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The effect of peak serum
estradiol level during ovarian
stimulation on cumulative live
birth and obstetric outcomes in
freeze-all cycles

Jiaan Huang1,2†, Yao Lu1,2†, Yaqiong He1,2, Yuan Wang1,2,
Qinling Zhu1,2, Jia Qi1,2, Ying Ding1,2, Hanting Zhao1,2,
Ziyin Ding1,2 and Yun Sun1,2*

1Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai, China, 2Shanghai Key Laboratory for Assisted Reproduction and Reproductive
Genetics, Shanghai, China
Objective: To determine whether the peak serum estradiol (E2) level during

ovarian stimulation affects the cumulative live birth rate (CLBR) and obstetric

outcomes in freeze-all cycles.

Methods: This retrospective cohort study involved patients who underwent their

first cycle of in vitro fertilization followed by a freeze-all strategy and frozen

embryo transfer cycles between January 2014 and June 2019 at a tertiary care

center. Patients were categorized into four groups according to quartiles of peak

serum E2 levels during ovarian stimulation (Q1-Q4). The primary outcome was

CLBR. Secondary outcomes included obstetric and neonatal outcomes of

singleton and twin pregnancies. Poisson or logistic regression was applied to

control for potential confounders for outcome measures, as appropriate.

Generalized estimating equations were used to account for multiple cycles

from the same patient for the outcome of CLBR.

Result(s): A total of 11237 patients were included in the analysis. Cumulatively,

live births occurred in 8410 women (74.8%). The live birth rate (LBR) and CLBR

improved as quartiles of peak E2 levels increased (49.7%, 52.1%, 54.9%, and

56.4% for LBR; 65.1%, 74.3%, 78.4%, and 81.6% for CLBR, from the lowest to the

highest quartile of estradiol levels, respectively, P<0.001). Such association

remained significant for CLBR after accounting for potential confounders in

multivariable regression models, whereas the relationship between LBR and

peak E2 levels did not reach statistical significance. In addition, no significant

differences were noticed in adverse obstetric and neonatal outcomes

(gestat ional diabetes mell i tus , pregnancy-induced hypertension,

preeclampsia, placental disorders, preterm birth, low birthweight, and small
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for gestational age) amongst E2 quartiles for either singleton or twin live births,

both before and after adjustment.

Conclusion: In freeze-all cycles, higher peak serum E2 levels during ovarian

stimulation were associated with increased CLBR, without increasing the risks of

adverse obstetric and neonatal outcomes.
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1 Introduction

Controlled ovarian stimulation (COS) is undoubtedly one of the

milestones in assisted reproductive treatments (1), which has resulted

in a significant increase in pregnancy rates as compared with

unstimulated in vitro fertilization (IVF) cycles (2, 3). However,

COS, by stimulating multi-follicular growth, often increases serum

estradiol (E2) to supraphysiologic levels, and the question of whether

high E2 levels during COS may influence reproductive outcomes has

been a matter of debate over the past few decades (4, 5). Existing data

have reported that there may be a detrimental effect of high E2 level,

which could lead to impaired endometrial receptivity (6–8). In

addition, the increased incidence of ovarian hyperstimulation

syndrome (OHSS) with high E2 exposure cannot be neglected (9).

Studies have also suggested that a high response to ovarian

stimulation may affect the quality of oocytes or embryos by altering

the epigenetic programming of oocytes including DNA methylation,

histone acetylation and epigenetic modifier expression (10–13), and

potentially resulting in higher risks of implantation failure and

pregnancy loss (14–16). Another concern is that the effect of

supraphysiologic E2 level may further extend into placentation and

subsequent fetal development, leading to higher risks of preeclampsia,

low birthweight, and small for gestational age (SGA) (17–19).

Yet, published studies addressing the association between peak

E2 level and pregnancy-related outcomes have focused mainly on

fresh IVF cycles (4, 5), where top-quality embryos of the cohort

were transferred into a suboptimal peri-implantation environment.

