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Composition of the intestinal
microbiota and its variations
between the second and third
trimesters in women with
gestational diabetes mellitus
and without gestational
diabetes mellitus

Nana Liu, Yin Sun*, Yaxin Wang, Liangkun Ma*, Suhan Zhang
and Hang Lin

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing, China
Objective: This study was designed to explore the composition of the intestinal

microbiota and its longitudinal variation between the second trimester (T2) and

the third trimester (T3) in women with gestational diabetes mellitus (GDM) and

pregnant women with normal glucose tolerance.

Methods: This observational study was conducted at Peking Union Medical

College Hospital (PUMCH). Women with GDM and pregnant women

with normal glucose tolerance were enrolled in the study, and fecal

samples were collected during T2 (weeks 24~28) and T3 (weeks 34~38). Fecal

samples were analyzed from 49 women with GDM and 42 pregnant women with

normal glucose tolerance. The 16S rRNA gene amplicon libraries were

sequenced to analyze the microbiota and QIIME2 was used to analyze

microbiome bioinformatics.

Results: The four dominant phyla that Firmicutes, Bacteroidetes, Actinobacteria

and Proteobacteria which accomplish about 99% of the total relative abundance

did not significantly change between the T2 and T3 in the GDM and healthy

groups. At the genus level, the relative abundance of Scardovia (0 vs. 0.25%, P =

0.041) and Propionibacterium (0 vs. 0.29%, P = 0.041) increased significantly in the

control group, but not in the GDM group. At the phylum level, the relative

abundance of Firmicutes and Actinobacteria was significantly different between

womenwith GDM and pregnant womenwith normal glucose tolerance in both T2

and T3. In T2 and T3, the relative abundances of unidentified_Lachnospiraceae,

Blautia, and Parabacteroideswere significantly higher in the GDMgroup than in the

control group (P<0.05). The relative abundance of Bifidobacterium in the GDM

group was lower than in the control group in both T2 and T3.
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Conclusions: The intestinal microbiota composition was stable from T2 to T3 in

the GDM and control groups; however, the intestinal microbiota composition

was different between the two groups.
KEYWORDS

gut microbiota, gestational diabetes mellitus, normal glucose tolerance, healthy
pregnant normal glucose tolerance women, second trimester, third trimester
Introduction

The intestinal microbiota, which plays an important role in

maintaining human health, colonizes the human intestinal tract (1).

In general, the gut microbiota participates in various activities, such

as metabolism (2). The gut microbiota can play a role by producing

short-chain fatty acids, such as butyrate and propionate (3). The

alteration of the intestinal microbiota is associated with many

diseases, such as type 2 diabetes and obesity (4–8). Some

researchers have recently explored the association between gut

microbiota and pregnancy (9–11). The gut microbiota is

characterized mainly by an increase in Actinobacteria and

Proteobacteria, with a reduction in the diversity of microbiota

and butyrate-producing bacteria during pregnancy (9).

Gestational diabetes mellitus (GDM) is a common complication

during pregnancy, characterized by the incapability of pancreatic

beta cells to respond sufficiently to the increased insulin

requirements of pregnancy leading to different degrees of

hyperglycemia (12). GDM can pose important short- and long-

term health risks for both the mother and the offspring. Although

insulin resistance and inflammatory processes have been suggested

to be involved in the development of GDM, the specific

pathogenesis of GDM remains unclear (13). Therefore,

researchers have conducted various studies to explore the gut

microbiota characteristics in women with GDM and found

differences in the gut microbiota compared with pregnant women

with normal glucose tolerance. In women with GDM, opportunistic

pathogens in the gut microbiota, such as Bacteroides and Firmicutes

increase, and beneficial bacteria decrease (14).

Various factors, such as dietary intervention and probiotics,

influence gut microbiota composition (1). Metabolism can change

with the progression of trimesters during pregnancy (15). Koren

et al. (9) found that the intestinal microbiota changed dramatically

from the first to the third trimester, with a general increase in

Proteobacteria and Actinobacteria, and the microbiota in the third

trimester induced greater insulin adiposity than in the first

trimester. Abdullah et al. (16) showed that lower a-diversity
indices in the GDM group than in the control group, higher

abundances in the genera Acidaminococcus, Clostridium,

Megasphaera, and Allisonella , and lower abundances in

Barnesiella and Blautia but no differences by trimester. Sun et al.

