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Progesterone exerts a
neuroprotective action in
a Parkinson’s disease human
cell model through membrane
progesterone receptor
a (mPRa/PAQR7)

Luca F. Castelnovo* and Peter Thomas*

Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, United States
Parkinson’s disease (PD) is the second most common neurodegenerative disease

worldwide, and current treatment options are unsatisfactory on the long term.

Several studies suggest a potential neuroprotective action by female hormones,

especially estrogens. The potential role of progestogens, however, is less defined,

and no studies have investigated the potential involvement of membrane

progesterone receptors (mPRs). In the present study, the putative neuroprotective

role for mPRs was investigated in SH-SY5Y cells, using two established

pharmacological treatments for cellular PD models, 6-hydroxydopamine (6-

OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Our results show that both the

physiologic agonist progesterone and the specific mPR agonist Org OD 02-0 were

effective in reducing SH-SY5Y cell death induced by 6-OHDA and MPP+, whereas

the nuclear PR agonist promegestone (R5020) and the GABAA receptor agonist

muscimol were ineffective. Experiments performed with gene silencing technology

and selective pharmacological agonists showed that mPRa is the isoform

responsible for the neuroprotective effects we observed. Further experiments

showed that the PI3K-AKT and MAP kinase signaling pathways are involved in the

mPRa-mediated progestogen neuroprotective action in SH-SY5Y cells. These

findings suggest that mPRa could play a neuroprotective role in PD pathology

and may be a promising target for the development of therapeutic strategies for PD

prevention or management.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder. Due to aging of the world’s population,

its prevalence is predicted to reach 9 million people worldwide by

2030 (1, 2). The disease is characterized by the progressive

degeneration of dopaminergic neurons in the substantia nigra

projecting to the striatum, the presence of Lewy bodies, and

microgliosis (3, 4). Current treatments aim to control the motor

symptoms, with no effects on the progression of the degenerative

process, and lose efficacy with time (5). PD incidence and prevalence

is higher in men than women (6–8). Moreover, based on

epidemiological studies, it has been proposed that PD symptoms

may have a later onset in women, possibly because of the

neuroprotective effect of female sex hormones earlier in life (9–11).

Therefore, it has been hypothesized that female sex hormones may

play a neuroprotective role. Both epidemiological studies and animal

models support a possible neuroprotective role of estrogens (9–15).

Several in vivo animal studies, with different PD experimental models

have also shown that progesterone (P4) may have neuroprotective

action in dopaminergic neurons. In particular, several studies showed

that P4 can be neuroprotective in the presence of 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), in a common in vivo model of

PD damage, if administered before MPTP treatment (16–19). There

is some evidence suggesting that P4 may also be potentially used as a

treatment after the onset of PD symptoms. Indeed, P4 counteracts

MPTP toxicity in male mice if administered within a short time

window after the insult (20). Moreover, it bolsters dopaminergic

differentiation in mouse embryonic stem cells undergoing an in vitro

differentiation protocol, which may be beneficial in PD treatment

(21). However, the putative neuroprotective activity of P4 in human

cell models of PD and the progestogen receptors mediating this P4

action have not been investigated.

Membrane progesterone receptors (mPRs) are members of the

progestin and adipoQ receptor (PAQR) family (22, 23), presenting five

isoforms: mPRa/PAQR7, mPRb/PAQR8, mPRg/PAQR5 (24, 25),

mPRd/PAQR6 and mPRϵ/PAQR9 (26). These receptors were

initially characterized in reproductive tissues, but are known to exert

several activities also in non-reproductive tissues, including the nervous

system (27). Moreover, mPRs have been reported to mediate

progestogen neuroprotective actions in different neuronal cell line

models (28–30). In particular, the specific mPR agonist Org OD 02-

0 (02–0) (31) displayed neuroprotective activity in SH-SY5Y cells in a

model of cell starvation (30). SH-SY5Y cells are a neuroblastoma cell

line which show catecholaminergic characteristics. This cell line is

widely used in PD research, with different protocols used for cell

culture and different strategies employed to induce PD-like conditions

(32). In this study we investigated the putative neuroprotective role of

mPRa using two chemicals commonly used to mimic PD damage in

cell cultures, 6-hydroxydopamine (6-OHDA) and MPTP’s active

metabolite, 1-methyl-4-phenylpyridinium (MPP+) (32). mPRa
neuroprotective activity to decrease cell death was examined

following pharmacological activation of PD, and the specificity of

mPRa’s action was confirmed with specific agonists and gene

silencing studies. The intracellular mechanisms underlying the

putative neuroprotective activity of mPRa were also investigated.
Frontiers in Endocrinology 02
Materials and methods

