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Aims: As sex hormone-dependent tumors, it remains to be clarified whether there

is a common genetic signature and its value between breast and endometrial

cancers. The aim of this study was to establish the shared sex hormone

metabolism-related gene prognostic index (SHMRGPI) between breast and

endometrial cancers and to analyze its potential role in the therapeutic and

prognostic assessment of endometrial cancers.

Methods: Using transcriptome data from TCGA, tumor-associated gene modules

were identified by weighted gene co-expression network analysis, and the

intersection of module genes with female sex hormone synthesis and

metabolism genes was defined as sex hormone metabolism-related gene.

SHMRGPI was established by the least absolute shrinkage and selection operator

and Cox regression. Its prognostic value of patients with endometrial cancer was

validated, and a nomogram was constructed. We further investigated the

relationship between SHMRGPI groups and clinicopathological features, immune

infiltration, tumor mutation burden, and drug sensitivity.

Results: A total of 8 sex hormone metabolism-related gene were identified as key

genes for the construction of prognostic models. Based on SHMRGPI, endometrial

cancer patients were divided into high and low SHMRGPI groups. Patients in the

low SHMRGPI group had longer overall survival (OS) compared with the high group

(P< 0.05). Furthermore, we revealed significant differences between SHMRGPI

groups as regards tumor immune cell infiltration, somatic mutation, microsatellite

instability and drug sensitivity. Patients with low SHMRGPI may be the beneficiaries

of immunotherapy and targeted therapy.

Conclusions: The SHMRGPI established in this study has prognostic power and

may be used to screen patients with endometrial cancer who may benefit from

immunotherapy or targeted therapy.

KEYWORDS

endometrioid endometrial cancer, breast cancer, sex hormone metabolism-related gene,
prognostic index, weighted gene co-expression network analysis, immunotherapy
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1 Introduction

Breast and endometrial cancers are the first and fourth most

common tumors in women and pose a serious threat to women’s

health (1). As tumors originating from sex hormone-dependent organs,

there is accumulating evidence that sex hormones and dysregulated

hormonal signaling influence disease origin, treatment response, and

clinical outcomes in breast and endometrial cancers (2–6). Based on

clinicopathological characteristics and immunohistochemical tests,

breast cancer has been classified into different pathological subtypes,

in which patients who are estrogen receptor (ER) and progesterone

receptor (PR) positive show an ideal response to endocrine therapy and

a good prognosis (7). Similarly, endometrioid endometrial cancer

(EEC), as a tumor affected by sex hormones and sensitive to

endocrine therapy (8, 9). Investigating the molecular markers and

potential mechanisms it shares with breast cancer can help deepen our

understanding of EEC.

The morbidity and mortality of endometrial cancer have

increased annually in recent years, which is probably due to the

combined effects of an aging population, the decline in benign

hysterectomies, and the obesity epidemic (10). Despite significant

advances in various aspects of endometrial cancer management, the

cumulative threat to women’s health from endometrial cancer has not

abated. Molecular classification based on genomic features has

improved our understanding of endometrial cancer and clinical

practice has changed as a result (11). Further analysis of The

Cancer Genome Atlas (TCGA) data to advance our knowledge of

the tumor and address the rising burden of disease is critical.

In this study, we performed a weighted gene co-expression

network analysis (WGCNA) using transcriptome data from the

TCGA database for breast and endometrial cancers to identify the

sex hormone metabolism-related gene (SHMRG) associated with the

synthesis and metabolism of female sex hormone, and subsequently

established the SHMRG prognostic index (SHMRGPI) in patients

with endometrial cancer and analyzed the value of SHMRGPI in

survival assessment and therapeutic modality selection. With this

study, we hope to identify novel biomarkers that can be used for

screening and treatment and provide a basis for the search for

potential beneficiaries of immunotherapy and targeted therapy.
2 Methods

2.1 Data download and selection

The transcriptome data for the breast cancer samples were

downloaded from TCGA. Samples from ER and PR positive female

patients were selected for subsequent analysis. Transcriptome, somatic

variation and clinical data for endometrial cancer samples were

downloaded from TCGA, and EEC samples were selected.

