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Introduction: The human gut microbiota (GM) is a dynamic system which

ecological interactions among the community members affect the host

metabolism. Understanding the principles that rule the bidirectional

communication between GM and its host, is one of the most valuable

enterprise for uncovering how bacterial ecology influences the clinical

variables in the host.

Methods: Here, we used SparCC to infer association networks in 16S rRNA gene

amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes

(T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose),

IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose

plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year

ongoing treatment).

Results: By exploring the network topology from the different stages of T2D, we

observed that, as the disease progress, the networks lose the association

between bacteria. It suggests that the microbial community becomes highly

sensitive to perturbations in individuals with T2D. With the purpose to identify

those genera that guide this transition, we computationally found keystone taxa

(driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest

a set of genera driving the progress of the T2D in a Mexican cohort, among

them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010,
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Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes,

Anaerostipes, and Terrisporobacter.

Discussion: Based on a network approach, this study suggests a set of genera

that can serve as a potential biomarker to distinguish the distinct degree of

advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion

to one population, we present a computational pipeline to link ecological

networks and clinical stages in T2D, and desirable aim to advance in the field

of precision medicine.
KEYWORDS

gut microbiota, microbial ecology, systems biology, type 2 diabetes, network analysis
1 Introduction

Type 2 Diabetes Mellitus (T2D) is considered a global epidemic

with a constant increase in new cases and negative economic and

social impact on public health (1, 2). T2D is preceded by prediabetes

(PreT2D), a condition characterized by intermediate hyperglycemia,

insulin resistance (IR), and b-cell dysfunction that predisposes

individuals to the development of T2D (3, 4). PreT2D can be

prevented or delayed through lifestyle modifications, drugs, or

bariatric surgery; however, up to 70% of people with preT2D will

eventually evolve into T2D (4, 5). Current strategies for successfully

diagnosing and managing preT2D are limited in part by an

incomplete understanding of its pathophysiology (2).

Recently, human gut microbiota (GM) alterations were

proposed as an important factor in the progression of T2D (6).

Several cohorts and cross-sectional studies worldwide reported

associations between the GM composition to preT2D and T2D

(7). These studies indicated that several gut microorganisms (e.g.,

Escherichia/Shigella, Ruminococcus, Dorea, and Veillonella) (8)

increase the absorption of energy from food, cause chronic low-

grade inflammation, regulate fatty acid metabolism, secrete derived

peptides, and increase the metabolic endotoxins production

(lipopolysaccharides), which conduct into insulin resistance (IR).

Furthermore, long-term IR leads to a constant raised level of

systemic glucose concentration (9). According to these studies, a

clear association between GM composition and T2D has been

observed. However, bacterial genera associated with preTD2 and

T2D differ when different populations are compared (8). For

example, a Danish preT2D population suffers dysbiosis in the

GM characterized by a decreased abundance of Clostridium genus

and Akkermansia muciniphila strain (10). European and Chinese

studies have demonstrated that the quantity of Firmicutes,

Bifidobacteria, and Clostridia was significantly lower in T2D

patients compared to healthy individuals, while the number of

Bacteroidetes and beta Proteobacteria was markedly higher in both

populations (11, 12). Likewise, in the Chinese cohort, the

Bacteroidetes/Firmicutes ratio in T2D was positively and

significantly correlated with plasma glucose concentration. Still, it
02
appeared independent of body weight, confirming its association

with reduced glucose tolerance (12). Moreover, a cross-sectional

study from two Dutch population-based cohorts: the Rotterdam

Study and the Lifelines DEEP study, reported associations among a
diversity, b diversity, and taxa with the Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR) and with T2D.

They reported 12 bacterial genera (butyrate producers) associated

wi th HOMA-IR or T2D. ( i . e . , Chr i s t en s ene l l a c eae ,

Christensenellaceae R7 group, Marvinbryantia, Ruminococcaceae

UCG-005, Ruminococcaceae UCG-008, Ruminococcaceae UCG-

010, Ruminococcaceae NK4A214 group, Clostridiaceae 1,

Peptostreptococcaceae, Clostridium sensu stricto 1, Intestinibacter

and Romboutsia) (13).

The composition and structure of GM can be analyzed with

specialized bioinformatics tools such as Sparse Correlations for

Compositional data (SparCC), Sparse and Compositionally Robust

Inference of Microbial Ecological Networks (SPEIC-EASI), and

Bayesian Analysis of Compositional Covariance (BAnOCC) (14).

Due to the high data complexity, these algorithms must be able to

model the complex interactions and nonlinear effects between

microbial communities (15). In a Mexican population with

preT2D and T2D, Diener and collaborators studied 16S rRNA

gene amplicon data from a cohort of 405 participants. They

reported that Escherichia and Veillonella were associated with

T2D progression, along with biochemical measures of blood

glucose and insulin-related measures. Furthermore, Blautia and

Anaerostipes were related to improved b-cell function and insulin

efficiency, and these genera decreased with T2D development.

Besides, the authors argue remarkable evidence that GM can alter

intestinal inflammation (8).

