cancer (36). Therefore, we believe that these 23 hub genes

may be important targets for reversing ADT resistance in patients

with PCa, and that part of these can also improve the sensitivity of

patients to chemotherapy.

Patients with PCa with castration resistance present a shorter

survival time and higher risk of progression (4). For survival

prediction, we analyzed the prognostic risk of the brown and
Frontiers in Endocrinology 08
yellow gene modules, and finally established a prognostic model

consisting of RNF207, REC8, DFNB59, HOXA2, EPOR, PILRB,

LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540, and DPY19L2.

According to the median risk score, the patients were divided

into high- and low-risk groups. The results showed that the high-

risk group had a higher number of recurrences or deaths and

shorter survival than the low-risk group. A high expression of these

12 genes is related to a worse prognosis. RNF207 was found to

predict lymph node involvement in patients with obesity and

endometrial cancer (37). By targeting the PKA pathway, REC8

can promote tumor migration, invasion, and angiogenesis in

hepatocellular carcinoma (38). PILRB (39) and TCIRG1 (40) are

associated with clear cell renal cell carcinoma prognosis. Huang

et al. found that targeted downregulation of ABTB1 expression via

miR-4319 can inhibit colorectal cancer progression (41). ZNF276
A B

D

E

C

FIGURE 6

Immune infiltration analysis between the high- and low-risk groups. (A, B) Heat map and violin plot of 28 immune cells. (C, D) Heat map and violin
plot resulting from the enrichment analysis of 17 immune-related signaling pathways. (E) Expression levels of immune checkpoints. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, whereas ‘ns’ is non-significant.
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can promote the malignant phenotype of breast cancer by activating

the CYP1B1-mediated Wnt/b-catenin pathway (42). Subsequently,

we used the test cohort to validate the model, and the results were

highly consistent with the training cohort, implying that our

prognostic model can predict the prognosis of patients with PCa.

Tumor mutation burden is closely associated with tumor

heterogeneity (43). To determine the heterogeneity of the high-

and low-risk groups in patients with PCa, we studied the mutation

landscape diagram in both groups; the most frequently mutated

genes were SPOP and TTN in the high- and low-risk groups,

respectively, which may indicate that patients with a high SPOP

mutation rate have a worse prognosis, whereas those with a high

TTN mutation rate have a relatively better prognosis. TP53 was the

second most frequent mutation in both groups. SPOP mutations

can promote PCa progression by promoting autophagy and Nrf2

activation (44). However, SPOP mutation can increase the

sensitivity of PCa cells to ADT (45). Studies have shown that

patients with metastatic CRPC and SPOP mutations and/or

CHD1 deletions are more sensitive to abiraterone treatment (46).

Notably, SPOP mutations lead to PCa resistance to cellular stress

induced by chemotherapeutic agents such as docetaxel (47). TP53 is

the most prominent gene in pan-cancer studies, and its somatic

alterations are independently associated with the rapid emergence

of drug resistance in patients with metastatic CRPC (48). Mutations

or deletions in TP53 and RB1 can transform PCa AR-dependent

luminal epithelial cells into AR-independent basal-like cells, which

are resistant to ADT (49). These genes may be potential targets for

the prognosis of PCa, and the different gene mutation frequencies

between the high- and low-risk groups may provide new

therapeutic strategies for PCa endocrine resistance.

Further research, has shown that the tumor immune

microenvironment is closely associated with endocrine therapy

resistance (17). Therefore, we assessed the abundance of immune

cells and immune-related signaling pathways in the high- and low-

risk groups as well as the level of immune checkpoint expression. In

the high-risk group, we found that activated B cells, activated CD8 T

cells, macrophages, and NK cells were highly expressed, and

antimicrobials, chemokines, cytokines, and TNF family members

receptors were up-regulated. Loss of NK cell activity has a

significant correlation with PCa progression and the lethal

phenotype of metastatic CRPC (50). NK cells inhibit

enzalutamide resistance and cell invasion in CRPC by targeting

ARv7 (51). Prostate tumor-associated macrophages can promote

the growth of PCa, and secreted Gas6 can further enhance the

activation of RON and AXL receptors in PCa cells, thereby driving

CRPC. Targeting RON and macrophages promotes CRPC

sensitivity to ADT (52). Targeting the CSF1 receptor can also

reverse macrophage-mediated resistance to androgen blockade in

PCa (53). IL-23 produced by myeloid-derived suppressor cells

(MDSCs) can activate the AR pathway in PCa cells, and promote

cell survival and proliferation under androgen-deprived conditions.