Transcriptome data for normal breast and uterine tissues were

downloaded from the Genotype-Tissue Expression (GTEx) dataset

from XENA (12). Gene sets associated with the synthesis and

metabolism of female sex hormones were downloaded from the

Molecular Signatures Database (MSigDB) for subsequent analysis (13).
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2.2 Identification of SHMRG

Weighted gene co-expression network analysis (WGCNA) was

established to explore the relationship between expression and

phenotype data based on correlation coefficients (14). In this study,

WGCNA was used to identify gene modules associated with ER/PR

positive breast cancer and EEC. First, the sample clustering was

performed and abnormal samples were removed. After correlations

between genes were calculated, a matrix was built for gene

stratification and module clustering to determine the correlation

between gene modules and tumors based on the eigenvalues of gene

modules of tumor samples and normal samples. In the WGCNA of

this study, the soft threshold beta was 2, minModuleSize was 30,

mergeCutHeight was 0.25 and deepSplit was 2. Subsequently, we took

the intersection of EEC-related modules, ER/PR positive breast

cancer-related modules and gene sets downloaded from MSigDB as

shared SHMRG.
2.3 Training and testing of the SHMRGPI

The EEC sample was randomly divided into training and testing

cohorts in a ratio of 7:3. SHMRG associated with the prognosis of

EEC patients was screened in the training cohort using univariate Cox

regression. Subsequently, the SHMRGPI was established using the

least absolute shrinkage and selection operator (LASSO) and stepwise

multivariate Cox regression. The SHMRGPI was calculated according

to the following equation:

SHMRGPI =oicoefficient(SHMRGi)� expression(SHMRGi)

The distributions of SHMRGPI and survival status were plotted as

scatter plots. The correlation between SHMRG and SHMRGPI was

shown as heat maps. Patients with EEC were divided into two groups

based on the median SHMRGPI (Supplementary Table 1). The

principal component analysis (PCA) showed the distribution of the

two SHMRGPI groups. Overall survival (OS) was compared between

the two groups using the log-rank test. We plotted time-dependent

receiver operating characteristic (tdROC) curves and calculated the

area under the curve (AUC) for assessing the predictive power of

SHMRGPI. The above analysis was validated in the test and entire

cohorts. The SHMRGPI was established and validated using

survminer, survival, glmnet, ggplot2 R packages.
2.4 Clinical correlation of the
prognostic model

We performed a multifactor ROC analysis to demonstrate the

advantages of SHMRGPI over other relatively complete

clinicopathological characteristics (age, tumor stage and grade) in

prognostic prediction. We then use the regplot R packages to develop

a nomogram. The accuracy of the nomogram was assessed using

calibration curves. Furthermore, we performed a stratified analysis to

examine the predictive power of SHMRGPI in different

clinical subgroups.
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2.5 Immune correlation analysis

