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Predicting 18F-FDG SUVs of
metastatic pulmonary nodes
from CT images in patients
with differentiated thyroid
cancer by using a convolutional
neural network
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and Chentian Shen1*

1Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2School of Computer Engineering and Science,
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Purpose: The aim of this study was to predict standard uptake values (SUVs) from

computed tomography (CT) images of patients with lung metastases from

differentiated thyroid cancer (DTC-LM).

Methods: We proposed a novel SUVs prediction model using 18-layer Residual

Network for generating SUVmax, SUVmean, SUVmin ofmetastatic pulmonary nodes

from CT images of patients with DTC-LM. Nuclear medicine specialists outlined the

metastatic pulmonary as primary set. The best model parameters were obtained

after five-fold cross-validation on the training and validation set, further evaluated in

independent test set. Mean absolute error (MAE), mean squared error (MSE), and

mean relative error (MRE) were used to assess the performance of regression task.

Specificity, sensitivity, F1 score, positive predictive value, negative predictive value

and accuracy were used for classification task. The correlation between predicted

and actual SUVs was analyzed.

Results: A total of 3407 nodes from 74 patientswithDTC-LMwere collected in this

study. On the independent test set, the average MAE, MSE and MRE was 0.3843,

1.0133, 0.3491 respectively, and the accuracy was 88.26%. Our proposed model

achieved high metric scores (MAE=0.3843, MSE=1.0113, MRE=34.91%) compared

with other backbones. The predicted SUVmax (R2 = 0.8987), SUVmean (R2 =

0.8346), SUVmin (R2 = 0.7373) were all significantly correlated with actual SUVs.

Conclusion: The novel approach proposed in this study provides new ideas for the

application of predicting SUVs for metastatic pulmonary nodes in DTC patients.

KEYWORDS

standard uptake value, lung metastases, differentiated thyroid cancer, prediction
model, convolutional neural network
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1 Introduction

Thyroid cancer is the most common malignancy in the

endocrine system (1). In China, it accounts for 4.7% of all cancer

incidence and is expected to have 224,023 new patients in 2022 (2).

Thyroid cancer is divided into subspecies of differentiated thyroid

carcinoma (DTC), anaplastic thyroid carcinoma (ATC), and

medullary thyroid carcinoma (MTC). DTC mainly includes

papillary thyroid carcinoma (PTC), follicular thyroid carcinoma

(FTC) and Hürthle cell carcinoma, which accounts for 94% of

thyroid cancer and has a relatively good prognosis after

standardized treatment (3, 4). However, it has been reported in

the literature that 5%-25% of DTC patients can develop distant

metastasis (5, 6), with lung metastases being the most common,

accounting for 55%-85% of cases (7–10). In addition, respiratory

failure due to pulmonary metastases may be the leading cause of

death in patients with lung metastases from differentiated thyroid

cancer (DTC-LM), with approximately 50% of patients dying

within 10 years (11, 12).

Based on iodine uptake capacity (9), lung metastases from DTC

can be classified as 131I-avid and non 131I-avid (13). 18-

fluorodeoxyglucose positron emission tomography/computed

tomography (18F-FDG PET/CT) is mainly considered for high-

risk DTC-LM patients with elevated thyroglobulin (Tg) and

negative 131I whole-body scan (14). It can not only detect lung

metastases with high sensitivity and specificity, but also predict the

potential poor outcome of 131I therapy in 18F-FDG positive lesions

(15, 16).
18F-FDG PET/CT is becoming more commonly used in clinical

practice. However, the total cost of this examination ranged from

7,000 to 10,000 RMB, which hampers the implementation of PET/

CT units and imposes a heavy financial burden on patients (17).

According to the World Health Organization’s Global Atlas of

Medical Devices, only 3% of upper-middle income, and 4% of

lower-middle income countries possesses at least one PET scanner

per million people. Furthermore, 95% of low income countries and

92% of lower-middle income countries don’t have an available PET/

CT unit (18). Compared to PET/CT, CT scans are much more

prevalent, especially in some developing countries. In China, the

number of PET/CT was only 0.3 units per million people, which is

much less than the 18 CT units per million people. To sum up, CT is

a widespread and cost-effective alternative that can be used as a

routinely used technique to analyze pulmonary nodules.