(17) found that a decrease in the diversity of intestinal microbial

species and changes in the composition of intestinal microbiota

with advancing gestation was founded in the control group but not
02
in the GDM group. The gut microbiota in women with GDM may

be more stable than that of control group.

To date, the differences in gut microbiota composition between

women with GDM and pregnant women with normal glucose

tolerance have been explored in various studies, and the

conclusions have been similar (18–20). However, a comparison of

the intestinal microbiota in women with GDM between different

trimesters is lacking. We conducted this prospective observational

cohort study to investigate the longitudinal variations of the

intestinal microbiota composition from the second (T2) to the

third trimester (T3) in women with GDM and pregnant women

with normal glucose tolerance.
Methods

Ethical approval

This prospective observational cohort study was conducted at

the Peking Union Medical College Hospital (PUMCH) between

April 2019 andMay 2020. This study was reviewed and approved by

the Ethics Review Board at PUMCH (approval number HS-1875).

Women who met the inclusion criteria and signed an informed

consent form were recruited. This study was registered at

clinicaltrial.gov (NCT03916354, 04/12/2019). All the procedures

were performed in accordance with the Declaration of Helsinki.
Population and groups

Fifty women with GDM and fifty pregnant women with normal

glucose tolerance were enrolled in the study at T2 (24~28 weeks),

and basic characteristics such as age, parity, pre-pregnancy body

mass index (BMI), height, pre-pregnancy weight and gestational

week were collected. Pre-pregnancy BMI was defined as the weight

(kg) divided by the square of height (m). The inclusion criteria were

as follows: (1) pregnant women, (2) natural pregnancy, (3) singleton

pregnancy, and (4) provision of informed consent. Exclusion

criteria were: (1) women with pre-pregnancy hypertension,

diabetes, and dyslipidemia; (2) severe complications during

pregnancy; (3) administration of antibiotics/prebiotics/probiotics

during or in the last month before recruitment; (4) any situation of

preexisting chronic diseases; and (5) refusal to sign the

informed consent.
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Definition

GDM was diagnosed using recommendations of the

International Association of the Diabetes and Pregnancy Study

Groups (IADPSG), based on the result of a 75 g oral OGTT.

Pregnant women who exhibited one or more markers of blood

glucose levels higher than the cutoff values (fasting venous plasma

glucose levels ≥ 5.1 mmol/L and/or 1 h glucose level ≥ 10.0 mmol/L

and/or 2h glucose level ≥ 8.5 mmol/L) were diagnosed with GDM.
Fecal sample collection

Participants were asked to collect at least 250 mg of feces into a

sterile test tube (PSP® Spin Stool DNA Plus Kit) with preservation

solution at 24~28 and 34~38weeks. Researchers would instruct the

subjects to store the samples in an environment of 4°C and send the

samples to hospital within 24 hours. After that, researchers would

store the samples at -80°C for DNA extraction.
Sequencing and analysis of 16S
rRNA gene amplicon

DNA was extracted using a QIAamp Fast DNA Stool Mini Kit

(Qiagen, Hilden, Germany). The V4 region of the 16S rRNA

bacterial gene was amplified by PCR. A TruSeq® DNA PCR-free

Sample Preparation Kit was used for library construction and the

Illumina NovaSeq 6000 platform was used for sequencing.

According to barcode sequence and the PCR amplification primer

sequence, each sample data was separated from disembarkation

data. After the amputation of barcode and primer sequences using

FLASH (V1.2.7, http://ccb.jhu.edu/software/FLASH/) (21) to splice

reads of each sample, the splicing sequence for the original tags data

(raw tags). Raw tags obtained by splicing need to undergo strict

filtering (22) to obtain the high-quality tag data (clean data).

According to the QIIME (V1.9.1 http://qiime.org/scripts/

split_libraries_fastq.html) (23) tags quality control process, the

procedures were as follows: (a) tags to intercept: The raw tags

were truncated from the first low-quality base site whose number of

consecutive low-quality values (default quality threshold ≤ 19)

reached the set length (default length value 3). (b) Tags length

filtering: Tags data set obtained by intercepting tags were filtered

out tags whose continuous high-quality base length was less than

75% of the length of tags. The tags obtained after the above

processing need to be processed to remove the chimeric sequence.