In addition, very few data have reported the outcome of CLBR

following multiple embryo transfer cycles after COS, which is of

utmost importance to understand whether supraphysiologic E2

level during COS could affect the entire cohort of embryos.

Taking into account the advances in cryopreservation technique,

frozen embryo transfer (FET) has become an alternative to fresh

embryo transfer (20), and FET cycles have contributed to an

increased chance of live birth and better perinatal outcomes in

clinical practice (21–23). Thus, it is vital to evaluate whether the

high E2 levels during COS have any effects on CLBR and

placentation following FET.

Given the increased utilization of the freeze-all strategy (24),

which provides a novel model to assess separately the impact of

ovarian stimulation on oocyte and embryo quality to that on the

endometrium, we conducted the present study to investigate the
02
association between peak serum E2 level during COS and CLBR, as

well as obstetric and neonatal outcomes in freeze-all cycles.
2 Materials and methods

2.1 Study design

This retrospective study was conducted at the Reproductive

Center of Ren Ji Hospital of Shanghai Jiao Tong University School

of Medicine. All patients aged 20-40 years old, undergoing their first

autologous cycle of IVF or intracytoplasmic sperm injection (ICSI)

treatment followed by a freeze-all strategy between January 2014

and June 2019 were reviewed for eligibility (Figure 1). Women who

utilized gonadotropin-releasing hormone (GnRH) agonist or

antagonist protocol for COS were included. Excluded were

individuals diagnosed with congenital uterine malformation, or

with untreated diabetes and hypertension, those with no viable

embryos for transfer, and those undergoing preimplantation genetic

testing or freezing of oocytes. Cycles with remaining frozen

embryos that have not yet achieved a live delivery and those

without available information on peak serum E2 level during

COS and pregnancy outcomes were also excluded. The study

protocol was approved by the Institutional Review Board of

the hospital.
2.2 Ovarian stimulation protocols

Protocols for ovarian stimulation were determined at the

discretion of patients’ preference and physicians’ recommendation.

COS was performed with injections of 150-300 IU/day recombinant

follicle-stimulating hormone (rFSH, Merck Serono) and/or urinary

human menopausal gonadotropin (uHMG, Ferring). The starting

dose was individualized based on the patient’s age, body mass index

(BMI), and ovarian reserve makers. For patients using GnRH-agonist

long protocol, Triptorelin (0.05 mg daily, Ferring) was administered

on day 7 after ovulation and lasted for 10-14 days. For those using

GnRH-agonist short protocol, Triptorelin (0.1 mg daily, Ferring) was

injected starting on day 2 or 3 of their menstrual cycle and continued

until the trigger day. In participants using the GnRH-antagonist

protocol, the antagonist (0.25 mg by daily subcutaneous injection,
frontiersin.org
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Vetter Pharma-Fertigung GmbH & Co. KG or Merck Serono) was

introduced when the leading follicle reached 12mm in

average diameter.

Follicle development during COS was monitored by serial

transvaginal ultrasound and serum E2, luteinizing hormone (LH),

and progesterone (P) levels starting from day 4-5 of stimulation.

Monitoring frequency was individualized, and the dose of

gonadotropin (Gn) was adjusted accordingly. Final oocyte

maturation was induced by administering 250 mg of recombinant

human chorionic gonadotropin (hCG, Merck Serono) when at least

one lead follicle reached 18 mm in mean diameter. Oocyte retrieval

was conducted by vaginal ultrasound-guided puncture 36 hours later.
2.3 IVF, endometrial preparation, and
embryo transfer