To assess immune cell infiltration in the different SHMRGPI

groups, we performed single sample gene set enrichment analysis

(ssGSEA). Then we investigated the differential expression of immune

checkpoint genes between the SHMRGPI groups. Tumor immune

dysfunction and exclusion (TIDE) scores predict the response of

immunotherapy by model primary mechanisms of tumor immune

evasion (15). We calculated TIDE scores for each sample using an

online tool to analyze the differences in TIDE scores between

SHMRGPI groups.
2.6 Tumor somatic mutation analysis

We used the maftools R package to collate and analyze the

somatic mutation data from patients with EEC. Fifteen genes with

the highest tumor mutation frequency in each SHMRGPI group were

visually analyzed. The tumor mutation burden (TMB) was

subsequently calculated for each sample to analyze the discrepancy

in TMB levels between SHMRGPI groups. After establishing

subgroups based on the median TMB, we analyzed the prognostic

value of SHMRGPI in the TMB subgroups. The microsatellite

instability (MSI) status of EEC patients is downloaded by invoking

the cBioPortalData R package. Thereafter, differences of MSI status in

the SHMRGPI group and differences of SHMRGPI in the MSI

subgroup were analyzed.
2.7 Drug sensitive analysis

The half-maximal inhibitory concentrations (IC50) of common

antitumor drugs were predicted for both SHMRGPI groups based on

data from Cancer Drug Sensitivity Genomics (16). The differences in

IC50 between the two groups were analyzed and visualized by the

oncopredict and ggplot2 R packages (17).
2.8 Statistical analysis

The WGCNA was analyzed and visualized using the WGCNA

and limma R packages. Cox regression and survival analysis was

performed by the survivor and survminer R packages. Differences in

survival between groups were visualized using Kaplan-Meier survival

curves. The Wilcoxon signed-rank test was used to test the differences

between quantitative data. The entire analysis was conducted in R

(version 4.0.3). P< 0.05 was considered statistically significant.
3 Results

3.1 The tumor-related gene modules in ER/
PR positive breast cancer and EEC

802 ER/PR positive tumor tissue samples and 79 normal samples

were selected from the TCGA-BRCA dataset, and 179 normal
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samples from the GTEx database were combined for WGCNA after

batch effects were removed. The gene clustering dendrogram was

shown in Figure 1A. The expression matrix was divided into 19 gene

modules, and four modules “blue”, “cyan”, “turquoise” and “yellow”

were highly associated with ER/PR positive breast cancer and

identified as ER/PR positive breast cancer-related modules

(Figure 1B). Similarly, 408 EEC tissue samples and 19 normal

samples were selected from the TCGA-UCEC dataset, and 78

normal samples from the GTEx database were combined. The

results of the WGCNA after removing batch effects were showen as

in Figures 1C, D. The expression matrix was divided into 16 gene

modules, “grey”, “purple”, “turquoise”, “tan”, “cyan”, “blue”, “green”,

“pink”, “red”, “black”, “brown” were highly associated with EEC and

were identified as EEC-related modules.
3.2 Identification of shared SHMRG

The female sex hormone synthesis and metabolism related-gene

sets downloaded from MSigDB were shown in Supplementary

Table 2. The intersection of ER/PR positive breast cancer-related

modules, EEC-related modules, and gene sets from MSigDB was

taken. As a result, 126 genes were identified as shared SHMRG

(Supplementary Table 3).
3.3 Training and testing of SHMRGPI

Total 399 samples from the TCGA database were included in this

study and were randomly divided into training and test groups in a

7:3 ratio. The univariate regression analysis of SHMRG combined

with expression and clinical data revealed a total of 19 SHMRG were

potentially associated with prognosis in patients with EEC (P< 0.1,

Figure 2A). We then performed LASSO and stepwise multivariate

Cox regression, and finally identified 8 SHMRG for the construction

of the SHMRGPI (Figures 2B, C). The SHMRGPI was calculated

according to the following formula, and the training cohort was

divided into high and low groups based on the median SHMRGPI:

SHMRGPI = ESRRB × 1.42469 – KDM1A × 3.68341 + HSD3B1 ×

3.21536 + PGR × 0.52695 + AKR1C3 × 0.38220 – ARSB × 1.10113 +

RDH8 × 2.77368 + KDM5B × 2.34959.

PCA analysis showed the difference in distribution between the

two SHMRGPI groups (Figure 2D). The survival time and survival

status of the SHMRGPI groups in patients with EEC were shown in

Figure 2E. As SHMRGPI increased, survival time decreased and the

number of deaths increased. The expression of key genes of

SHMRGPI and their correlation with SHMRGPI groups were

shown in a heat map (Figure 2F). The Kaplan-Meier curves

demonstrated a better prognosis in the low SHMRGPI group (P =

0.041, Figure 2G). The tdROC illustrated the predictive power of

SHMRGPI (AUC 0.854 at one year, 0.744 at three years, and 0.754 at

five years, Figure 2H).