The Tags sequence (24) shall be compared with the series

annotation database to detect the chimeric sequence, and finally

remove the chimeric sequence. Using Uparse software (Uparse

v7.0.1001, http://www.drive5.com/uparse/) (25) to cluster all

effective tags of all samples. By default, sequences are grouped

into operational taxonomic units (OTU) with 97% identification.

According to the algorithm principle, the sequences with the

highest frequency among OTUs were selected as representative

sequences of OTUs. OTU annotation analysis was performed using

the Mothur (26) and SSUrRNA databases of SILVA132 (27)
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(threshold 0.8–1). The Shannon and Simpson indices were

calculated using QIIME (version 1.9.1). Beta diversity was

calculated using unweighted UniFrac with QIIME. Principal

coordinate analysis (PCoA) was performed to obtain the principal

coordinates and visualize the complex multidimensional data, and

PCoA plots based on unweighted UniFrac distance analysis were

used to evaluate beta diversity.
Statistical analyzes

All statistical analyzes were performed with IBM SPSS 25.0.

Clinical baseline characteristics are presented as medians

(interquartile range). Continuous variables not normally

distributed were reported as medians (interquartile distance), and

compared using the Wilcoxon test. The relative abundances of taxa

at the phylum and genus levels were compared using the Wilcoxon

test. A false discovery rate (FDR)- corrected P < 0.05 was considered

statistically significant. All statistical analyzes were performed using

two-sided tests.
Results

Clinical characteristics of the participants

The baseline characteristics of the women with GDM and

pregnant women with normal glucose tolerance are summarized

in Table 1. Fifty women with GDM and fifty controls were enrolled

in this study. One person in the GDM group was excluded due to

the use of antibiotic drugs. In the control group, two participants

were excluded because they experienced serious obstetric

complications during pregnancy, four used antibiotic drugs, and

two were lost to follow-up (Figure 1). The final sample for analyzes

included data from 49 women with GDM and 42 pregnant women

with normal glucose tolerance. Fecal samples from all participants

in the GDM group (n = 49) were collected in T2 (SGDM) and T3

(TGDM). In the control group, one stool sample in T2 and three

stool samples in T3 were not received, and eventually 41 and 39

feca l samples were co l l ec t ed in T2 (SHC) and T3

(THC), respectively,.

Women with GDM were more likely to be older (33 (32–36.5)

vs. 32 (29–34), P = 0.018) and deliver at lower gestational age (39

(38–39) vs. 39 (38–40), P = 0.006). Other clinical characteristics

were not significantly different between the groups (Table 1).
Dynamics in intestinal microbiota in the
GDM and control group from T2 to T3

From T2 to T3 in the GDM group, at the phylum level

(Figure 2A), although not statistically significant, the relative

abundances of > 1% of the dominant bacteria, Firmicutes (60.31%

vs. 57.62%, P = 0.772), Actinobacteria (5.43% vs. 4.37%, P = 0.772),

and Proteobacteria (3.47% vs. 3.27%, P = 0.772), showed a

downward trend. Bacteroides (29.85% vs. 33.53%, P = 0.772)
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showed an increasing trend (Supplement File 1). The same trend at

the genus level (Figure 2B), among the top 10 dominant bacteria in

the GDM group, although not statistically significant, the relative

abundances of Bacteroides (20.18% vs. 22.68%, P = 0.791),

F a e c a l i b a c t e r i um ( 8 . 2 5% v s . 9 . 8 4% , P = 0 . 3 9 2 ) ,

unidentified_Lachnospiraceae (4.88% vs 5.16%, P = 0.820),
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Parabacteroides (2.28% vs. 2.73%, P = 0.791) showed an increase

from T2 to T3, whereas , the relat ive abundances of

unidentified_Ruminococcaceae (4.86% vs. 3.54%, P = 0.392),

Blautia (4.13% vs. 3.83%, P = 0.520), Roseburia (3.61% vs. 3.52%,

P = 0.791), Lachnospira (3.90% vs. 2.89%, P = 0.502),

Bifidobacterium (3.72% vs. 2.80%, P = 0.392), Megamonas (2.81%
FIGURE 1

The flow chart of the study. * emphasis on exclusion.
TABLE 1 Comparison of clinical characteristics in the study groups.