Retrieved oocytes were fertilized either via conventional IVF or

ICSI based on serum analysis. Fertilization was examined 16-18

hours post insemination or microinjection by the presence of two

pronuclei. Then the embryos were placed into individual droplets of

cleavage culture medium (G1.5, Vitrolife, Gothenburg, Sweden) for

three consecutive days and in the sequential culture medium (G2.5,

Vitrolife, Gothenburg, Sweden) thereafter. Cleavage embryos with

≥6 blastomeres and <20% fragmentation on day 3 were defined as

good quality and were frozen by vitrification. Embryos that did not

meet the criteria were extendedly cultured for blastocyst, and those

scored ≥4BC were eligible for vitrification on day 5 or 6 according to

the Gardner criteria (25). Blastocysts scored ≥3BB were defined as

good-quality embryos. Culture media, laboratory conditions, and

procedures remain unchanged during the study period.
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Endometrial preparation was performed in an artificial cycle, a

modified natural cycle or a stimulated cycle. The endometrial

preparation regimen was based on the physicians’ discretion. For

the artificial cycle, oral administration of estrogen valerate (4-6 mg

daily, Bayer Vital GmbH) was started on day 2-5 of the menstrual

cycle, vaginal progesterone gel (90 mg daily; Merck Serono) and oral

dydrogesterone (10 mg, 2-3 times daily; Abbott) were added when

endometrial thickness reached 7 mm. For the modified natural cycle,

ovulation was determined by serum hormone levels and ultrasound

monitoring. For the stimulation cycle, letrozole (2.5 mg daily, Hengrui

Pharma) was orally administered on cycle day 3 for 5 days, and follicle

growth was monitored from cycle day 10. If the diameter of the

dominant follicle was <14 mm, an additional 75 IU of uHMG was

supplemented until the diameter ≥17 mm. If the diameter of the

dominant follicle was ≥14 mm on cycle day 10, no more uHMG was

given. In both the modified natural and stimulation cycles, ovulation

was triggered by hCG either when the mean diameter of the dominant

follicle was ≥17 mm or when the serum luteinizing hormone (LH)

surge was detected, and oral dydrogesterone (10 mg, 2-3 times daily)

was started 2 days after triggering for luteal phase support. In all FET

cycles, no more than two embryos were transferred. Cleavage-stage

embryos were transferred three days after progesterone administration

and blastocysts were transferred five days after progesterone

administration. If pregnancy was achieved, luteal support was

continued to 10-12 weeks of gestation.
2.4 Outcome measures

The primary outcome of the study was CLBR. The secondary

outcomes included obstetric and neonatal outcomes of live births,
FIGURE 1

Flow chart.
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as well as pregnancy outcomes of the first FET cycle, namely the

implantation rate, clinical pregnancy rate, early miscarriage rate,

and live birth rate (LBR).

The implantation rate was defined as the number of fetal

heartbeats observed per number of embryos transferred. Clinical

pregnancy was defined as the observation of at least one gestational

sac at 6-8 weeks of gestation. Early miscarriage rate was defined as a

loss of clinical pregnancy before the 12th gestational week. Live

birth was defined as the delivery of at least one living child (≥28

weeks of gestation). CLBR was calculated by including only the first

live birth born after all FET cycles resulting from the associated

ovarian stimulation.

Obstetric outcomes included gestational diabetes mellitus

(GDM, 10th revision of the International Statistical Classification

of Diseases and Related Health Problems [ICD-10] code O24.4),

pregnancy-induced hypertension (PIH, ICD-10 code O13),

preeclampsia (ICD-10 code O14-O15), and placental disorders

(placenta previa [ICD-10 code O44], placental abruption [ICD-10

code O45], placenta accreta, placenta increta, or placenta percreta

[ICD-10 code O43.21, O43.23]). Neonatal outcomes included

gestational age, birthweight, preterm birth, low birthweight, SGA,

and birth defects (ICD-10 codes Q00-Q99). Preterm birth was

defined as delivery before 37 complete weeks of gestation. Low

birthweight was defined as birthweight <2500g. SGA was defined as

birthweight <10th percentile of gender-specific birthweight

reference at the same gestational week (26). The dataset collected

maternal and neonatal conditions from electronic medical records

of neonates born in our university hospital. While for neonates

delivered elsewhere, the information was obtained from responsible

obstetricians and/or pediatricians at the local hospitals.
2.5 Statistical analysis

Patients were categorized into groups according to quartiles (Q1-

Q4) of peak serum E2 levels on hCG-trigger day: Q1 (<2226 pg/ml),

Q2 (2226-3417 pg/ml), Q3 (3418-5510 pg/ml) and Q4 (>5510 pg/ml).