The same distribution between groups and differential survival

results as in the training cohort were also observed in the test and

entire cohorts, validating the strong and robust prognostic power of

SHMRGPI (Figures 3A-H).
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3.4 Correlation analysis of clinical features

The Multifactor ROC analysis demonstrated the strong predictive

power of SHMRGPI compared to other clinicopathological

(Figure 4A). Combining SHMRGPI, age, tumor stage, and grade,

we constructed a nomogram to predict survival at one, three, and five

years after diagnosis in EEC patients. (Figure 4B). The agreement

between the predictions of the nomogram and actual observations

was confirmed using calibration curves (Figure 4C). To further assess

the prognostic value of SHMRGPI, we performed a stratified analysis

in the entire cohort. The results showed that SHMRGPI was

associated with prognosis in white, FIGO stage I-II, tumor grade 3

and obese EEC patients (P< 0.05; Figures 5A-D).
3.5 Immune correlation analysis

To investigate the relationship between SHMRGPI grouping and

immune status, ssGSEA analysis was performed for each immune cell

subset. Activated CD4+ T cells, effector memory CD4+ T cells,

gamma delta T cells, and type 2 T helper cells were more infiltrated

in the low SHMRGPI group, whereas CD56dim natural killer cells,

eosinophil Immature dendritic cells, and plasmacytoid dendritic cells
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were more infiltrated in the high SHMRGPI group (Figure 6A). To

explore the potential value of SHMRGPI in immunotherapy, we

further analyzed the expression of immune checkpoint genes

between the two groups and found that the immune checkpoint

genes CD276, CD40, ICOSLG, LAG3, PD-1, TNFRSF8, TNFSF4,

TNFSF9, and TNFSF18 were more highly expressed in the low

SHMRGPI group (Figure 6B). In addition, we predicted the

response of each SHMRGPI group to immunotherapy based on the

TIDE scores, and the results showed that the low SHMRGPI group

was more likely to benefit from immunotherapy (Figure 6C).
3.6 Gene mutation analysis

Somatic mutations in different SHMRGPI groups were

demonstrated by waterfall plots (Figure 7A). PTEN, ARID1A, PIK3CA,

and TTN were mutated frequently in the EEC and more frequently in

the low SHMRGPI group, and CTNNB1wasmutated more frequently in

the high SHMRGPI group. After that, we calculated the tumor mutation

burden in each group and observed difference close to the statistical

threshold in TMB levels between SHMRG groups, with relatively higher

TMB in the low SHMRGPI group (Figure 7B). Grouped by median

TMB, SHMRGPI maintained its prognostic value in the low TMB
A B

DC

FIGURE 1

WGCNA of ER/PR-positive breast cancer and EEC. (A) The cluster dendrogram of ER/PR-positive breast cancer. (B) Correlation of WGCNA modules and
ER/PR-positive breast cancer. (C) The cluster dendrogram of ER/PR-positive breast cancer. (D) Correlation of WGCNA modules and EEC. WGCNA,
weighted gene co-expression network analysis. ER, estrogen receptor; PR, progesterone receptor.
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subgroup (Figure 7C). We further analyzed the correlation between MSI

and SHMRGPI. Figure 7D shows the difference in the distribution of

microsatellite instability status in SHMRGPI groups, with a higher

proportion of MSI-high (MSI-H) in patients in the low SHMRGPI

group. Patients with MSI-H patients had a lower SHMRGPI, compared

to patients with microsatellite stable (MSS, Figure 7E).
Frontiers in Endocrinology 05
3.7 Drug sensitive analysis