Characteristic GDM (n=49) Health women (n=42) P value

Age (year) 33 (32~36.5) 32 (29~34) 0.018*

Parity (number) 1 (1~2) 1 (1~2) 0.438

Pre-pregnancy BMI (kg/m2) 22.46 (19.78 ~24.28) 21.05 (19.65~22.68) 0.112

Height(cm) 163.00 (160.00 ~167.00) 163 (162~166.5) 0.592

OGTT-0 hours 4.90 (4.50 ~ 5.25) 4.40 (4.18 ~ 4.60) < 0.05

OGTT-1 hours 9.80 (8.85 ~ 10.70) 7.55 (6.38 ~8.45) < 0.05

OGTT-2 hours 8.80 (7.45 ~ 9.40) 6.20 (5.40 ~ 7.23) < 0.05

Pre-pregnancy Weight (kg) 58 (53.25~64.5) 56.5 (52.5~61.25) 0.217

Gestational week (weeks) 39 (38~39) 39 (38~40) 0.006*
Data presented as median (first quartile, third quartile).
GDM gestational diabetes mellitus, BMI body mass index.
*Statistically significant at P < 0.05.
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vs. 1.30%, P = 0.502) showed a decrease from T2 to T3, as illustrated

in Supplement File 2.

From T2 to T3 in the control group, at the phylum level

(Figure 2A), although not statistically significant, the relative

abundances of Firmicutes (47.84% vs. 49.46%, P = 0.969),

Bacteroides (29.31% vs. 31.44%, P = 0.969), and Proteobacteria

(5.35% vs. 5.38%, P = 0.915) showed an increasing trend. The

relative abundance of Actinobacteria (16.59% vs. 12.63%, P = 0.946)

showed a downward trend; however, the differences of other bacteria

were not statistically significant (Supplement File 1). At the genus level

(Figure 2B), among the top 10 dominant bacteria in the control group,

Bacteroides (16.31% vs. 16.73%, P = 0.918), Faecalibacterium (7.62%

vs. 9.70%, P = 0.734), Bifidobacterium (10.37% vs. 6.36%, P = 0.637),

Collinsella (5.52% vs. 5.05%, P = 0.611), unidentified_Ruminococcaceae

(4.67% vs. 5.09%, P = 0.833), Subdoligranulum (3.19% vs. 3.55%, P =

0.611), Roseburia (2.90% vs. 3.20%, P = 0.918), Lachnospira (2.15% vs.

2.73%, P = 0.918), Streptococcus (2.81% vs. 2.02%, P = 0.820), and

unidentified_Lachnospiraceae (2.54% vs. 2.10%, P = 0.637)

(Supplement File 2) were both no significant differences from T2 to

T3. The relative abundance of Scardovia (0 vs. 0.25%, P = 0.041) and

Propionibacterium (0 vs. 0.29%, P = 0.041) in pregnant women with

normal glucose tolerance was significantly higher in T3 than in T2

(Supplement File 2).

In T2, at the phylum level (Figure 2A), the relative abundance of

Firmicutes in the GDM group was significantly higher than that in

the control group (60.31% vs. 47.84%, P < 0.001), and the relative

abundance of Actinobacteria in the GDM group was significantly

lower than that in the control group (5.43% vs. 16.59%, P = 0.009).

The abundance of other bacteria is described in Supplement File 1.

At the genus level (Figure 2B), the relative abundances of

unidentified_Lachnospiraceaee (4.88% vs. 2.55%, P < 0.001),

Roseburia (3.61% vs. 2.90%, P = 0.041), Lachnospira (3.90% vs.

2.15%, P = 0.004), Blautia (4.13% vs. 2.76%, P = 0), and

Parabacteroides (2.27% vs. 0.73%, P = 0) in the GDM group were

higher than those in the control group. The relative abundance of

Bifidobacterium in the GDM group was lower than that in the

control group (3.72% vs. 10.37%, P = 0.012). The relative

abundances of other bacteria were lower in the GDM group than

in the control group (Supplement File 2).
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In T3, at the phylum level (Figure 2A), the relative abundance of