Descriptive statistics were presented as mean (standard deviation

[SD]) or numbers and percentages according to the nature of the

variables. The distribution of normality was tested by the

Kolmogorov–Smirnov test, and nonparametric tests were preferred

according to the results. The Mann-Whitney test was applied to
Frontiers in Endocrinology 04
analyze the between-group differences of continuous variables, while

comparisons of categorical variables were performed by Pearson’s

chi-squared test. Poisson regression was performed to investigate the

effect of peak E2 level on implantation, and logistic regression was

used to evaluate the impact of peak E2 level on clinical pregnancy,

early miscarriage, live birth, and obstetric and neonatal outcomes.

Multivariable generalized estimating equations (GEE) analysis was

applied to fit the logistic regression models and further explored the

possible relationship between E2 level and CLBR by accounting for the

clustering of FET cycles within individuals. For pregnancy outcomes,

confounding factors adjusted in the multivariable models included:

maternal age, maternal BMI, primary or secondary infertility, parity,

basal FSH, infertility diagnosis, protocol for stimulation, P level on

hCG-trigger day, IVF or ICSI, endometrial preparation regimen,

embryo developmental stage, embryo quality, and number of

embryos transferred. For obstetric and neonatal outcomes, factors

including maternal age, maternal BMI, primary or secondary

infertility, parity, infertility diagnosis, protocol for stimulation,

endometrial preparation regimen, embryo developmental stage,

embryo quality, and number of embryos transferred were adjusted.

The group of Q1 was taken as the reference group.

Additionally, the predictive probability of cumulative live birth

according to E2 levels on hCG-trigger day and maternal age was

evaluated using the generalized additive model (GAM). All

statistical analyses were performed using R statistical

programming language (version 4.2.1; R Foundation for Statistical

Computing, Vienna, Austria). Two-tailed P-value <0.05 was

considered statistically significant.
3 Results

3.1 Patient demographic and
cycle characteristics

A total of 11237 women were included in the analysis, with an

average age of 29.7 ± 3.8 years and a BMI of 21.8 ± 3.2 kg/m2. The

mean ± SD peak serum E2 level on hCG-trigger day in the study

cohort was 4065.7 ± 2456.6 pg/ml. The patients’ baseline and cycle

characteristics are presented in Table 1. Women with peak E2 levels

in the highest quartile (Q4) were younger, with lower BMI, and were

more likely to be diagnosed with primary infertility and polycystic
TABLE 1 Patient demographic and cycle characteristics.

Variable Overall
Q1

(<2226 pg/
ml)

Q2
(2226-3417 pg/

ml)

Q3
(3418-5510 pg/

ml)

Q4
(>5510 pg/

ml)

P
value

No. of patients 11237 2809 2810 2809 2809

Maternal age (y) 29.7 ± 4.0 30.6 ± 4.2 29.8 ± 3.9 29.4 ± 3.8 29.0 ± 3.8 <0.001

Maternal BMI (kg/m2) 21.8 ± 3.2 22.6 ± 3.4 22.0 ± 3.1 21.6 ± 3.1 21.2 ± 2.8 <0.001

Infertility duration (y) 3.2 ± 2.3 3.2 ± 2.3 3.2 ± 2.3 3.3 ± 2.3 3.3 ± 2.2 0.035

Primary infertility 7629(67.9) 1811(64.5) 1867(66.4) 1956(69.6) 1995(71.0) <0.001

(Continued)
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ovarian syndrome (PCOS). Regarding the outcomes of ovarian

stimulation, women with higher E2 quartiles resulted in increased

number of retrieved oocytes and good-quality embryos, while

fertilization rates remained similar across groups. Furthermore,
Frontiers in Endocrinology 05
more subsequent FET cycles were observed in higher E2 quartiles,

where more embryos were transferred cumulatively.

Moderate and severe OHSS occurred in 59 patients (0.5%) (27).