A Chinese Cohort of 450 T2D subjects was exposed to two

clinical interventions: metformin and AMC (Chinese herbal

formula from Rhizoma Anemarrhenae, Momordica charantia,

Coptis Chinensis, aloe vera, and red yeast rice). Authors reported

GM alterations through SparCC association networks in the group

treated with metformin. They observed a notable increase in Blautia

spp (producer of short-chain fatty acids SCFA). Moreover, AMC

treatment increased the abundance of two genera related to butyrate
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production (i.e., Faecalibacterium and Roseburia) (16, 17). All these

results have contributed to a better understanding of the role of GM

and T2D. However, these contributions remained at the association

studies level without a deeper analysis of the ecological insights of

gut microbial communities. Subsequently, medicine has

emphasized reductionist ways, where the subunits of a system are

analyzed separately, ignoring their complex non-linear

interactions (18).

To understand the interactions and insights between GM and

T2D patients, we studied the behavior of GM based on the concept

of “the medical ecology of the human gut microbiome”. This

concept relays on the need for new ecological perspectives and

dynamical systems theory to advocate personalized medicine (19,

20). Furthermore, precision medicine has emerged with remarkable

results in treating T2D Sommer and collaborators. (21) and

collaborators reported differences in hemoglobin A1c (HbA1c)

reductions between three T2D drugs (sitagliptin, pioglitazone, and

canagliflozin) (21). According to their results, using simple clinical

measures to identify the drug class most likely to deliver the greatest

glycemic reduction for a given patient (22).

Bioinformatics, omics sciences, and systems biology have paved

the way for the development of new strategies, to characterize a

healthy and unhealthy microbiota composition and its relationship

with the host (23). For example, Ezzamouri and collaborators used

metagenomics data from a metformin study with genome-scale

metabolic modelling of the key bacteria (e.g. Akkermansia

municiphila, Intestinibacter bartlettii, Clostridium saudiense,

Romboutsia timonensis) to research the mechanistic role of the

GM in response to metformin in a Spanish T2D cohort (24).

However, the GM is a complex ecological system that involves

interactions between hundreds of bacterial species. Thus, scientific

research should focus on studying complex networks of nonlinear

interactions between many entities. Efforts to develop this field of

medical ecology of the human GM have been reported (25, 26).

Although specifically for Mexican T2D patients, our work

represents the first attempt from a medical ecology perspective to

understand the interactions between the GM and its host. For this

reason, we used GM 16S rRNA gene amplicon data from a Mexican
Frontiers in Endocrinology 03
T2D cohort to perform systems biology and bioinformatics analysis

between study groups (i.e., NG (Normoglycemic) IFG (Impaired

Fasting Glucose), IGT (Impaired Glucose Tolerance), IFG+IGT

(both conditions of preT2D), T2D (Type 2 diabetes), and T2D

(Type 2 diabetes with 5 years ongoing treatment). Our specific

objectives were to accomplish a: 1) GM ecological analysis (a-b
diversity), 2) evaluation and analysis of association networks

focused on their topological characteristics and their association

with the clinical status, 3) differential abundance analysis at the

genus level, and 4) supervised machine learning analysis to denoise

GM data and improve the identification of keystone-taxa pattern

shifts in Mexican T2D subjects.

Our results shed light on the role of several genera as driver

nodes to explain the changes in the community structure from one

stage to another, along with the development of preT2D and T2D

within a Mexican cohort.
2 Materials and methods

2.1 Data collection and processing

We performed an association network analysis with GM 16S

rRNA gene amplicon data from a Mexican cohort of T2D patients

(8, 27) (Figure 1). Specifically, we used variants.csv file (16S rRNA

gene amplicon sequence variants ASV and their abundances in

samples) and taxa.csv file (taxonomy assignment for each variant)

from the GitHub repository https://github.com/resendislab/

mext2d/tree/master/data. Then, we stratified all samples based on

their T2D status as follows: 1) NG, 2) IFG, 3) IGT, 4) IFG+IGT, 5)

T2D, and 6) T2D treated.
2.2 Taxonomic and ecological analysis

With the taxonomy assignment for amplicon sequence variants

(ASVs), we prepared Krona plots (RRID: SCR_012785) to explore

the microbial diversity of all samples (28). We constructed
FIGURE 1

Experimental and Bioinformatics for taxonomic and ecological analyses, inference networks, network analyses, differential abundance analyses,
microbial structure analyses, and supervised machine learning analysis. Bioinformatic tools are added at the bottom of the figure.
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rarefaction curves using the R library vegan v2.4-6 (RRID:

SCR_011950) (29) from R (version 4.0.4). A phyloseq object with

ASV data was used to calculate a diversity indexes (i.e., Observed,

Chao 1, Fisher, Simpson, Inv Simpson, and Shannon indexes),

which were computed by R Phyloseq (RRID: SCR_013080) library

1.34.0 (30).
2.3 Differential abundance analysis

We used EdgeR (RRID: SCR_012802) (31) to assess differential

abundance changes of the GM along different T2D stages. First, we

filtered out OTUs for which the variance across all samples is very

low (1e-5) and did this before ever passing the data to edgeR. Also,

we estimated a series of log-linear generalized linear models

predicting each ASV abundance. ASVs were considered

differentially abundant at a false discovery rate (FDR) < 0.01. To

examine potential keystone taxa at the genus level, we analyzed

differentially abundant bacteria between two stages of T2D: NG vs

IFG, IFG vs IGT, IFG+IGT vs T2D, and T2D vs T2D treated.