Cell culture and pharmacological
treatments

The SH-SY5Y neuronal cell line was obtained from American-

type Cell Culture Collection (ATCC, Manassas, VA, USA). The

medium used for cell culture was composed of 85% minimum

essential medium, a modification (a-MEM, Lonza, Morristown,

NJ, USA), with 2 nM L-glutamine (Gibco, Waltham, MA, USA)

supplementation, and 15% fetal bovine serum (FBS, Corning Inc.,

Corning, NY, USA).

For the majority of experiments cells underwent overnight

incubation in a-MEM supplemented with 2 nM L-glutamine

(serum-free condition) before treatment for 24h with various

pharmacological agents. For Western blot experiments requiring

6-OHDA pretreatment, 6-OHDA was added to the serum-free

medium for the overnight incubation prior to progestogen

treatment. Phosphorylation of ERK and AKT was assessed by

Western blot analysis. Several time points were considered in

preliminary experiments for 02-0 treatments (5,10 and 30 min,

data not shown). The 10 min treatment was selected since it showed

the stronger response. 6-OHDA (Tocris, Minneapolis, MN, USA)

andMPP+ iodide (Sigma-Aldrich, St. Louis, MO, USA) were used to

mimic PD damage in SH-SY5Y cells. The specific mPR agonist 02-0

(Axon Medchem, Groningen, Netherlands), the natural agonist P4

(Steraloids, Newport, RI, USA), the specific PR agonist R5020

(Steraloids) and the specific GABA-A receptor agonist muscimol

(Tocris) were used to assess the contribution of different

progestogen receptors. The specific ERK inhibitor AZD 6244

(Stemcell Technologies, Vancouver, BC, Canada), the specific

PI3K inhibitor Wortmannin (EMD Millipore, Burlington, MA,

USA) and the specific AKT inhibitor ML-9 (EMD Millipore)

were used to investigate the activation of intracellular signaling

pathways. The final concentrations to be used for treatments were

either determined in a series of preliminary experiments or

obtained from the literature. The different drugs were used at the

following concentrations (when the concentration was obtained

from the literature, a specific reference is provided in the following

list): 6-OHDA 50 mM (33); MPP+ 750 nM; 02-0 100 nM (30, 34); P4

100 nM (30); R5020 100 nM (30, 34); muscimol 100 mM (35); AZD

6244 1 mM (36); Wortmannin 50 nM (34); ML-9 15 mM (34). A

comparison between the concentrations used for these chemicals

and their EC50/IC50 is presented in Table S1. Unless they were

soluble in serum-free medium (Mus, 6-OHDA and MPP+),

pharmacological treatment results were compared with those of

their vehicle (Veh) solvents: EtOH (02-0, P4, R5020), DMSO (AZD

6244, Wortmannin, ML-9), or a combination of the two.
Hoechst assay

The Hoechst assay was performed as previously described (30).

SH-SY-5Y cells were grown on coverslips inside multiwell plates

and then underwent 20 min fixation with 4% formaldehyde

(Thermo-Fisher Scientific, Waltham, MA, USA). After a rinse
frontiersin.org
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with phosphate buffer saline (PBS, Thermo-Fisher Scientific), cells

were incubated with Hoechst 33342 (Tocris) 1 mg/mL for 5 min.