The rates of OHSS were 0.1%, 0.2%, 0.5%, and 1.2% for Q1, Q2, Q3
TABLE 1 Continued

Variable Overall
Q1

(<2226 pg/
ml)

Q2
(2226-3417 pg/

ml)

Q3
(3418-5510 pg/

ml)

Q4
(>5510 pg/

ml)

P
value

Parity <0.001

0 10407(92.6) 2560(91.1) 2574(91.6) 2623(93.4) 2650(94.3)

≥1 830(7.4) 249(8.9) 236(8.4) 186(6.6) 159(5.7)

Basal FSH (IU//L) 6.6 ± 1.7 6.9 ± 2.0 6.5 ± 1.7 6.5 ± 1.6 6.4 ± 1.6 <0.001

Infertility diagnosis <0.001

Tubal 6103(54.3) 1541(54.9) 1526(54.3) 1536(54.7) 1500(53.4) 0.697

Diminished ovarian reserve 439(3.9) 336(12.0) 100(3.6) 3(0.1) 0(0) <0.001

PCOS 2777(24.7) 546(19.4) 708(25.2) 726(25.8) 797(28.4) <0.001

Endometriosis 874(7.8) 273(9.7) 244(8.7) 195(6.9) 162(5.8) <0.001

Male factors 4021(35.8) 1036(36.9) 1015(36.1) 967(34.4) 1003(35.7) 0.275

Other 419(3.7) 103(3.7) 126(4.5) 117(4.2) 73(2.6) 0.001

Protocol for ovarian stimulation <0.001

GnRH-agonist long 3887(34.6) 475 (16.9) 845(30.1) 1136(40.4) 1431(50.9)

GnRH-agonist short 2802(24.9) 1047(37.3) 679(24.2) 561(20.0) 515(18.3)

GnRH-antagonist 4548(40.5) 1287(45.8) 1286(45.8) 1112(39.6) 863(30.7)

Total Gn dose (IU)
1453.8 ±
487.0

1494.7 ± 564.0 1457.7 ± 506.4 1457.4 ± 461.5 1405.3 ± 396.7 <0.001

Progesterone level on hCG-trigger day (ng/
mL)

1.0 ± 0.7 0.7 ± 0.7 0.8 ± 0.5 1.0 ± 0.9 1.3 ± 0.7 <0.001

Cycles with ICSI 3199(28.5) 770(27.4) 813(28.9) 800(28.5) 816(29.0) 0.512

No. of oocytes retrieved 15.5 ± 7.7 9.4 ± 5.1 14.3 ± 5.7 17.4 ± 6.5 21.1 ± 8.1 <0.001

Fertilization rate 80.9 ± 16.0 80.6 ± 18.8 80.7 ± 16.6 80.9 ± 15.7 81.2 ± 15.5 0.458

No. of viable embryos 5.7 ± 3.6 3.7 ± 2.3 5.2 ± 2.9 6.3 ± 3.5 7.6 ± 4.1 <0.001

No. of good quality embryos 3.4 ± 2.5 2.1 ± 1.2 3.2 ± 2.3 3.6 ± 2.9 4.5 ± 3.4 <0.001

No. of FET cycles 1.5 ± 0.8 1.4 ± 0.6 1.5 ± 0.7 1.5 ± 0.8 1.6 ± 0.9 <0.001

No. of total embryos transferred 2.4 ± 1.3 2.1 ± 1.1 2.3 ± 1.3 2.5 ± 1.4 2.7 ± 1.5 <0.001

No. of cleavage-stage embryos
transferred

1.7 ± 1.3 1.4 ± 1.1 1.6 ± 1.3 1.8 ± 1.3 2.0 ± 1.4 <0.001

No. of blastocysts transferred 0.7 ± 1.0 0.7 ± 0.9 0.8 ± 1.0 0.8 ± 1.1 0.7 ± 1.1 <0.001

FET endometrial preparation <0.001

Artificial cycle 14006(84.0) 3294(85.5) 3507(83.5) 3616(84.2) 3589(82.5)