Artificial intelligence (AI) algorithms, especially deep learning,

have an excellent performance in medical image analysis because of

its ability to integrate vast datasets. Convolutional neural network

(CNN) is one of the representative algorithms of deep learning. It

has attracted more attention in radiological image processing with

its powerful deep structure representation capability. CNN trained

on millions of photographic images can be applied to medical

images through transfer learning (19). The development of AI can

be applied clinically to improve patient care by providing accurate

and efficient decision support (20, 21).

In this study, we proposed a model with 18-layer Residual

Network (ResNet-18) based on CNN to predict standard uptake
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values (SUVs) of pulmonary metastatic nodules in patients with

DTC-LM from CT images. The proposed model can extract features

of lung metastases automatically and predict the SUVmax,

SUVmean and SUVmin based on CT images. Applying AI

methods to CT images of patients with DTC-LM to achieve SUV

prediction has great clinical implications.
2 Methods

2.1 Datasets

The data used in this study were retrospectively derived from

the Department of Nuclear Medicine, Shanghai Sixth People’s

Hospital from November 2014 to September 2021. The patients

who satisfied the following criteria were finally enrolled: (1)

differentiated thyroid carcer confirmed by pathological results

after total or near total thyroidectomy; (2) all patients included

had underwent 18F-FDG PET/CT scan; (3) more than three

pulmonary nodes detected by 18F-FDG PET/CT and no suspected

other primary tumor was found; (4) thyroid stimulating hormone

(TSH)-suppressed Tg >1 ng/ml or TSH-stimulated Tg >10 ng/ml,

or Tg antibody (TgAb) >100 IU/ml; (5) metastatic pulmonary

nodes were confirmed on 131I-SPECT/CT scan after radioiodine

therapy; (6) or pathologically proved metastatic pulmonary nodes

from DTC. Exclusion criteria were as following: (1) with history of

other malignancies; (2) other primary tumor confirmed by PET/CT

images; (3) low-quality images; (4) loss of follow-up and

unnecessary information.
18F-FDG PET/CT images were acquired according to

standardized scanning protocols at our institution. All patients

fasted and underwent PET/CT scans 60 minutes after receiving

intravenous injection of a dose of 3.7 MBq 18F-FDG per kilogram of

body weight. PET/CT equipment manufactured by GE Healthcare

was used to generate the images. CT scanning was first performed

for attenuation correction and anatomical localization, followed by

PET emission scan to show 18F-FDG uptake, and PET/CT fusion

images were displayed after processing. Nuclear medicine

physicians measure SUV from the images at the workstation. This

study was approved by the ethics committee of Shanghai Sixth

People’s Hospital.
2.2 Network architecture

To predict SUVs from CT images, the following points have to

be considered: (1) DTC-LM patient’s metastatic pulmonary nodules

should first be manually outlined by the specialists in the

department of nuclear medicine as the regions of interest (ROI).

(2) The original input CT image should be separated from the PET/

CT images, which means does not contain PET images. (3) The CT

images are grayscale images, which contain less information. The

information of focused features such as pixel values need to be

extracted to predict SUVs. Therefore, it is important to consider
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pixel values in the preprocess, the network structure, and loss

function. Based on the above considerations, we designed this

framework as in Figure 1 to implement the prediction of SUVs

from CT images.
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2.3 Image preprocessing

The PET/CT images of the patients included in this study were

stored in DICOM format. The CT image matrix was 512� 512 with
FIGURE 1

Flowchart of our study (including patient selection and exclusion criteria, image pre-processing, architecture of the SUV prediction model and
model training, validation, testing).
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a thickness of 1.25 mm, and the PET image matrix was 128� 128

with a thickness of 3.27 mm.We used Algorithm 1 to preprocess the

CT images in DICOM format. We also converted the pixel values of

PET images in DICOM format to SUVs according to the calculation

method provided by GE health care. The PET images were

resampled using the SimpleITK tool to make the spatial

resolution consistent with the CT images.
Fron
Input: DICOM file for CT Ddcm

Window center Wc and window width Ww
Output: Dout

1. read Pixel Array, Rescale Slope and Rescale

Intercept from Ddcm

2. HounsfieldUnit = PixelArray � RescaleSlope + Rescale Inter

cept;

3. top = Wc +Ww*0:5;

4. bottom = Wc −Ww*0:5;;

5.for each hu in Hounsfield Unit do

6. hu =f top   if hu ≥ top

bottom if hu ≤ bottom;

hu otherwise
7.hu = hu ÷ (top − bottom);

8.end
9.return Hounsfield Unit;
ALGORITHM 1
Normalize based window center and width.