Drug sensitivity analysis based on the oncopredict R package

revealed significant differences between the SHMRGPI groups in

olaparib, niraparib, and talazoparib (Figures 8A–C). The low

SHMRGPI group was more sensitive (P< 0.05).
A B

D

E F

G H

C

FIGURE 2

Establishment of the SHMRGPI in the train cohort. (A) Univariate Cox regression analysis for screening prognostic SHMRG. (B, C) LASSO regression
analysis for variable selection. (D) PCA plot for different SHMRGPI groups. (E) Scatter diagram for the SHMRGPI and survival status of EEC patients.
(F) Heat map for the expression of SHMRG and SHMRGPI groups. (G) Kaplan–Meier curves of survival difference between SHMRGPI groups. (H) ROC for
predicting the sensitivity and specificity of survival according to the SHMRGPI. SHMRGPI, sex hormone metabolism-related gene prognostic index;
LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; EEC, endometrioid endometrial cancer. ROC, receiver
operating characteristic curve.
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4 Discussions

Sex hormones play an important role in the oncogenesis,

diagnosis, and treatment of breast cancer, and similarly, sex

hormones influence the management of patients with endometrial

cancer as important disease-related risk factors (7, 9, 10). However,

few studies have addressed the transcriptomic commonalities

between breast and endometrial cancers. Our study used WGCNA

to identify shared SHMRG between ER/PR-positive breast cancer and

EEC. On this basis, we explore the potential benefits of SHMRG in the

management of patients with EEC.
Frontiers in Endocrinology 06
By Cox and LASSO regression we established a prognostic gene

formula called SHMRGPI, which includes ESRRB, KDM1A, HSD3B1,

PGR, AKR1C3, ARSB, RDH8, and KDM5B. KDM1A, also called LSD1,

has been found to be aberrantly expressed in a variety of cancers and

is closely associated with cellular effects such as epithelial-

mesenchymal transition (EMT), proliferation, and malignant

transformation (18). Drugs targeting KDM1A have entered clinical

studies in small cell lung cancer and acute myelocytic leukemia (19).

In the treatment of endometrial cancer, combined with mTOR

inhibitors, KDM1A inhibitors were found to inhibit tumor growth

in ex vivo and in vivo experiments (20). The protein encoded by PGR,
A B

D

E F

G H

C

FIGURE 3

Validation of the SHMRGPI in the test and entire cohorts. PCA plot (A), scatter plot (B), heat map (C) and Kaplan–Meier curves (D) for the test cohort.
PCA plot (E), scatter plot (F), heat map (G), and Kaplan–Meier curves (H) for the entire cohort.
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A

B

C

FIGURE 4

Construction and examination of nomogram. (A) The multifactor ROC of SHMRGPI, age, FIGO stage, and tumor grade. (B) The nomogram for predicting
prognosis of EEC patients. **: p value < 0.01. (C) The calibration curves of the nomogram. ROC, receiver operating characteristic curve.
A B

DC

FIGURE 5

Stratified analysis of EEC patients. Kaplan-Meier curves of patients with white race (A), FIGO stage I-II (B), tumor grade 3 (C), BMI ≥ 30 (D). FIGO, the
international federation of gynecology and obstetrics. BMI, body mass index.
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A

B D EC

FIGURE 7

Analysis of mutation data. (A) Waterfall plot for somatic mutations in different SHMRGPI groups. (B) Differential analysis of TMB in different SHMRGPI groups.
(C) Kaplan–Meier curves of survival differences between the SHMRGPI groups in patients with low TMB. (D) Distribution of MSI status in the different
SHMRGPI groups. (E) Differential analysis of the SHMRGPI in patients with different MSI status. TMB, tumor mutation burden; MSI, microsatellite instability.
A

CB

FIGURE 6

Immune correlation analysis. (A) Comparison of the discrepancy in immune cell infiltration between two groups based on ssGSEA. (B) Differences in the
expression of immune checkpoint genes between the two groups. (C) Differences in the TIDE scores between the two groups. ssGSEA, single-sample gene
set enrichment analysis; TIDE, tumor immune dysfunction and exclusion. ns, not significant. *: p value < 0.05, **: p value < 0.01, and ***: p value < 0.001.
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a member of the steroid receptor superfamily, regulates the biological

effects of progesterone, and it has been studied as an important

marker associated with prognosis and disease progression in

endometrial cancer (21). KDM5B, ARSB, AKR1C3, HSD3B1, ESRRB

are involved in steroid hormone metabolism and have been found to

be associated with other hormone-dependent tumors, such as

prostate and breast cancers (22–26). However, evidence of their

association with endometrial cancer is limited. The enzyme

encoded by RDH8 involved in the rhodopsin regeneration pathway,

but it’s relationship with tumors has not been mentioned.