Modified natural cycle 1398(8.4) 291(7.6) 332(7.9) 367(8.5) 408(9.4)

Stimulated cycle 1227(7.7) 253(6.6) 362(8.6) 310(7.2) 352(8.1)

Moderate or severe OHSS 59(0.5) 3(0.1) 7(0.2) 15(0.5) 34(1.2) <0.001
fron
Data are presented as mean ± standard deviation or number (%).
BMI, body mass index; FSH, follicle-stimulating hormone; PCOS, polycystic ovarian syndrome; GnRH, gonadotropin-releasing hormone; Gn, gonadotropin; IU, in units; hCG, human chorionic
gonadotropin; ICSI, intracytoplasmic sperm injection; FET, Frozen embryo transfer; OHSS, ovarian hyperstimulation syndrome.
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and Q4 respectively, which increased significantly across

groups (P<0.001).
3.2 Live birth rate and cumulative
live birth rate

A total of 8410 (74.8%) women achieved live births following

their FET cycles. Pregnancy outcomes of the first FET cycle and

CLBR by quartiles of peak E2 levels are shown in Table 2. The

clinical pregnancy rate, LBR, and CLBR improved as peak E2

quartiles increased (P<0.01), while the rate of implantation

remained similar across different quartiles. The early miscarriage

rate was lower in Q4 group compared with Q1 group in univariate

analysis. After adjusting for potential confounders in multivariate

regression models, results showed no statistically significant

between peak E2 level and the rates of implantation, clinical

pregnancy, early miscarriage, and live birth following the first

FET. However, a positive association was detected between peak
Frontiers in Endocrinology 06
E2 level and CLBR after adjustment in multivariate regression and

GEE models. The results of each FET cycle for the cumulative live

birth are shown in Supplemental Table 1.

Analysis by age strata (<31, 31-34, 35-37, 38-40 years) showed a

steady increase in CLBR with the peak E2 levels on hCG-trigger day

(Supplemental Figure 1). However, for a given E2 level, CLBR

decreased with increasing age, with the most prominent decline

observed at 38-40 years old.
3.3 Maternal and neonatal outcomes

There were 6305 singletons (75.0%) and 2105 twins (25.0%)

born during the study period (Table 3). No differences were noticed

amongst peak E2 quartiles in terms of obstetric complications

including GDM, PIH, preeclampsia, and placental disorders for

both singleton and twin live births. Birthweights were similar

amongst different quartiles. The incidence of preterm birth, low

birthweight, SGA, and birth defect were also comparable across
TABLE 2 Pregnancy outcomes and its association with peak serum estradiol levels.

Outcomes Q1
(<2226 pg/ml)

Q2
(2226-3417 pg/ml)

Q3
(3418-5510 pg/ml)

Q4
(>5510 pg/ml)

Implantation rate a

n, (%) 2012/4352 (46.2) 2202/4594 (47.9) 2307/4787(48.2) 2425/5074(47.8)

Crude OR(95%CI) c Ref. 1.06(0.98-1.16) 1.04(0.95-1.14) 1.02(0.93-1.11)

Adjusted OR(95%CI) b,c Ref. 1.04(0.95-1.13) 1.04(0.94-1.14) 1.08(0.98-1.20)

Clinical pregnancy rate a

n, (%) 1685/2809(60.0) 1742/2810(62.0) 1796/2809(63.9) 1811/2809(64.5)

Crude OR(95%CI) d Ref. 1.09(0.98-1.22) 1.19(1.07-1.32) * 1.21(1.09-1.35) *

Adjusted OR(95%CI) b,d Ref. 0.98(0.88-1.10) 1.03(0.92-1.16) 1.08(0.95-1.22)

Early miscarriage rate a

n, (%) 216/1685(12.8) 211/1742(12.1) 183/1796(10.2) 174/1811(9.6)

Crude OR(95%CI) d Ref. 0.98(0.80-1.19) 0.84(0.68-1.03) 0.79(0.65-0.98) *

Adjusted OR(95%CI) b,d Ref. 1.09(0.89-1.34) 1.01(0.81-1.27) 1.06(0.84-1.35)