To protect patients’ privacy and uniform the image size, we

first removed all the information related to the patient from the

image includes age, name and patient number. The ROI of each

lung nodule were then created manually by a specialist in the

department of nuclear medicine. Finally, we obtained images of

3407 lung nodules of different sizes. We preprocessed each image

of labeled lung nodules as shown in Supplementary Figure 1. The

purpose of this was to remove irrelevant areas and interference

markers to prevent the adverse effect of noise on performance. The

labeled lung nodule was first positioned and then cropped it into

an image of 32� 32 pixels centered on the lung nodule. If the

labeled lung nodule was larger than 32� 32 pixels, a square was

cropped out with the longest edge of the lung nodule region and

resize to 32� 32 pixels. If there were multiple pulmonary nodules

in the cropped slice, we first found the labeled pulmonary nodule

by the algorithm, used it as an image center and cropped it a pixel

of 32 � 32. Then we set the pixel value to one for the labeled

pulmonary nodes in the image, while the other regions outside the

labeled pulmonary nodes were filled with pixel value zero. Finally,

an image of 32� 32 pixels containing a single pulmonary nodule

was input into the regression prediction part of the model for

predicting SUVs.
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2.4 Model structure

In this study, we used 34-layer Residual Network (ResNet-34) as

the backbone part of the network, which composed of one 7� 7

convolutional layer, eight basic blocks, one max pooling layers, and

two fully connected layers to realize the automatic prediction of SUVs

on CT images. The STEM contains a 7� 7 convolutional layer, and a

max pooling layer. It is worth noting that we have made minor

changes to the STEM part of the model. The input to the model was

the normalized CT data with the labeled data, calculated as follows:

input = (Dout +mask)*0:5

Where, Dout represents the normalized CT image, mask is the

labeled data.

Each STAGE contained two basic blocks. Unlike conventional

CNN stacked by multiple convolutional layers and pooling layers,

each basic block was composed of two 3� 3 convolutional layers and

a short connection. In the basic block, activation function uses ReLU.

Shortcut connections can make the deep network easier to optimize

and solve the degradation problem caused by deep networks. Finally,

there were two fully connected layers that collect and classify the

extracted features. The first fully connected layer was followed by the

Gaussian Error Linear Unit (GeLU) function and the Dropout layer,

and the second fully connected layer was followed by the Dropout

layer. The dimensions of feature maps after each layer were shown in

Supplementary Table 1.
2.5 Experimental settings and
evaluation indicators

We randomly split the dataset into two subsets, a training and

validation set containing 2843 nodes and an independent test set

containing 564 nodes. For the training, we used L1 Loss function

and the standard stochastic gradient descent (SGD) optimizer with

a momentum of 0.8, and a weight decay of 0.0005. The batch size

was set to 32, and the dropout rate was set to 0. The training epoch

was set to 200. The learning rate will be multiplied by 0.1 at the half

and three-quarters of the training epoch.

To evaluate the prediction effect of each model objectively and

select the final model, we performed five-fold cross-validation of the

model. The training and validation set was divided into five

nonoverlapping subdatasets randomly. Then the model was

trained and validated five times. Four subdatasets were used to

train the model, and the remaining one subset is used to validate the

model’s performance. Moreover, each model needed to be trained

and validated five times, and the independent test set was also used

to test the model’s performance.

Besides, we applied multiple evaluation indicators to estimate

the performance of the model. The performance of the regression

task was quantified by three metrics: mean absolute error (MAE),

mean squared error (MSE), and mean relative error (MRE).

MAE measured the average absolute error between the predicted

value and the actual SUVs on the dataset, while MRE measured the

average relative error. MSE reflected the absolute deviation of the

predicted value from the actual SUVs. They were defined as follows:
frontiersin.org

https://doi.org/10.3389/fendo.2023.1127741
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ju et al. 10.3389/fendo.2023.1127741
MAE

= o
n
i=1 predictedi − actualij j

n

MSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(predictedi − actuali)
2

n

s

MRE=

on
i=1

predictedi−actualij j
predictedi

n

In these equations above, n represents the number of images

(equal to 3407 in our experiment), predictedi, represents the predicted

SUVs of i-th nodes, while actuali represents the actual SUVs.