Firmicutes (57.62% vs. 49.46%, P = 0.044) in the GDM group was

significantly higher than that in the control group. The relative

abundance of Actinobacteria (4.37% vs. 12.63%, P = 0.007) in the

GDM group was significantly lower than in the control group. The

relative abundances of other bacteria are detailed in Supplement

File 1. At the genus level (Figure 2B), the relative abundances of

unidentified_Lachnospiraceae (5.16% vs. 2.11%, P = 0), Blautia

(3.83% vs.1.46%, P = 0), Parabacteroides (2.73% vs. 1.18%, P = 0),

and Megamonas (1.31% vs. 0.21%, P = 0.038) in the GDM group

were significantly higher than those in the control group. The

relative abundance of Bifidobacterium (2.80% vs. 6.36%, P =

0.022) in the GDM group was significantly lower than that in the

control group (Supplement file 2). The relative abundances of other

bacteria are detailed in Supplement File 2.
OTUs

Venn diagrams were drawn on the basis of the number of OTUs

of samples in the GDM and control groups (Figure 3). As shown in

the figure, in the GDM group, the total number of OTUs in T2 and

T3 was 3412 and 3806, respectively. The number of common OTUs

in T2 and T3 was 2447; the number of unique OTUs in T2 and T3

was 965 and 1359, respectively (Figure 3A). The number of unique

OTUs in T2 represented 28.28% of the total OTUs in T2 and

35.71% of the total OTUs in T3. In the control group, the total

number of OTUs in T2 and T3 was 4619 and 4618, respectively. The

number of common OTUs in T2 and T3 was 2883, and the unique

numbers of OTUs in T2 and T3 were 1736 and 1735, respectively

(Figure 3B). Unique OTUs in T2 accounted for 37.58% of the total

OTUs in T2 and 37.57% of the total OTUs in T3.
The alpha and beta diversity

In the GDM group, there was no significant differences in the

Chao index (P=0.123) (Figure 4A) and ACE index (P=0.201)

(Figure 4B) were observed from T2 to T3. The same trend in the
A B

FIGURE 2

The dynamics in intestinal microbiota in the GDM and control group from T2 to T3 at the phylum and genus level. (A) Relative abundance of the top
10 bacterial taxa at the phylum level; (B) Relative abundance of the top 40 bacterial taxa at the level of bacterial. GDM, Gestational diabetes mellitus;
T2, second trimester; T3, third trimester; SGDM, Second trimester in the GDM group; TGDM, Third trimester in the GDM; SHC, Second trimester in
the control group; THC, Third trimester in the control group.
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control group. In the GDM group, there was no significant

difference in changes in the Shannon index (Figure 4C) (6.039 vs

5.822, P = 0.078) and the Simpson index (Figure 4D) was observed

from T2 to T3 (0.953 vs 0.937, P = 0.177). The Shannon index

(Figure 4C) (5.188 vs. 5.043, P=0.795) and the Simpson index

(Figure 4D) (0.904 vs. 0.880, P = 0.824) in the control group

from T2 to T3 were not statistically significant. The Shannon

index in T2 (6.039 vs 5.188, P = 0) and T3 (5.822 vs 5.043, P = 0)

in the GDM group were both significantly higher than those in the

control group, and the Simpson index in T2 (0.953 vs. 0.904, P <

0.001) and T3 (0.937 vs. 0.880, P <.001) in the GDM group were

both significantly higher than those in the control group.

PC1 was the main coordinate component that caused the largest

difference in the samples, with an explanatory degree of 20.74%,

followed by PC2, with an explanatory degree of 9.09% (Figure 5).

According to the AMOVA analysis, there were no significant

differences in the gut composition microbiota in T2 and T3 in the
Frontiers in Endocrinology 06
GDM (P = 0.265) and control groups (P = 0.593). However, there

was a significant difference in the composition of the gut microbiota

between the GDM and control groups (P < 0.001). The distribution

of the intestinal microbiota in T2 and T3 was similar in the GDM

and control groups; however, the distribution distance of the GDM

group was relatively far compared to that of the control group.
Discussion

This study explored the composition of the intestinal microbiota

and its alternative characteristics from T2 to T3 in women with GDM

and pregnant women with normal glucose tolerance. The results

showed that Scardovia and Propionibacterium were significantly

higher in T3 than in T2 in the control group, but not in the GDM

group. The changes in the relative abundance of the remaining

bacteria from T2 to T3 were stable in the GDM and control
A B

DC

FIGURE 4

The alpha diversity of intestinal microbiota in the GDM and control groups. (A) Chao1 estimator, (B) abundance-based coverage estimator (ACE),
(C) Shannon, (D) Simpson. GDM, Gestational diabetes mellitus. SGDM: Second trimester in the GDM group; TGDM, Third trimester in the GDM
group; SHC, Second trimester in the control group; THC, Third trimester in the control group.
A B

FIGURE 3

Venn diagram among the GDM and control groups. (A) The overlaps of OTUs in the GDM group. (B) The overlaps of OTUs in the control groups.
GDM, Gestational diabetes mellitus; SGDM, Second trimester in the GDM group; TGDM, Third trimester in the GDM group; SHC, Second trimester in
the control group; THC, Third trimester in the control group.
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groups. Nevertheless, there were significant differences in the

composition of the gut microbiota in the GDM and control groups

in both T2 and T3.