The cells were then rinsed and observed with an Eclipse Ti2

microscope (Nikon, Tokyo, Japan). Cell death was assessed by

changes in chromatin morphology, nuclei with compacted

chromatin were counted as Hoechst positive. At least 20 images

from different coverslips were acquired for each condition, with

each acquired image representing a single sample. The

determination of the percentage of Hoechst positive nuclei was

performed with the ImageJ software (NIH, Bethesda, MD, USA).
RNA extraction and quantitative real time
PCR (RT-qPCR)

The extraction of total RNA from samples was performed with

TriReagent (Invitrogen, Carlsbad, CA, USA), following the

manufacturer’s instructions, and quantification was performed

with a Nanodrop 2000c UV spectrophotometer (Thermo-Fisher

Scientific, Waltham, MA, USA). Samples were treated with the

TURBO DNA-free™ kit (Thermo-Fisher Scientific) for the removal

of any DNA contamination. Every sample in the RT-qPCR

experiments was run in triplicate, with 10 ng of total RNA in

each reaction. The RT-qPCR reaction was performed with a

Mastercycler® RealPlex 2 (Eppendorf North America,

Hauppauge, NY, USA), using the Luna Universal One-Step RT-

qPCR kit (New England Biolabs, Ipswich, MA, USA). The primers

used in these experiments have been previously published (34).

Testing was performed to make sure every primer had an efficiency

included between 90 and 105%. No-template controls were used as

negative controls for all the experiments. The primers used are

listed in Table S2.
Protein extraction and Western blot
analysis

Cells were scraped in PBS, and then suspended in RIPA buffer

(Sigma-Aldrich), with added protease and phosphatase inhibitors

(EMDMillipore). They were then homogenized and centrifuged for

5 minutes at 800 g. The Western blot experiments were performed

using the supernatant from this centrifugation. Protein samples

were denatured at 100°C for 3 min. 20 mg of total protein samples

were loaded into each well of SDS-PAGE 4-20% precast gels (Bio-

Rad, Hercules, CA, USA) and underwent electrophoretic separation

at 200 V for 50 minutes in running buffer. Proteins were then

transferred to Hybond nitrocellulose membranes (Bio-Rad) by

electro-blotting. The blocking phase was performed with 5% not-

fat dry milk (Bio-Rad) in 0.1% PBS-Tween 20 (Sigma-Aldrich),

followed by incubation with the primary antibodies diluted in the

same solution. The following antibodies, all from Cell Signaling

Technologies, were used: mouse anti-Akt 1:500; rabbit anti-pAkt

Ser473 1:200; rabbit anti-pERK 1/2 1:500; mouse anti-ERK 1/2

1:200. After a rinse in PBS, membranes were incubated in PBS-

Tween 20 0.1% containing suitable IRDye secondary antibodies.
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The antibodies, both from LI-COR Biosciences (Lincoln, NE, USA),

were used at 1:7000 dilution: goat anti-rabbit IRDye 800; goat anti-

mouse IRDye 680. After washing, the IR signal was detected with an

Odyssey scanner (LI-COR Biosciences).
Silence RNA assay

Human Silencer Select PAQR7 siRNA, Silencer Select Negative

Control #2 siRNA and Lipofectamine RNAiMAX were purchased

from Invitrogen, and the silencing procedure was performed

following the manufacturer’s instructions. Briefly, the day before

the start of the silencing procedure, cells were plated at 50%

confluence. The following day, the specific PAQR7 siRNA and

the negative control (NC) oligo were dissolved in OptiMEM

(Invitrogen). They were then mixed with Lipofectamine,

previously dissolved in OptiMEM, and incubated for 20 minutes.

The PAQR7 siRNA and the NC oligo were then transferred to the

samples at a final concentration of 10 nM and incubated for 48

hours. The medium was then removed, and the cells were treated as

described above. Silencing efficiency was tested by RT-qPCR.
Data analysis and statistics

All the described experiments were repeated at least three times.

Statistical analyses was performed using Prism 5.0 (GraphPad, San

Diego, CA, USA). Different statistical analyses were employed,

depending on the experimental design: two-tailed unpaired

Student’s t-test, one-way ANOVA, or two-way ANOVA. When a

one-way ANOVA was used, single conditions were then compared

among them with Tukey’s multiple comparison test. When two-

way ANOVA was used, single conditions were compared by post-

hoc multiple comparison of means, using the Bonferroni correction.

P values < 0.05 were considered significant. All results are expressed

as mean ± standard error of the mean (SEM).
Results

02-0 and P4 treatments are
neuroprotective in SH-SY5Y cells

The gene expression of the nuclear P4 receptor (PR) and mPRa
were determined by RT-qPCR. The average Ct value for PR was

33.82 ± 0.39, while the average Ct for mPRa was 25.90 ± 0.22. The

calculated mPRa expression was 200 times higher than that of the

PR in SH-SY5Y cells (Figure 1A).