Treatment that blocks IL-23 antagonizes MDSC-mediated

castration resistance in PCa (54). CXCR7 activates MAPK/ERK

signaling, which contributes to enzalutamide resistance in PCa (55).

The combination of enzalutamide and a CXCR7 inhibitor can
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reduce pro-angiogenic signaling and macro-angiogenesis in PCa,

and its therapeutic effect is significantly better than that of

enzalutamide monotherapy (56). IL-6 can induce the castration-

resistant growth of androgen-dependent human PCa cells and

increase the bicalutamide resistance of PCa cells through TIF2

(57). These results also showed that the high- and low-risk groups

had a different immune status.

After immune checkpoint expression analysis, we found that

CD200, CD200R1, CD70, CD80, CD86, HAVCR2, LAG3, LAIR1,

LGALS9, NRP1, PDCD1, PDCD1LG2, TIGIT, TNFRSF18,

TNFRSF25, and TNFSF14 were highly expressed in the high-risk

group. Based on the inflammation and immune imbalance in

various tumor microenvironments, the CD200–CD200R pathway

is differentially regulated (58). In liver metastases from primary

pancreatic ductal adenocarcinoma, CD200 and BTLA pathways can

drive macrophage-mediated adaptive immune tolerance. Targeting

CD200/BTLA can enhance the immunogenicity of macrophages

and T cells and enhance the immunotherapeutic effect on liver

metastases (59). Allogeneic CAR-T cells targeting CD70 have

shown efficacy in the treatment of renal cell carcinoma and have

entered phase I clinical trials (60). Cis-PD-L1 interacts with CD80

to obtain an optimal T-cell response to destroy the tumor (61).

LAG3 can be used as a target for cancer immunotherapy, targeting

LAG3/GAL-3 to overcome immunosuppression and enhances the

antitumor immune response in multiple myeloma (62). Blockade of

Sema3A/Nrp1 signaling prevents macrophages from entering

hypoxic tumor regions, inhibits angiogenesis and restores anti-

tumor immunity (63). Inhibition of TIGIT enhances the functional

activity of NK cells against CRPC cells (64). These studies suggest

that patients in high-risk groups may benefit from immunotherapy

targeting these checkpoints.

Notably, this study has some strengths. Firstly, 23 hub genes

associated with bicalutamide resistance were identified. These genes

may be potential targets for reversing bicalutamide resistance or

even other endocrine therapies resistance in PCa. Then, we

constructed a prognostic model consisting of 12 genes, showing a

high predictive value. Besides, we found differential tumor mutation

burden and immune status in high- and low-risk groups. Therefore,

our study has greater clinical implications for the prognostic

assessment and selection of treatment options for patients with

PCa. Yet, our study presents certain limitations. First of all, it’s a

retrospective study with relatively small sample sizes in the training

and test cohorts, so further studies with larger cohorts are necessary

to confirm our results. Moreover, in vivo and in vitro experiments

are required, and the function of drug resistance genes needs to be

further explored.
5 Conclusion

In summary, using public databases, we identified genes and

hub genes associated with bicalutamide resistance in PCa. These

genes may be related to endocrine therapy resistance in PCa, and

may be potential targets for reversing endocrine therapy resistance.

Concomitantly, we constructed an effective risk model to predict the
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prognosis of patients with PCa and analyzed tumor mutation

heterogeneity and immune infiltration in high- and low-risk

groups. In conclusion, this study provides new insights for the

exploration of ADT resistance targets and prognosis prediction in

patients with PCa, which will help establish personalized treatment

options and drug choice.
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