Moreover, these pairwise comparisons were prepared to evaluate

the changes in the GM composition in the subsequent stages, that is,

step by step, until the frank diagnosis of T2D (27, 32). Finally, we

performed an upset plot graph to describe intersections of

differentially abundant genera between comparisons.
2.4 Network inference

We used the SparCC network inference approach (RRID:

SCR_022734) (33) to infer underlying interactions from each group

(i.e., NG, IFG, IGT, IFG+IGT, T2D, and T2D treated). Then, we

utilized the non-normalized taxonomic abundance at the genus level

to compute associations and prepared one network for each group.

SparCC was run based on in-house scripts and adaptations from

Netherlands Bioinformatics and Systems Biology Research School.

First, we computed correlations (compositionality-robust) as the

median of ten iterations, where SparCC averages its results over

several estimates of the true fractions, with the Dirichlet

distribution. Second, we calculated bootstraps and prepared one

correlation matrix from one resampled dataset (n=100 iterations).

Third, we computed p-values, based on bootstrapped correlation

scores. Fourth, we selected nodes and edges based on the

determined cut point of correlation level (0.60). The results from

SparCC were plotted in an interactive network with VisNetwork R

library (34) and were uploaded to Github (https://github.com/

resendislab/MEXT2D_Networks).
2.5 Network analysis

To further evaluate the topological features of each network, we

used Netshift software (RRID: SCR_022733) to identify driver

nodes between case-control association networks (https://

web.rniapps.net/netshift/) (35). We focused on identifying key

attributes (e.g., nodes, clusters, and edges) based on a two
Frontiers in Endocrinology 04
conditions approach. NG vs IFG, IFG vs IGT, IFG+IGT vs T2D,

T2D vs T2D treated. Then, we detected driver nodes from

all comparisons.
2.6 Microbial structure analysis

Absence/presence plots were generated using the Upset R

library (RRID: SCR_022731) (36) from the nodes network for

each group (i.e., NG, IFG, IGT, IFG+IGT, T2D, and T2D treated).
2.7 Denoised microbiota data analysis by
supervised machine learning

We denoised ASV data from the GM of a Mexican T2D cohort

(https://github.com/resendislab/mext2d/tree/master/data) through a

supervised denoising-machine learning approach named mb-

PHENIX (37). We performed this analysis to observe the driver

nodes involved in the transition of T2D states (37) and because of the

high rate of missing information of microbiome data (38) that do not

let find cluster structure with traditional unsupervised methods. The

mb-PHENIXmethod consists of mapping different classes (here T2D

stages) in the low dimensional space as far apart as possible, while

maintaining the internal class structure and the inter-class

relationships. Then, the missing taxa data is recovered (denoising)

by sharing taxa information among the nearest neighbors.

We preprocessed the ASV table for imputation with the following

steps: 1) We filtered the ASV by the number of counts above 20

which detection is deemed non-negligible and at least appears in 5

samples. 2) We performed L1 normalization. 3) Root squared

transformation with the parameters of mb-PHENIX as follows: for

PCA (n_components=100,random_state=1), then for the PCA space

we applied supervised embedding with UMAP (n_components=2,

verbose=True, metric=‘cosine’, n_epochs=1000, min_dist=0.1,

random_state=1, n_neighbors=500, target_weight=0.5), and last the

imputation via diffusion (t=5, decay=50, metric=‘euclidean’,

knn=17). After imputation, we calculated the most significant taxa

for each T2D stage within the imputed ASV data with the earth

mover’s distance metric (EMD) (39). Particularly, we compared each

T2D stage against the rest of the groups to quantify the differences

between distributions among T2D stages. Then, the EMD was

multiplied by the sign of the mean difference of each cluster to

denote the overall direction of the shift (EMD score). Lastly, the

imputed ASV table was collapsed to identify their taxonomical

annotation at the genus level. We used EMD (40), a nonparametric

measure of the distance between two distributions that quantifies the

flow required to morph one distribution to another. It is defined as

the L1 norm of the cumulative density functions, DEMD = \\CDF1

-CDF2\\1; and has successfully been used to quantify gene expression

differences in single-cell data and microbiome data (39). Also, the

EMD metric was used for imputed data via diffusion (41).