To further measure the performance of the model, we classified

the SUV according to different intervals, using classification metrics

to measure. The performance of the classification task was evaluated

using standard metrics including specificity, sensitivity, F1 score,

positive predictive value (PPV), negative predictive value (NPV)

and accuracy. They derived from true-positive (TP), true-negative

(TN), false-positive (FP), and false-negative (FN) as follows:

Specificity ¼  TN=(TN+FP)

Sensitivity ¼  TP=(TP+FN)

F1   score =   ð2� PPV� SensitivityÞ=(PPV+Sensitivity)

PPV ¼  TP=(TP+FP)

NPV ¼  TN=(TN+FN)

Accuracy ¼  (Sensitivity+Specificity)=2
2.6 Statistical analysis

The DICOM files of PET/CT were preprocessed using Python

toolkits such as Numpy 1.22.3, SimpleITK 2.1.1.1, OpenCV-python

4.6.0.66 and Pydicom 2.3.0. The deep learning network was implemented

in Python using PyTorch 1.8.0. The deep learning models were trained,

validated and tested on a server with anNVIDIA Tesla V100 PCIe 32GB

and an Intel Xeon Gold 5115 CPU. Correlation analysis was performed

in the statistical software GraphPad Prism 9.
3 Results

3.1 Patient and image characteristics

The number of patients analyzed in the study was 74, including 46

males and 28 females, The youngest of them was 11 years old and the

oldest was 82, with a mean age of 55.2 years. The clinical characteristics
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of the patients were shown in Table 1. The collected dataset contained

3407 PET/CT images of pulmonary nodules correctly marked by the

nuclear medicine specialists. Each contained an 32� 32 CT image and

an 32� 32 annotated image. The median maximum diameter of these

nodules was 9.77mm and the median actual SUVmax, SUVmean,

SUVmin measured by PET images were 1.31, 1.06, 0.81, respectively.

Their distribution was shown in Figure 2.
3.2 Performance in regression task

The performance of our proposed model in regression task was

shown in Table 2. The average MAE, MSE and MRE of SUVmax,

SUVmean and SUVmin on five-fold cross-validation set was

0.3493, 1.0880 and 0.3236 respectively. The average MAE, MSE

and MRE of SUVmax, SUVmean and SUVmin on independent test

set was 0.3843, 1.0133 and 0.3491 respectively.
3.3 Correlation between the predicted
SUVs with actual SUVs

We evaluated the correlation between the predicted SUVs with

actual SUVs of each node in the independent test set (Figure 3).

SUVmax (R2 = 0.8987, P<0.001), SUVmean (R2 = 0.8346, P<0.001),
TABLE 1 Patients’ clinical characteristics.

Characteristics Total (n=74)

Gender

Males 28 (37.8%)

Females 46 (62.2%)

Age (years) 57 (45,66)

Pathological types

PTC 56 (75.7%)

FTC 15 (20.3%)

PDTC 3 (4.1%)

Tg level* (ng/ml) 147.60 (23.03,815.00)

TgAb level# (IU/ml) 11.80 (10.54,18.68)

TSH level** (mU/l) 0.10 (0.02,2.44)

Maximum Diameter (mm) 9.77 (7.87,12.49)

Actual SUVmax 1.31 (0.87,2.20)

Actual SUVmax 1.31 (0.87,2.20)

Actual SUVmean 1.06 (0.75,1.63)

Actual SUVmin 0.81 (0.59,1.14)
Values are presented as number (percentage) or median (Q25, Q75).
PTC, papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; PDTC, poor
differentiated thyroid carcinoma; Tg, thyroglobulin; TgAb, thyroglobulin antibody; TSH,
thyroid stimulating hormone; SUV, standard uptake value.
*Tg <0.040 was calculated as 0.04 ng/ml, Tg >25000 ng/ml was calculated as 25000 ng/ml
#TgAb<10 IU/ml was calculated as 10 IU/ml, TgAb>4000 UI/ml was calculated as 4000 IU/ml.
**TSH<0.005 mU/l was calculated as 0.005 mU/l.
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SUVmin (R2 = 0.7373, P<0.001) were found to be significantly and

positively correlated for all of them.
3.4 Performance in classification task

The performance of our proposed model in classification task

was shown in Table 3. The classification task was calculated after we

perform coarse classification according to four intervals based on

the SUVmax predicted by the model and the real SUVmax. In the
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classification task of dividing the actual value of SUVmax into four

intervals ½0, 2:5),  ½2:5, 5), ½5, 10) and ½10, +∞), the accuracy is

89.87% on the five-fold cross-validation set and 88.26% on the

independent test set.
3.5 Models with different backbones

We compared the proposed model with convolutional neural

networks using ResNet, DenseNet, EfficientNet and ConvNexXt as
TABLE 2 Performance of the SUV prediction model in the regression task.