LBR a

n, (%) 1397/2809(49.7) 1465/2810(52.1) 1541/2809(54.9) 1583/2809(56.4)

Crude OR(95%CI) d Ref. 1.10(0.99-1.22) 1.23(1.11-1.36) * 1.31(1.18-1.45) *

Adjusted OR(95%CI) b,d Ref. 0.97(0.87-1.08) 1.03(0.92-1.15) 1.08(0.96-1.22)

CLBR

n, (%) 1830/2809(65.1) 2088/2810(74.3) 2201/2809(78.4) 2291/2809(81.6)

Crude OR(95%CI) d Ref. 1.55(1.38-1.74) * 1.94(1.72-2.18) * 2.37(2.09-2.68) *

Adjusted OR(95%CI) b,e Ref. 1.06(0.96-1.16) 1.12(1.02-1.24) * 1.21(1.09-1.35) *
OR, odds ratio; CI, confidence interval; LBR, live birth rate; CLBR, cumulative live birth rate.
aResults of the first frozen embryo transfer cycle;
bModels were adjusted for maternal age, maternal BMI, primary or secondary infertility, parity, basal FSH, infertility diagnosis, protocol for stimulation, progesterone level on hCG day, IVF or
ICSI, endometrial preparation regimen, embryo developmental stage, embryo quality, and number of embryos transferred; cResults of poisson regression analysis; dResults of logistic regression
analysis; eResults of generalized estimating equations regression analysis. *P value <0.05.
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TABLE 3 Maternal complications and neonatal outcomes, stratified by estradiol levels on hCG-trigger day.

Outcome Overall Q1
(<2226 pg/ml)

Q2
(2226-3417 pg/ml)

Q3
(3418-5510 pg/ml)

Q4
(>5510 pg/ml) P value

No. of live birth 8410 1830 2088 2201 2291

Singleton 6305(75.0) 1457(79.6) 1582(75.8) 1657(75.3) 1609(70.2)

Twins 2105(25.0) 373(20.4) 506(24.2) 544(24.7) 682(29.8)

Gestational diabetes mellitus

Singleton 754(12.0) 188(12.9) 202(12.8) 197(11.9) 167(10.4) 0.110

Twins 210(10.0) 43(11.5) 57(11.3) 55(10.1) 55(8.1) 0.193

Pregnancy-induced hypertension

Singleton 262(4.2) 68(4.7) 71(4.5) 58(3.5) 65(4.0) 0.357

Twins 177(8.4) 35(9.4) 43 (8.5) 40(7.4) 59(8.7) 0.728

Preeclampsia

Singleton 194(3.1) 52(3.6) 58(3.7) 44(2.7) 40(2.5) 0.117

Twins 136(6.5) 26(7.0) 37(7.3) 34(6.3) 39(5.7) 0.699

Placental disorders

Singleton 146(2.3) 35(2.4) 41(2.6) 43(2.6) 27(1.7) 0.257

Twins 44(2.1) 8(2.1) 15(3.0) 11(2.0) 10(1.5) 0.361

Male gender

Singleton 3354(53.2) 790(54.2) 822(52.0) 896(54.1) 846(52.6) 0.504

Twins 2188(52.0) 382(51.2) 537(53.1) 565(51.9) 704(51.6) 0.866

Gestational age (weeks)

Singleton 38.7 ± 1.7 38.7 ± 1.7 38.7 ± 1.7 38.8 ± 1.6 38.8 ± 1.8 0.134

Twins 36.0 ± 1.9 35.9 ± 2.1 35.9 ± 1.0 36.2 ± 1.8 36.1 ± 1.9 0.083

Preterm birth

Singleton 422(6.7) 96(6.6) 126(8.0) 94(5.7) 106(6.6) 0.075

Twins 1021(48.5) 182(48.8) 258(51.0) 251(46.1) 330(48.4) 0.478

Birthweight (g)