The putative neuroprotective actions of the specific mPR

agonist 02-0 and the physiological mPR ligand P4 to decrease cell

death in SH-SY5Y cells were tested. 6-OHDA and MPP+ 24 h

treatments significantly increased cell mortality, as determined by

the Hoechst assay (Figures 1B–D). Both 100 nM 02-0 and P4 were

effective in protecting SH-SY5Y cells from toxicity, significantly

reducing the fraction of Hoechst- positive nuclei in cells treated
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with the neurotoxic chemicals to levels similar to those in Veh-

treated cells not exposed to the chemicals (Figures 1C, D).

Therefore, mPRs likely have a neuroprotective action in SH-

SY5Y cells.
Progestogen neuroprotective activity is
mediated through mPRa

We then investigated the possible contribution of different 02-0

and P4-binding receptors to the neuroprotective activity described

above. Treatment with 100nM 02-0 significantly decreased cell

death as observed previously. However, both the PR specific

agonist R5020 (100nM) and the GABA-A receptor specific

agonist muscimol (100µM) were ineffective and did not show a

neuroprotective action during 6-OHDA or MPP+ 24 h incubations

in the Hoechst assay, suggesting these two receptors are not

involved in the neuroprotective action of P4 (Figures 2A, B).

Once we determined that neuroprotection was mPR-mediated, we

performed mPRa siRNA experiments to determine if the

neuroprotection is mediated by this mPR isoform. The RT-qPCR
Frontiers in Endocrinology 04
assessment of silencing efficiency revealed that mPRa expression

was reduced by 79.9% (Figure S1). The specific PAQR7 siRNA

completely abolished the 02-0 protective effect on cell viability in

presence of both neurotoxic chemicals (Figures 2C, D), which

suggests that mPRa is the isoform promoting neuroprotection in

SH-SY5Y cells.
mPRa differently activates the ERK and
PI3K-AKT signaling pathways in SH-SY5Y
cells

We next examined the signaling pathways involved in the

neuroprotective activity of mPRa. We first tested the effects of

100nM 02-0 treatment of SH-SY5Y cells on two intracellular

pathways often linked to mPRa activity in other human tissues
A B

DC

FIGURE 2

Investigation of the possible contribution of different progestogen
receptors in P4 neuroprotection in SH-SY5Y cells (A) Assessment of
cell death in SH-SY5Y cells following Veh, 100 nM 02-0, 100 nM
R5020 and 100 mM Mus (muscimol) 24 h treatments in presence 50
mM 6-OHDA. N=18. One-way ANOVA results: p<0.0001. Tukey’s
multiple comparisons test results: **: p<0.01: ***: p<0.001.
(B) Assessment of cell death in SH-SY5Y cells following Veh, 100 nM
02-0, 100 nM R5020 and 100 mM Mus (muscimol) 24 h treatments
in presence of 750 nM MPP+. N=18. ***: p<0.001. (C) Assessment of
cell death in SH-SY5Y cells following Veh and 100 nM 02-0 24 h
treatments in presence of 50 mM 6-OHDA and following PAQR7
(mPRa) gene silencing. N=18. Two-way ANOVA results: Interaction:
p=0.0274, Treatment: p=0.0196, Silencing: p=0.1006. Bonferroni’s
post-test results: **: p<0.01. (D) Assessment of cell death in SH-
SY5Y cells following Veh and 100 nM 02-0 24 h treatments in
presence of 750 nM MPP+ and following PAQR7 gene silencing.
N=18. Two-way ANOVA results: Interaction: p=0.0514, Treatment:
p=0.0033, Silencing: p=0.0036. Bonferroni’s post-test results: **:
p<0.01.
A B