Additionally, the EMD metric does not make parametric

assumptions about their underlying distributions (41). The details

of the mb-PHENIX software can be found in (https://github.com/

resendislab/mb-PHENIX).
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2.8 Linear discriminant analysis effect size

Linear discriminant analysis effect size (LEfSe) (RRID:

SCR_014609), is a method that combines non-parametric

Kruskal-Wallis and Wilcoxon rank sum test with linear

discriminant analysis (LDA) (42). It was employed to detect the

features in terms of bacterial genera to discriminate communities in

each group (NG, IFG, IGT, IFG+IGT, T2D, and T2D treated). To

run this analysis, we used the galaxy server from Hutlab (https://

huttenhower.sph.harvard.edu/galaxy/) with the following

parameters: 1) Alpha values for the factorial Kruskal-Wallis and

pairwise Wilcoxon tests among classes were 0.05, 2) Threshold on

the logarithmic LDA score for discriminative features was set to 2,

and 3) Set the strategy for multi-class analysis was set to one

against all.
3 Results

Classical approaches to analyzing microbiomes are based on

taxonomic profiling and ecological diversity studies (e.g., phyloseq,

edgeR, krona). Thus, we started with these analyses to describe the

GM of a Mexican T2D cohort. To disentangle the complexity of the

GM structure and ecological interactions on the progress of T2D in

a Mexican cohort, we used a multidimensional approach based on

bioinformatics tools such as SparCC, Netshift, and mb-PHENIX.
3.1 Profiling of 16S rRNA gene amplicon
data and microbial diversity measurements
of Mexican T2D cohort

Gut bacteria communities were highly diverse in all T2D

samples, independently of their disease stage. The rarefaction

curves (Figure S1 A-F) reach asymptotes in a range of 100-600

species (set size= 50) in all samples. We did not set up a threshold

based on the lowest number of sequences found in a sample,

because this would artificially mask the diversity of the

community (43). As seen in the rarefaction curves, the NG

patients had greater diversity across GM samples than the

disease groups.

Related to GM taxonomy, the Krona graphs (https://

github.com/resendislab/MEXT2D_Networks/tree/main/results) for

NG patients showed that Firmicutes and Bacteroidetes ranged 40-

80% and 20-60%, respectively. For IFG patients, Firmicutes ranged

in 37-91% and 2-50% for Bacteroidetes. For IGT patients, Firmicutes

ranged in 40-80% and 10-50% for Bacteroidetes. For IFG+IGT

patients, Firmicutes ranged 30-70% and 10-35% for Bacteroidetes.

For T2D patients, Firmicutes ranged from 40-60% and Bacteroidetes

5-30%. Lastly, T2D patients with treatment Firmicutes ranged 50-

80% and Bacteroidetes 1-20%.

The Chao1, ACE, Shannon, and Fisher indexes (Figure S2) were

calculated to estimate the a-diversity. No significant differences

were found between the five groups, but IGT subjects showed a

slightly increased diversity compared with all other stages. This
Frontiers in Endocrinology 05
result indicated that IGT patients had higher microbial diversity

than in other stages. With this result, we can hypothesize that this

diversity increase may be because of an internal feedback

mechanism between the GM and its host as a last effort to

stabilize the evolving microbial community due to the

progression of T2D. This hypothesis is supported by the latest

reports on the functional redundancy of microbial communities in

the human gut and the holobiont theory as a framework of analysis

for microbial communities associated with their host (44–46).

A previous study from our group reported that our Mexican

T2D cohort had some degree of obesity (8, 27). For example, groups

with IGT and T2D have the highest values of body mass index

(BMI) compared with other groups such as NG and IFG (8). This

behavior was also observed in other computational modeling

studies (Flux Balance Analysis FBA) related to T2D cohorts (47).

To estimate b-diversity, we used non-phylogenetic methods

such as Jaccard distances and Non-Metric Multidimensional

Scaling (NMDS) plotting (48). The results showed undefined

clustering patterns (Figure S3A). Moreover, we made an

additional NMDS plot at phylum level to observe the differences

among clustering groups. We observed the vast amplitude of

members of Firmicutes phylum and reinforced the remarkable

abundance of these members in the GM of humans (49) (Figure

S3B). However, we did not observe clustering of the groups based

on the T2D stage. Then, we established that more complex

nonlinear (unsupervised dimensionality) reduction methods did

not present separation patterns of samples based on T2D stages

groups (Figure S5A UMAP). These results are likely due to technical

noise, high-dimensionality, sparsity, and intrinsic ecological

community heterogeneity (50). Therefore, it is necessary to use

supervised methods to reveal the underlying topological

information on these noisy and highly heterogeneous systems (38).
3.2 Differentially abundance analysis as a
tool to discover keystone taxa among
T2D stages

Numerous taxa were differentially abundant among T2D

stages. Figure 2 displays log-2 fold change (logFC). The logFC

can be interpreted as the log-base-2 ratio of relative abundance

compared to the reference group. For example, Blautia was found

to be 32 (25) times more abundant in IFG subjects compared with

NG subjects, but in another comparison was found to be 36.75

(25.2) times less abundant in IGT subjects compared with IFG

subjects (Figure 2).

Prevotella 9 genus is another example of notable variations

along preT2D stages. It was 36.75 (22.5) more abundant in IFG

patients compared with NG patients. Similar behavior was observed

in other stages of preT2D, where it was 39.39 (25.3) more abundant

in IGT patients compared with IFG and 5.27 (22.4) more abundant

in T2D patients compared with IFG+IGT patients. However, it was

16 (24) less abundant in IFG+IGT subjects compared with IGT

patients (Figure 2). Notably, this is the first report where a genus-

level cluster of Prevotella 9 emerges in a T2D cohort.
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3.3 Association networks analysis to
describe the GM insights among
T2D stages

Modeling interactions by association networks is an effective

computational tool for analyzing the structure and stability of

microbial communities. Also, possible keystone taxa (driver taxa)

related to the dynamic equilibria of GM and its host can be inferred.