Based on SHMRGPI, EEC patients were divided into two distinct

groups. The prognostic value of SHMRGPI for patients with EEC was

demonstrated from different points of view. Combining age, FIGO

stage, tumor grade, and SHMRGPI, we developed a nomogram to

stratify the prognosis of patients with EEC, which may have

clinical significance.

Considering the complex relationship between host immune

function and tumor, and the prospect of immunotherapy in the

treatment of patients with EEC, we analyzed the discrepancy in

immune cell infiltration in each SHMRGPI group. The results

revealed that CD4+ T cells, Gamma delta T cells, and Type 2 T

helper cells were more abundant in the low SHMRGPI group. CD4+

T cells and TH cells played an important supportive role in the anti-

tumor immune effect, and Gamma delta T cells killed tumor cells

through a non-MHC-restricted manner (27, 28). Their infiltration

reflects the active anti-tumor immune effect in the low SHMRGPI

group. Subsequently, we analyzed the expression of immune

checkpoint genes in different SHMRGPI groups and found that a

variety of immune checkpoint genes, including PD-1, were more

expressed in the low SHMRGPI group. Based on the TIDE scores to

predict the potential clinical efficacy of immunotherapy in different

SHMRGPI groups, it was found that the high SHMRGPI group was

more likely to exhibit T cell dysfunction and exclusion and might

have poor response when receiving immunotherapy (15). Therefore,

we speculate that SHMRGPI can be used as a potential tool to screen

patients with EEC who are suitable for immunotherapy.

We found differences in mutation frequency between SHMRGPI

groups by analyzing somatic mutation data. Calculation of TMB

revealed differences close to the statistical threshold in TMB levels

between SHMRGPI groups. Subsequent analysis of data based on

microsatellite instability status revealed a higher proportion of MSI-H

in the low SHMRGPI group and a lower SHMRGPI in patients with

MSI-H than in patients withMSS. Data from Keynote 028 and Keynote

158 supported the view that patients with TMB-H, MSI-H, and PD-1/
Frontiers in Endocrinology 09
PD-L1 positive relapsed or metastatic endometrial cancer can benefit

from immunotherapy (29–31). In our study, the low SHMRGPI group

with high TMB levels and a high proportion of MSI-H was more likely

to benefit from immunotherapy. This result is consistent with the

aforementioned results of SHMRGPI and immune correlation analysis.

Whether the encouraging results of poly (ADP-ribose)

polymerase inhibitors (PARPi) in maintenance therapy for ovarian

cancer can be replicated in the management of patients with

endometrial cancer is a common concern among gynecologic

oncologists (10, 32, 33). The results of the drug sensitivity analysis

of gynecologic antineoplastic agents showed that PARPi (including

olaparib, niraparib and talazoparib) differed in drug sensitivity

between the SHMRGPI groups. In breast cancer, estrogen was

found to enhance the cytotoxicity of PARP inhibitors on ER-

positive tumor cells, resulting in inhibition of cell growth (34). In

EEC, the ability of SHMRGPI to screen potential PARPi beneficiaries

and the mechanism of correlation between SHMRG and PARPi

remain to be further confirmed.

A limitation of this study is that the data used to build the model

were obtained from a retrospective database and the findings are

potentially susceptible to bias. Inferences based on the results of

immune and drug sensitivity analysis need to be supported by

additional experimental evidence.

5 Conclusions

In this study, we developed a prognostic model and analyzed it

with respect to clinical, somatic mutation, immune and drug

sensitivity. Focusing on biomarkers shared by endometrial cancer

and breast cancer, it provides a new idea for the precise treatment of

patients with EEC.
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FIGURE 8
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