Metric
Five-fold cross-validation Independent test

SUVmax SUVmean SUVmin AVG SUVmax SUVmean SUVmin AVG

MAE
0.5344 (0.4839,

0.5889)
0.3240 (0.2958,

0.3539)
0.1895 (0.1759,

0.2039)
0.3493 (0.3194,

0.3810)
0.5894 (0.5403,

0.6416)
0.3536 (0.3279,

0.3806)
0.2100 (0.1972,

0.2234)
0.3843 (0.3563,

0.4139)

MSE
2.3494 (1.5690,

3.3032)
0.7323 (0.5315,

0.9684)
0.1821 (0.1397,

0.2301)
1.0880 (0.7551,

1.4902)
2.2289 (1.6079,

2.9677)
0.6341 (0.4998,

0.7852)
0.1708 (0.1400,

0.2047)
1.0133 (0.7576,

1.3081)

MRE
36.41% (27.09%,

51.97%)
31.89% (23.22%,

46.26%)
28.76% (20.91%,

41.78%)
32.36% (23.80%,

46.64%)
38.37% (33.12%,

44.36%)
34.19% (29.04%,

40.10%)
32.17% (27.11%,

38.03%)
34.91% (29.81%,

40.75%)
Results are presented as values (95% Confidence Interval).
SUV, standard uptake value; AVG, average; MAE, mean absolute error; MSE, mean square error; MRE, mean relative error.
A B C

FIGURE 3

The correlation between the predicted SUVmax (A), SUVmean (B), SUVmin (C) with actual SUV in independent test set.
A B

FIGURE 2

The distribution of maximum diameters (A) and SUV (B) of the nodes.
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backbones on the five-fold cross-validation set and independent test

set. The results can be seen in Table 4. The MAE, MSE and MRE in

independent test is 0.3843, 1.0113 and 34.91% respectively. Our

proposed model with ResNet18 as the backbone performs better

compared with other backbones when considering these three

metrics together.
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3.6 Influence factors of SUVs prediction

We analyzed the correlation between the maximum diameter

and actual SUVs with MAE, MRE and MSE in the independent test

set (Table 5). The correlation coefficients were 0.190, 0.612, 0.667,

0.557 for MAE, and 0.162, 0.612, 0.610, 0.426 for MSE respectively,
TABLE 3 Performance of the SUV prediction model in the classification task.

Metrics
Five-fold cross-validation Independent test

[0,2.5) [2.5,5) [5,10) [10, + ∞ [0,2.5) [2.5,5) [5,10) [10, + ∞

Spec (%) 76.38 95.90 98.44 99.75 71.38 95.41 98.39 99.67

Sen (%) 96.42 65.99 59.89 65.50 95.94 58.89 57.93 58.67

F1 (%) 95.24 67.73 63.52 74.64 94.36 61.86 61.78 68.40

PPV (%) 94.10 70.18 67.81 88.65 92.84 65.20 66.54 83.70

NPV (%) 84.73 95.18 97.83 99.03 81.97 94.07 97.74 98.88

Acc (%) 89.87 (88.74, 90.96) 88.26 (87.06, 89.43)
fro
Accuracy is presented as values (95% Confidence Interval).
Spec, specificity; Sen, sensitivity; PPV, positive predictive value; NPV, negative predictive value; Acc, accuracy.
TABLE 4 Comparison of regression performance with other backbones.

Backbone
Five-fold cross-validation Independent test

MAE MSE MRE MAE MSE MRE

ResNet18 0.3914 1.2939 33.89% 0.4201 1.2103 39.84%

ResNet34 0.3702 1.0966 33.12% 0.4051 1.1168 36.49%

ResNet50 0.3918 1.4110 34.66% 0.4182 1.1792 37.83%

DenseNet121 0.4188 1.3539 36.20% 0.4778 1.7737 38.99%

DenseNet169 0.4071 1.2794 34.73% 0.4792 1.8015 39.87%

DenseNet201 0.4266 1.4281 35.64% 0.4798 1.6640 41.47%

EfficientNet-B0 0.5449 2.2230 41.38% 0.6038 3.2052 45.26%

EfficientNet-B1 0.5175 2.1594 51.09% 0.5828 2.7543 45.40%

EfficientNet-B2 0.5250 2.4541 39.16% 0.5750 2.6721 43.99%

ConvNeXt-T 0.5883 2.4648 64.47% 0.6319 2.6453 50.72%

ConvNeXt-S 0.5854 2.4439 63.46% 0.6375 2.4818 51.25%

ConvNeXt-B 0.5760 2.4626 60.20% 0.6325 2.6616 51.48%

Proposed model 0.3493 1.0880 32.36% 0.3843 1.0113 34.91%
ntie
MAE, mean absolute error, MSE: mean squared error; MRE, mean relative error.
TABLE 5 Correlation analysis of errors.