We found that the dominant bacteria were composed of four

phyla: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria at

the phylum level in both the GDM and the control groups, which was

consistent with the results of Tang et al. (28). Ma et al. (29) found that

the four dominant phyla were Firmicutes, Bacteroidetes,

Proteobacteria, and Tenericutes. Actinobacteria (30) act as markers

of GDM and are positively correlated with fasting blood glucose levels;

however, this association was not present after adjusting for pre-

pregnancy body mass index (BMI). Tenericutes (31) are the dominant

bacteria in the neonatal oral microbiota in babies of women with

GDM. In our study, the relative abundance of Tenericutes was less

than 1%, which may be explained by the type of samples studied and

sample size. At the genus level, Bacteroides, Faecalibacterium,

unidentified_Lachnospiraceae, unidentified_Ruminococcaceae,

Roseburia, Lachnospira, and Bifidobacterium were the dominant

bacteria in both the GDM and control groups. Blautia,

Parabacteroides, and Megamonas were the dominant bacteria in the

GDM group, while Collinsella, Subdoligranulum, and Streptococcus

were the dominant bacteria in the control group.These GDM-

enriched genus may participate in the development of GDM by

influencing host immune status. Blautia (32), which is significantly

associated with host dysfunctions, such as obesity, diabetes, and

various inflammatory diseases, is a genus of biotransformative

bacteria with probiotic properties that can regulate host health and

alleviate metabolic syndrome. Parabacteroides are enriched in

overweight women (30) and in women with GDM (18), which is

consistent with our findings.Megamonas is enriched in obese women

(16, 18) and has a positive relationship with glucose tolerance (18).

Megamonas was the dominant bacterium specific to women with

GDM; however, women with GDM were not classified by pre-

pregnancy weight class in our study. Women with a history of

GDM have a high abundance of Collinsella in their postpartum gut

microbiota, and Collinsella has the potential to be a marker for the
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future development of type 2 diabetes in women with a history of

GDM (30). However, previous studies have reported that Collinsella

increases in healthy pregnancies (33, 34). In the present study, the

relative abundance of Collinsella was higher in the control group. This

difference may need the studies that enroll more subjects to explain.

Subdoligranulum, which produces short-chain fatty acids such as

butyrate, is negatively associated with human fat accumulation,

insulin resistance, insulin, CRP, IL6, and other markers (35). A

study (36) found that the relative abundance of Streptococcus in

overweight, obese, and diabetic patients was lower than that of

healthy controls, and Hajifaraji et al. (37) found that the

combination of Streptococcus with other probiotics had a positive

outcome in the treatment of metabolic diseases.

In our study, we found that the composition of the intestinal

microbiota in the GDM and pregnant women with normal glucose

tolerance was relatively stable from T2 to T3. Only the relative

abundance of Scardovia and Propionibacterium in T3 was

significantly higher than in T2 in pregnant women with normal

glucose tolerance. Members of Scardovia are one of the seven genera

of the Bifidobacteriaceae family and recognized as the healthy gut

microbiota (38). Scardovia can produce acetic acid from glucose,

together with small amounts of lactic and formic acid (39). It is

reported that Propionibacterium can ameliorate insulin resistance

by obesity (40).Insulin resistance, which is emphasized in the

development of GDM in the late pregnancy, is associated with a

reduced abundance of butyrate-producing bacteria (41–43).

Ferrocino et al. found that an increase in Firmicutes and a

reduction in Bacteroidetes and Actinobacteria from T2 to T3 in

women with GDM who adhered to dietary recommendations

showed a better metabolic and inflammatory pattern at the end of

the study and a clear decrease in Bacteroidetes (44). We found that

at the phylum level, the Firmicutes/Bacteroidetes ratio both

decreased in the GDM group and control group from T2 to T3.