DC

FIGURE 1

PR and mPRa expression and the effects of P4 and 02-0 treatments
on 6-OHDA- and MPP+-mediated cell death in SH-SY5Y cells.
(A) Gene expression of PR and mPRa in SH-SY5Y cells. N=6.
(B) Representative images of SH-SY5Y cell nuclei labeled with
Hoechst 33342 in the 6-OHDA experiment. Nuclei in which
chromatin appears compacted and were counted as positive are
indicated by an arrow. Scale bar: 20 mm. (C) Assessment of cell
death in SH-SY5Y cells in the Hoechst assay following 24h Veh, 100
nM 02-0 and 100 nM P4 treatments in the presence or absence of
50µM 6-OHDA. N=18. One-way ANOVA results: p<0.0001. Tukey’s
multiple comparisons test results: ***: p<0.001. (D) Assessment of
cell death in SH-SY5Y cells following Veh, 100 nM 02-0 and 100 nM
P4 24 h treatments in presence or absence of 750 nM MPP+. N=18.
One-way ANOVA results: p<0.0001. Tukey’s multiple comparisons
test results: **: p<0.01: ***: p<0.001.
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(34, 37–40): the ERK and PI3K-AKT pathways. To this end, we

analyzed by Western blot the effect of 02-0 treatments on the

phosphorylation levels of ERK kinases 1/2 and the AKT kinase.

Following 10 min treatment, 02-0 did not affect ERK

phosphorylation (Figure 3A), but it significantly increased AKT

phosphorylation (Figure 3B). We then repeated these experiments

after pretreating SH-SY5Y cells overnight with 6-OHDA to model

a PD condition. In this experiment, phosphorylation of both ERK

and AKT was significantly increased after 02-0 treatment

(Figures 3C, D). Therefore, both these signaling pathways can be

activated by mPRa in these cells and may be involved in its

neuroprotective action.
Frontiers in Endocrinology 05
Both ERK and PI3K-AKT signaling pathways
mediate mPRa neuroprotection

We performed studies with specific inhibitors of the above-

mentioned signaling pathways to verify their roles in mPRa-
mediated neuroprotective activity. The specific ERK inhibitor

AZD 6244 (Figure 4A), the PI3K inhibitor Wortmannin

(Figure 4B) and the AKT inhibitor ML-9 (Figure 4C) were used

in a series of experiments when cells were treated for 24 h in the

presence of 6-OHDA. All inhibitors proved effective in completely

blocking the 02-0 protective effect on SH-SY5Y cell viability in the

Hoechst assay. These results suggest both the ERK and the PI3K-

AKT signaling pathways are involved in promoting mPRa-
mediated neuroprotective activity.
Discussion

The results presented in this study show that P4 is

neuroprotective in a cell model of PD through mPRa activation.

The intracellular mechanism underlying mPRa activity involves the

ERK and PI3K-AKT signaling pathways.

Non-differentiated SH-SY5Y cells were used for this study.

Several differentiation protocols, mostly involving incubation with

retinoic acid, have been proposed for this model in PD research.

However, none of them is widely accepted, and a recent systematic

review found that a no differentiation protocol was used in 81.5% of

studies on SH-SY5Y cells as a PD model (32).

The comparison of mPRa and PR gene expression show that

mPRa expression is 200 times higher than PR, likely making it the

main mediator of P4 activity in this cell model. PR and mPRa were

previously reported to be expressed in SH-SY5Y cells (30, 41, 42),

but their expression levels were never compared. Our findings show

that 02-0 and P4 are both effective in reducing SH-SY5Y cell death

induced by 6-OHDA and MPP+ treatments. Both chemicals cause

cell toxicity by causing oxidative stress. MPP+ increases the

intracellular concentration of reactive oxygen species (ROS) by

inhibiting complex I of the electron transport chain, thus impairing

mitochondrial function. Moreover, it causes dopamine mobilization

towards the cytoplasm, further increasing ROS production (43). 6-

OHDA enters the cell through dopaminergic or catecholaminergic

transporters. It then accumulates inside the cell, causing increased

formation of ROS and catecholamine quinones, leading to cell death

(44). P4 was previously shown to reduce ROS formation in ovarian

and endometrial cancer cells (45) and to increase the expression and

activity of the electron transport chain complex IV, thus reducing

ROS formation, in the brain of ovariectomized rats (46). Therefore,

even though mPRa influence on oxidative stress has not been

characterized yet, it is reasonable to hypothesize that a modulation

of ROS production may be involved in mPRa-mediated

neuroprotection. This hypothesis requires further investigation.