Correlation coefficient MAE MRE MSE

Maximum diameter 0.190*** -0.041 0.162***

Actual SUVmax 0.612*** -0.046 0.612***

Actual SUVmean 0.667*** -0.074 0.610***

Actual SUVmin 0.557*** -0.118** 0.426***
***P<0.001, **P<0.005.
MAE, mean absolute error; MRE, mean relative error; MSE, mean squared error; SUV, standard uptake value.
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all of which were statistically significant. The correlation coefficients

for MRE were not statistically significant.
4 Discussion

In this study, we collected data from 74 patients with DTC-LM

and obtained PET/CT images of their 3407 pulmonary metastatic

nodules. And, we proposed a model used ResNet-18 as backbone to

predict SUVs on CT images for the first time. This CNN

architecture was trained and validated using 2843 CT images and

tested using 564 images. The experiment showed that our model

could predict SUVs effectively. To evaluate the prediction effect of

each model objectively, we used five-fold cross-validation and

comparative analysis with other mainstream CNN models under

three evaluation indicators, including MAE, MSE and MRE. The

comparative experiment showed that the performance of model

using ResNet-18 as backbone in predicting SUVs from CT images

was better than other CNN models.

As one of the most curable cancers, DTC has a favorable

prognosis carrying a 10-year overall survival rate of about 90%

(22). Although distant metastasis is not a frequent event in DTC, it

has adverse impact on survival (23). Specially, DTC-LM patients

with 18F-FDG positive/131I negative pulmonary metastases may

have shorter survival due to their insensitivity to radioiodine

therapy. SUV is the most commonly used semiquantitative tool to

measure FDG uptake. It not only reflects the absolute FDG uptake

in the tumor, but also assess metabolic changes. Therefore, it is

crucial to identity the level of pulmonary metastases FDG uptake in

DTC-LM patients to make a therapeutic decision.

Compared to CT and MRI, PET/CT scan may be subject to

equipment inaccessibility and the high cost for patients. This scan

also requires the injection of 18F-FDG into the body which has a

potential radiation risk to the operators. In addition, the

distribution and uptake of 18F-FDG could be affected by blood

glucose level, making it necessary to control the patient’s blood

glucose level prior to the scan. These disadvantages hinder its

routine implementation into medical field.

Currently, there are many studies on CT-based image

recognition and prediction. Wang et al. developed a deep

learning model using CT scans efficiently predicted EGFR

mutational status in patients with NSCLC (24). Liu et al.

developed a CT-based radiomic signature to predict the

expression status of the genes encoding E- cadherin, Ki-67,

VEGFR2 and EGFR, in patients with gastric cancer (25). To

the best of our knowledge, predicting SUVs based on CT images

has not been systematically reported. Our study, for the first

time, proposed a logical and easy-to-use method to try to predict

SUVs of pulmonary metastasis from thyroid cancer by using

CT images.
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There are still shortcomings in our study. Firstly, the number

of lung nodules with large diameters and high SUVs is small,

which may affect the generalization ability of this prediction

model. Secondly, since only patients with thyroid cancer were

included in the current study, the applicability of this model to

pulmonary nodes from other malignancies still needs further

validation in a larger dataset. In the future, we will continue to

collect PET/CT images of metastatic pulmonary nodes and

explore SUV prediction model with a better performance.

Thirdly, it’s hard to explain why morphological features can

predict molecular metabolism information. However, metabolic

changes of tumor cells may affect their biological behavior and

thus could finally alter anatomical imaging findings. So, it is

possible that anatomical and metabolic information could

be related.

In conclusion, we proposed a model to predict 18F-FDG SUVs

of metastatic pulmonary nodes from CT images in patients with

differentiated thyroid cancer by using a convolutional neural

network for the first time. The novel model proposed in this

study provides new ideas for applying artificial intelligence

approaches to predict molecular metabolism information from

anatomical features and may show good application potential

in clinic.
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