We performed and analyzed association networks for each stage of T2D
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(i.e., NG, IFG, IGT, IFG+IGT, T2D, and T2D treated). Then, we used

Netshift to identify the driver nodes in each case-control association as

those accomplished in the differential abundance analysis (NG vs. IFG,

IFG vs. IGT, etc.) (Figure S4A). In each comparison, we built and

compared the network association for each state and obtained some

topological parameters, such as the network density, cluster coefficient,

and average path length. Together, they are called global graph

properties because they provide insights into the overall organization

of the network and enable the assessment of its modularity (35).
FIGURE 2

LogFC differential abundance (or coefficient from edgeR log-linear models for each comparison group and all significant ASVs) of GM data of
Mexican T2D patients. Colors refer to the phyla taxonomy level of the plotted genera.
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In a microbial community, density corresponds to the

proportion of observed microbial associations (edges) out of all

theoretically possible associations (all the nodes in the network).

Therefore, a greater density value indicates higher crosstalk among

the resident microbes represented in the network nodes (35).

Moreover, network density shows how quickly perturbations may

spread (51). Thus, the small network density (Figure S4A) indicated

microbial communities composed of scarcely connected groups.

This behavior was expected due to the scarce resilience of the

system since a poorly connected network is less robust to changes

than high-density networks (52).

Complementary, it has been suggested that communities with

the modular organization of the type “small world” are more stable

at facing perturbations. The modular arrangement allows different

groups of nodes to perform different functions with some degree of

independence (53). In this way, the clustering coefficient quantifies

the tendency of the graph to be divided into subunits. In other

words, a microbial network with a higher number of independent

units of associated microbes is expected to have a higher clustering

coefficient value (35). Our study showed slight changes in this

parameter between comparisons, particularly IGT vs. IFG+IGT and

IFG+IGT vs. T2D had remarkable changes (almost double the

previous value) (Figure S4A).

Average path-length indicates the average number of steps that

would be required to reach from one node to another in the

network. This parameter represents to what extent the microbial

community structure is compacted. In almost all cases, we detected

an increase in the path length from 1.5 to 2 in IGT vs. IFG+IGT,

from 1.2 to 1.5 in NG vs. IFG, and IFG+IGT vs. T2D, for example

(Figure S4A). However, we detected a large change in the T2D vs.

T2D treated. Based on the previous results, low density and lower

average path length in the network indicated lower information

transport which might suggest a decolonization activity in the GM.

Figure S4B showed that the number of total nodes decreased on

every pairwise comparison (i.e., IFG vs. IGT, IGT vs. IFG_IGT,

IFG_IGT vs. T2D, T2D vs. T2D treated), except in NG vs. IFG

where only remains the same number of total nodes (Figure S4B).

These results agree with our previous results, where we suggested a

possible decolonization activity in the GM along with T2D

development and progression.

Regarding the total number of edges, we detected several

exciting patterns (Figure S4B). For example, we observed that the

number of total edges decreased for NG vs. IFG, IFG vs. IGT, and

IGT vs. IFG_IGT, while for IFG_IGT vs. T2D and T2D vs. T2D

treated increased. As expected, the comparison of T2D vs. T2D

treated had a remarkable difference as the GM composition

changed within T2D subjects treated with antidiabetic drugs such

as metformin (54). In terms of exclusive edges, we detected patterns

such as NG vs. IFG, IFG_IGT vs. T2D, and T2D vs. T2D treated

with an increase in this value. From the other side, we detected a

decrease in terms of exclusive edges for IFG vs. IGT and IGT vs.

IFG_IGT. This behavior is in agreement with our results of density

and average path length (Figure S4A). Moreover, it was previously

observed in some pathologies related to GM, such as IBD (55).

Although the exclusive edge count between two networks is an

indicator of rewiring, it is also valuable to consider the Jaccard Edge
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Index (JEI) of the compared networks as it can quantify changes in

the interacting partners for each node between two graphs (each

T2D stage) (Figure S4C). According to Figure S4C and in the first

stage of the disease, we observed in the pairwise comparisons, NG

vs. IFG and IFG vs. IGT, the value of JEI is near to 1 and indicated

that the edges in the association networks are practically the same.