In SH-SY5Y cells, 02-0 was previously shown to reduce cell

death in a cell starvation model (30), and P4 was reported to be

neuroprotective in models of pyroptosis (47) and neurological

complications of HIV (41). Moreover, the P4 active metabolite
A B

DC

FIGURE 3

Activation of intracellular signaling pathways by 02-0 in SH-SY5Y
cells (A) Western blot for ERK 1/2 and pERK 1/2 in SH-SY5Y cells
after 10 min treatment with Veh or 100 nM 02-0, with
representative blot showing bands at 42 and 44 KDa. N=8. Student’s
t-test results: p>0.05. (B) Western blot for AKT and pAKT in SH-SY5Y
cells after 10 min treatment with Veh or 100 nM 02-0, with
representative blot showing bands at 62 KDa. N=8. Student’s t-test
results: *: p<0.05. (C) Western blot for ERK 1/2 and pERK 1/2 in SH-
SY5Y cells after 10 min treatment with Veh or 100 nM 02-0
following overnight pretreatment with 50 mM 6-OHDA, with
representative blot showing bands at 42 and 44 KDa. N=8. Student’s
t-test results: *: p<0.05. (D) Western blot for AKT and pAKT in SH-
SY5Y cells after 10 min treatment with Veh or 100 nM 02-0
following overnight pretreatment with 50 mM 6-OHDA, with
representative blot showing bands at 62 KDa. N=8. Student’s t-test
results: **: p<0.01.
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allopregnanolone had protective activity in a model of Alzheimer’s

disease following b-amyloid treatment (48). P4 was also

neuroprotective in in vivo PD models, in particular following

MPTP treatment (19, 20). Progestogens proved effective in

eliciting neuroprotective effects also in other neuronal cell models.

For example, P4 and allopregnanolone were neuroprotective,

through mPR activation, in rodent GT1-7 and H19-7 neuronal

cells in models of cell starvation (26, 28, 29). It should be noted that

mPR activation was also shown to mediate neuroregenerative effects

in peripheral glial cells (37, 49, 50). Since mPRs are also expressed in

central nervous system glial cells (51, 52) and their expression in

these cells in the brain is upregulated following traumatic brain

injury (51), it can be hypothesized that mPRs in glial cells may be

neuroprotective in PD. This hypothesis will need to be investigated

in the future. Even taking in consideration the neuroprotective

effects of progestogens described above, this is to our knowledge the

first study showing P4 as a potential neuroprotective agent in an

established human cell model of PD.

The pharmacological treatment and siRNA experiments show

that mPRa is the receptor mediating progestogen neuroprotective

action in SH-SY5Y cells following 6-OHDA and MPP+ treatments.
Frontiers in Endocrinology 06
As discussed above, mPRa and PR are expressed in SH-SY5Y cells,

with the former being predominant. GABA-A receptor subunits

were previously reported to be expressed at very low levels in SH-

SY5Y cells, with the exception of the b3 subunit which was highly

expressed (48). Muscimol treatments confirmed that the GABA-A

receptor is not involved in the neuroprotective activity we observed.

mPRb was reported to be the most highly expressed mPR isoform

in SH-SY5Y cells (30). However, the present results with PAQR7

siRNA clearly show that mPRa is the dominant isoform in

mediating protective effects, as often observed in other human

cell models (34, 39, 40).

Western blot and inhibitor studies clearly show that the

ERK and PI3K-AKT signaling pathways are involved in the

neuroprotective action mediated by mPRa. ERK activation only

occurred following 6-OHDA pretreatment, suggesting it may be a

specific response to cell damage. As mentioned above, both

signaling pathways are known mediators of mPR activity in

different human cell models (34, 37–40). Activation of both

signaling pathways has been recently reported to be beneficial in

different PD models (53–58). Our results also support the

neuroprotective role of the ERK signaling pathway, whereas in

several other studies the ERK pathway was also linked to possible

worsening of PD damage by increasing oxidative stress and

inflammation (59, 60). P4 treatment was not effective in

activating these pathways in the striatum in an in vivo mouse

model (20). This difference may be due to interspecies differences or

involvement of other cell types, such as glial cells, in the

mice striatum.

Taken together , our findings show that mPRa i s

neuroprotective in a human cell model of PD through the

activation of the ERK and PI3K-AKT signaling pathways. These

results will need to be confirmed in an in vivo model of PD to

increase their translational potential. Nonetheless, these findings

open the way for further investigation of mPRa as a potential target

for progestogen therapies aimed at PD prevention or management.
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