The increased Firmicutes/Bacteroidetes ratio is associated with

obesity and inflammation (45), and the decreased Firmicutes/

Bacteroidetes ratio in our study may be related to factors such as
FIGURE 5

PCoA shows the dispersal of gut microbiota between trimesters in the GDM and healthy control groups. Red represents GDM samples in T2, green
represents GDM samples in T3, dark blue represents samples of the control group in T2, and light blue represents samples of the control group in
T3. SGDM, GDM group in the second trimester; TGDM, GDM group in the third trimester; SHC, control group in the second trimester; THC, control
group in the third trimester; PCoA, Principal Coordinate Analysis. *P value < 0.05.
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dietary modifications. However, Sun et al. (17) found a

phenomenon that with advancing gestation, decreasing trends in

the Firmicutes/Bacteroides ratio were observed in the control group

but not in the GDM group. In addition, they also found that time-

dependent alterations in gut microbiota composition were found in

the control group but not in the GDM group. Compared to women

with normal glucose, women with GDM tended to have a reduced

intestinal microbiota diversity in the first trimester, while

differences in intestinal microbiota composition were consistent

in T2 and T3. Our research does not observe the composition of the

gut microbiota in the first trimester and our study also observed the

stable composition of the gut microbial in T2 and T3 in women with

GDM. Women who develop GDM may have alterations in

intestinal microbial composition from early pregnancy, explained

by metabolic status. Bacteroides, a Gram-negative bacterium, can

produce large amounts of LPS, leading to inflammation. LPS mainly

activates inflammation via the Toll-like receptor 4 signaling

pathway (46). From the first to the third trimester, women gain

adiposity and have higher circulating levels of insulin (9). In women

with GDM, two main inflammatory pathways, nuclear factor kappa

B (NF-kB) and signal transducers and activators of the transcription

3 (STAT3) pathways, have been identified (13). The findings of this

study provide evidence to explain the stable status of GDM.

In this study, the Shannon and Simpson indices of the GDM

and healthy pregnancy groups both decreased from T2 to T3;

however, the Shannon and Simpson indices of the GDM women

were significantly higher than those of pregnant women with

normal glucose tolerance. Our study was consistent with previous

researches, showing the decreased microbial diversity with

advancing gestation (9). This phenomenon might be due to the

metabolic modifications occurring pregnancy, including changes of

blood glucose and hormone. Higher a diversity values were

associated with a lower incidence of type 2 diabetes, which was

not affected by energy intake, exercise, education, smoking, or

medication (47). Insulin resistance and elevated blood glucose

levels can increase the risk of type 2 diabetes (48). With

increasing gestational age, the level of insulin resistance increases

to meet the nutritional supply of the mother and child (49). A lower

Shannon index significantly correlated with blood glucose levels in

patients with diabetes (19). The high Shannon and Simpson indices

of the GDM group in this study could be explained by the inherent

differences between the GDM and control groups. According to

previous studies, b diversity is associated with insulin resistance and

plasma OGTT levels (19, 47). Different methods to investigate beta

diversity can influence the results. Unweighted UniFrac is sensitive

to the absence and presence of low abundant bacteria, while both

weighted Unifrac and Bray Cruits are more sensitive to the more

abundant bacteria. In our study, unweighted Unifrac is used to

investigate beta diversity. More methods should be used to claim

beta diversity.

Our study explored the alterations of gut microbiota with the

increasing gestational age in women with GDM and pregnant

women with normal glucose tolerance. So far, few studies have

explored the changes of intestinal microbiota composition in

women with GDM during different trimesters. The longitudinal
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study will contribute to the understanding of the association

between gut microbiota and GDM and provide the thinking way

to predict the occurrence of GDM during early pregnancy. There

are also some limitations in our study. First, this study was

conducted at a single center with a limited sample size, and larger

studies are needed in the future to verify the results of the study.

Second, our study is an observational study and data may lack

causality. There need more randomized control tests to research the

association of dynamic gut microbiota composition between

different trimesters in women with GDM. Third, lifestyle

management is the first-line treatment for GDM but the diet

patterns of the participants in this study were lack.
Conclusion

Our study indicated that the composition of the gut microbiota

was stable with advancing gestation in women with GDM

compared with the control group and gut microbiota composition

was obviously different between women with GDM and controls.

These findings may help explore the etiology of GDM from new

perspective of the relationship between gut microbiota and

glucose metabolism.
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