But when the disease evolved to other stages such as IGT, IFG_IGT,

T2D, and T2D treated, JEI decreased dramatically to zero. These

results can be interpreted as a remarkable change owing to a

different stage of T2D disease (56). In short, all these topological

properties of the association networks offer insights into the overall

differences in the community structure between a pairwise

comparison network.
3.4 Driver nodes detection through
Netshift and keystone taxa among
T2D stages

In many diseases, a set of key microbial groups are likely to act

as ‘drivers’ for facilitating several changes in the microbial

community structure and hence become an essential factor for

understanding the microbial basis of the disease (35, 55–59). With

this idea in mind, we obtained the driver nodes for each pairwise

comparison with the software Netshift (Figure 3). Figure 3 shows

our results of driver nodes for the pairwise comparisons analyzed

along with this study. These keystone nodes belong to several phyla:

1) Anaerococcus, Anaerostipes, Christensenellaceae, Dorea,

Ezakiella, Erysipelotrichaceae, Roseburia, Terrisporobacter, and

Ruminococcaceae belonging to Firmicutes phylum. 2) Alistipes

belonging to Bacteroidetes phylum, and 3) Eggerthella belonging

to Actinobacteria phylum. Our results fall into the most

representative genera and phyla belonging to GM (49) and add

more evidence to our previous hypothesis, which proposes

that the changes in the human gut enterotypes are associated

with some keystone or driver taxa along the different stages

of preT2D and T2D in a Mexican cohort. Later, we prepared an

Upset Plot graph with all the nodes obtained with SparCC and

the driver nodes from NetShift to determine specific genera

that belong to a particular group (Figure 4). As seen in Figure 4,

Ruminococcaceae_NK4A214_group, Anaerostipes, Alistipes,

Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-005,

Ruminococcaceae_UCG-010, and Terrisporobacter were the core

community in all analyzed groups. This finding is highly relevant as

it is the first microbial core reported for the GM of Mexicans

with T2D.
3.5 Multidimensional approach by
bioinformatics, microbial ecology, and
denoising microbiome tools to identify
keystone taxa and their interactions among
T2D stages

To analyze in-depth all these data from networks, we

compared the results of differentially abundant analysis of all
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groups in the cohort (Figure 2) with the results from NetShift

(Figure 3) to get coincidences between these two approaches

(Figure 5). Alistipes can be a potential SCFA producer, and their

decrease contributes to the development of inflammatory diseases

related to inadequate modulation of the immune system by SCFA

in the gut (e.g., CRC, IBD, cardiovascular disease (CVD), etc.)

(60, 61). We detected a remarkable effect of Alistipes through two

different approaches: 1) Association networks with SparCC and

Netshift analysis and 2) Differential Abundance for Microbiome

Data with EdgeR. Based on these results, Alistipes seems to play a

role in the development of preT2D (IFG) as with other
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inflammatory diseases such as IBD, CRC, CVD, and

hypertension (62).

To reinforce the results obtained with Netshift about the taxa-

drivers in each T2D stage (Figures 5, 6), we denoised microbiota

data (ASV table) through mb-PHENIX to remark the potential

driver nodes involved in the transition of T2D states (37).

Specifically, we used this approach because data lacks a well-

defined cluster structure (Figures S3A, B (NMDS), Figure S5A,

(UMAP)) due to the high rate of missing information (38). Then,

we quantified the differences of the recovered (denoised) taxa

between different T2D stages with EMD (63). We observed
FIGURE 3

Driver nodes were obtained with NetShift. Driver nodes were colored red, edges present in both states were colored with blue, edges colored with
green were exclusive to control data, and edges colored with red were exclusive to case data. All comparisons are based on a control-case order.
Heatmap of the key drivers shifts among T2D states based on the denoised data, the earth-mover distance (EMD) is used to quantify distribution
shifts among the T2D states clusters.
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statistically relevant changes in the abundance of a determined

driver or keystone taxa (Figure 3 EMD Score) and confirmed our

previous results with EdgeR, SparCC, and Netshift. Hence, we used

several tools to prove the existence of keystone taxa pattern shifts

among T2D stages. Figure S5B shows that the changes along the

T2D stages were mediated by a group of microbial interactions

independently of whether their abundance is significantly different

or not in a specific T2D group (Figure S5C). Therefore, this work

showed the complexity of intrinsic non-linearity and the potential

taxa differentiating the different groups of T2D states.
3.6 Key bacterial genera changes among
T2D stages in a Mexican cohort

To further explore differences in the GM among our groups

(NG, IFG, IGT, IFG+IGT, T2D, and T2D treated), we used LEfSe to

recognize the specific altered bacterial phenotype at genus level.

These differences are shown in Figure 6. For the T2D treated group,

we detected four bacterial genera that changed significantly

among the groups with LDA score log 10 > 2, Cetobacterium,

Lactonifactor, Coprococcus_1, and Erysipelatoclostridium. For
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the IGT group, we detected two bacterial genera with the

same LDA score, Parabacteroides and Fournierella, while for the

NG and the IFG+IGT groups, we detected Intestinibacter and

Prevotellaceae_UCG003, respectively.
4 Discussion

T2D is an expanding global health problem closely linked to

obesity, and hypertension (9). Changes in the structure and

composition of GM in T2D patients represent a key step to

understanding the GM dysbiosis that accompanies the

progression of IR in T2D. In this way, the GM is a complex

system that needs to be analyzed in a holistic way, with several

approaches such as bioinformatics and systems biology altogether

under the concept of medical ecology of the human gut microbiota.

In terms of ecological indexes (a and b), we detected some

variations related to the weight of the patients and their group (i.e.

NG, IFG, IGT, IFG+IGT, T2D, and T2D_treated). This

phenomenon is probably connected with the role of GM in T2D

and its related disorders, including obesity. In agreement with this

observation, some studies in murine obesity models indicated that
FIGURE 4

Core nodes for the Mexican T2D cohort. Each node represents a node in the SparCC association networks. The red color indicates “driver nodes”
obtained from NetShift Analysis. Below, the black dots represent the presence of the core in the corresponding study group (e.g. T2D treated has 70
unique genera along with the cohort).
FIGURE 5

A multidimensional approach to interlace nodes information obtained with the differentially abundance tool (EdgeR) and driver nodes (Netshift). For
both EdgeR and Netshift, the data was obtained from pairwise comparisons along with the cohort. NG vs IFG, IFG vs IGT, IGT vs IFG_IGT, IFG_IGT vs
T2D and T2D vs T2D treated. *Note: In red were marked genera that had “driver node” characteristic from NetShift Analysis.
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altered GM had an increased capacity to harvest energy from the

diet (64, 65) and suggested that changes in the diversity of GM

should be considered a contributing factor to the pathophysiology

of obesity and T2D.

Furthermore, the keystone roles of Prevotella 9 and Blautia with

T2D progression were remarkable. In the specific case of Blautia,

several studies have reported similar roles in other human diseases:

fewer Blautia in T2D/obesity patients, fewer in colorectal cancer

(CRC) and Inflammatory bowel disease (IBD) (66). This is relevant

because, as far as we know, this is the first report of differential

abundance changes of Blautia in IFG and IGT. Specifically,

Prevotella (Bacteroidetes) and Blautia (Firmicutes) are remarkable

examples in this analysis, which both suggest a subject-specific

microbiome type led to the concept of human gut enterotypes that

may change among NG and T2D groups of our Mexican cohort (67,

68). Overall, the study of Prevotella and Blautia has been hampered

by their intrinsic difficulty in cultivating In vitro (they are

anaerobic) (66, 69).

Network analysis is a powerful tool to understand the structure

and ecological functions of the GM in patients with T2D. In the
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Netshift analysis, we detected a core of genera present in our Mexican

T2D cohort. This core captures several ecological insights that will be

explained next. Ruminococcaceae_NK4A214_group genus has been

related to fiber degradation (58). In a murine model, this genus was

correlated with alleviating colitis in casein-fed mice (70). However,

another study with rats showed this genus with positive correlations

with levels of blood glucose, HOMA-IR, and lipopolysaccharides

(LPS) (71). Also, other studies showed increased abundance in a

cohort of obese adults with elevated fasting glucose levels subjected to

an almond consumption diet; interestingly, this genus was identified

as one of the principal drivers of microbiota-level changes in our

cohort (56).

In agreement with our findings, Alistipes (SCFA producer) was

also increased in a T2D Austrian Cohort (72). Several authors

reported that high levels of Alistipes and low levels of Blautia were

found in patients with T2D (73). Moreover, Alistipes abundance

was increased in diabetic mice with a potential association with high

sucrose and a high-fat diet (74, 75). Whereas, in hypertension, it

seems that Alistipes contributes to inflammation and epithelium

alterations as A. finegoldii had an increased number and functional
A

B

FIGURE 6

LEfSe analysis results. (A) Taxonomic cladogram. Differences are represented by the color of the most abundant genera at each group (NG, IFG, IGT,
IFG+IGT, T2D and T2D treated). The diameter of each circle is proportional to the taxon's abundance. (B) The linear discriminant analysis (LDA) value
histogram of the GM at genus level and cohort groups (NG, IFG, IGT, IFG+IGT, T2D and T2D treated).
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genes in the high blood pressure cohort (62). These results indicate

that the composition of the GM is closely related to the levels of

blood glucose and pro-inflammatory cytokines, which cause low-

grade inflammation and contribute to the T2D progression. In this

scenery, IR could be a consequence of dysregulation of bacterial

production of butyrate, SCFA, and other metabolites (73).

The genus Anaerostipes (SCFA producer) was found

significantly decreased in T2D cases compared to controls in an

African cohort, further, the GM of T2D patients had decreased

butyrate-producing bacteria and consequently reduced butyrate

production, previously associated with IR (76). Several studies

showed that Anaerostipes could interact with other microbes with

diverse catabolic capacities to produce lactate (77). To this extent,

some species of Anaerostipes (e.g., A. caccae, A. rhamnosivorans, A.

hadrus, and A. butyraticus) are not only able to use a broad range of

carbohydrates but also lactate and acetate for butyrogenesis (78).

Nevertheless, to disentangle the metabolic differences between

species and strains, we need to obtain broad genomic information

through shotgun metagenomics.

Following up with the core microorganisms, a study in obesity

and fasting plasma insulin (FPI) status in Mexican children reported

a negative association of obesity with RuminococcaceaeUCG-002 and

a positive association between FPI and Ruminococcaceae UCG-002

(79). For Ruminococcaceae UCG-005, some authors reported a

positive correlation with Christensenellaceae R-7-group genus

abundances and HDL cholesterol but a negative correlation with

triglyceride levels (21). As mentioned before, the genera

Ruminococcaceae UCG-010 showed a positive correlation with the

levels of blood glucose, HOMA-IR, and LPS in diabetic (T2D) rats

(71). Bacterial members of this family predominantly utilize fibers

and polysaccharides as energy substrates and are SCFA producers.

SCFAs are linked to improved colonic health and are known mainly

for their anti-inflammatory properties (80). However, the relevance of

Ruminococcaceae to health outcomes has not been fully elucidated.

Conflicting data show that these genera are both positively and

negatively correlated with lipid metabolites such as VLDL and

HDL and are also associated with higher BMI (81).

Terrisporobacter was related to inflammation and oxidative

stress in a study of NG Danish young men. This genus decreased

immediately after metformin treatment initiation and remained low

throughout the intervention period (82). In a similar report with

Egyptian patients, authors reported that Terrisporobacter and

Turicibacter were significantly more abundant in the control

group (NG) as compared to either Type 1 or Type 2 Diabetes

groups (83).

Dorea also appeared as a core for patients in all stages of the

disease (i.e., IFG, IGT, IFG_IGT, T2D, and T2D treated). A Spanish

cross-sectional study reported that body weight, waist circumference,

and BMI showed a positive association with Dorea formicigenerans

and Dorea longicatena with increased abundances in the overweight/

obese group. They proposed these species as microbiota biomarkers

of obesity in the Spanish population (84). These results agree with

another study in a Chinese population, where the abundance of

Dorea was significantly increased in T2D individuals and negatively

correlated with the abundance of butyrate-producing bacteria. The

authors argued that increases in Dorea could play a role in the
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development of T2D (85). Supporting this, a cohort study of Danish

patients with preT2D (IFG) and NG individuals reported a

differentially significant increase of Dorea in the IFG patients

versus NG individuals (10).

Roseburia is known to be a butyrate-producing genus,

dependent on fermentable carbohydrates from the diet (82). In

our results, Roseburia appeared as a core and driver node of all

stages of T2D, except for the IGT group. Thus, it is plausible that

Roseburia could affect T2D development. Still, its specific role is

unclear since in our study appeared in the groups with T2D or

preT2D and in other studies appeared as a health biomarker (6, 86).

Blautia is a particular case because it was not identified as a

driver genus in Netshift but appeared as a core genus in the cohort.

This behavior can be explained by its increase in disease groups in

three of four cross-sectional studies of T2D and its reduction after

bariatric surgery (6). Disagreeing with these reports, Blautia spp.

was increased after metformin treatment (17). Notably, 87 results

are concordant with our genus-level analysis, demonstrating

positive associations between T2D and several OTUs of all three

of these genera (87, 88).

In accordance with the LEfSe analysis, all identified bacteria

belong to genera with previous reports linked to the progression

of insulin resistance in T2D (Figure 6). However, Coprococcus_1,

found in the T2D treated group, was already characterized by a

high insulin sensitivity (b = 0.14; P = 0.002) and disposition index

(b = 0.12; P = 0.012); for this reason, we hypothesized that its

effect was mostly related to the changes in the constant

metformin consumption in T2D patients (89). Furthermore,

this is the first association of Fournierella with T2D patients

and metformin treatment. Since this genus has reports with other

low-grade inflammatory processes (i.e., obesity, insulin

resistance, and others) that are part of the metabolic syndrome

diagnostic (90–92). Another potential biomarker for the NG

group was Intestinibacter genus. Early reports showed that a

decrease in this bacteria abundance was described in patients

with T2D (13).

According to our multidimensional analysis, Alistipes can be a

potential biomarker of the development of T2D. Still, further studies

will be necessary in the near future to better define the role of this

genus when T2D is accompanied by other comorbidities (93). For

instance, it has been reported that T2D patients have higher levels of

depression incidence (94). There are several studies on mental

diseases that reported an increase of Alistipes abundance (almost 4-

fold) in Norwegian patients with chronic fatigue syndrome (95).

These findings correspond with the evidence of an increase in T2D

patients with depression, who typically struggle with fatigue and

stress (96). An increase inAlistipes disrupts the gut-brain axis because

it is an indole-positive organism and thus decreases serotonin

availability. Tryptophan (indole ring) is a precursor of serotonin,

and a decrease in serotonin is associated with depression. Moreover,

Alistipes express glutamate decarboxylase in chickens, an enzyme that

metabolizes glutamate into g-aminobutyric acid (GABA). Therefore,

an increase in Alistipes abundance can be related to a GABA increase

with a potential link to depression (62). To confirm the role that

Alistipes and other microorganisms have in comorbidities associated

with T2D, additional studies should be addressed shortly.
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5 Conclusion

We conclude that using bioinformatics, systems biology, and

supervised machine learning tools, we obtained a complete

ecological perspective of GM dysbiosis in a Mexican T2D cohort.

Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010,

Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes,

Anaerostipes, and Terrisporobacter appear to have a distinctive

ecological role in the preT2D group. However, more high

throughput sequencing methods are needed to determine which

species and strains are involved. Our arguments and results are

important advances in the medical ecology of the human gut

microbiota from a Mexican T2D cohort, as an effort to provide

cutting-edge interventions for personalized medicine in the

near future.
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