Singleton 3388.0 ± 513.8 3406.0 ± 527.3 3374.4 ± 520.2 3404.7 ± 493.3 3367.7 ± 515.3 0.066

Twins 2552.4 ± 426.2 2539.3 ± 466.5 2538.9 ± 434.1 2571.6 ± 398.9 2554.3 ± 430.4 0.578

Low birthweight

Singleton 264(4.2) 61(4.2) 69(4.4) 64(3.9) 70(4.4) 0.882

Twins 1593(37.8) 282(37.8) 388(38.3) 392(36.0) 531(38.9) 0.510

SGA

Singleton 286(4.5) 65(4.5) 74(4.7) 66(4.0) 81(5.0) 0.535

Twins 149(3.5) 34(4.6) 34(3.4) 31(2.8) 50(3.7) 0.268

Birth defect

Singleton 175(1.3) 17(1.2) 17(1.1) 22(1.3) 24(1.5) 0.734

Twins 66(1.6) 11(1.5) 18(1.8) 15(1.4) 22(1.6) 0.896
F
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Data are presented as mean ± standard deviation or number (percentage).
SGA, small for gestational age.
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groups. Details of birth defects that occurred in all live-born babies

were presented in Supplemental Table 2.

Results of multivariable logistic regression adjusting for

potential confounders revealed no associations between peak E2

level and adverse obstetric and neonatal outcomes (Figure 2).
4 Discussion

Results of this large cohort study demonstrated that peak serum

E2 level during COS was positively associated with CLBR in freeze-

all cycles, while no association was found between E2 level and

adverse obstetric and neonatal outcomes.

In fresh embryo transfer cycles, evidence about whether the

peak serum E2 level during COS affects pregnancy outcomes

remains conflicting (4, 5). The heterogeneity of the population

sampled, study sizes and E2 cut-off levels in these studies may

account for their discrepancies. For instance, Moralog˘lu et al.

involved 106 patients with ≥ 5 oocytes retrieved and suggested

that peak E2 levels >2500 pg/ml were negatively associated with

implantation rates (16). However, a large cohort study by Mustafa

et al. included 6478 ICSI cycles and found that E2 levels over the

90th percentile (>4200 pg/ml) had increased clinical pregnancy rate,

while the implantation rate was similar across the E2 percentile

groups (28). Bianco et al. using a threshold of 2000 pg/ml, reviewed

58 oocyte donation cycles and reported that E2 concentration did

not affect clinical pregnancy rate and LBR (29). In addition, other

researchers showed no influence of peak E2 levels during COS on

IVF success rates in autologous cycles (30–33). Among the existing

studies, Yu Ng et al. and Chen et al. have further explored the

subsequent FET cycles after the initial fresh cycles and reported

similar pregnancy outcomes across different E2 concentrations, but

they mainly looked at the rates of implantation and clinical

pregnancy, without evaluating the CLBR (31, 32).
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The impact of peak E2 levels during COS on the CLBR can be

interpreted as a useful indicator of its effect on embryo development

and implantation potential. A retrospective study included 1141

non-PCOS patients and assessed the outcomes of fresh and frozen

cycles (34). They reported that the peak E2 level had a

concentration-dependent effect on CLBR, with the optimal CLBR

achieved between the E2 range of 2185-6361 pg/ml and a

remarkable decrease afterward. However, the results could have

been confounded since the CLBR in this study was calculated based

on pooled data of both fresh and frozen cycles in the first embryo

transfer attempt. Besides, the authors acknowledged that the sample

size was relatively small in high E2 levels. The present study,

conducted in a large general population, has estimated both

reproductive outcomes after the first FET cycle and CLBR to

explore the applicability of the freeze-all strategy in IVF patients

with different peak E2 levels. Our results found that a higher E2 level

not only does not decrease the implantation rate and LBR but, on

the contrary, increases CLBR following the use of frozen-thawed

embryos. Furthermore, the benefit from high ovarian response is

limited for patients with advanced age as the CLBR reaches a

plateau in extremely elevated E2 levels. These results, based on

the freeze-all setting, added information on the association between

peak E2 levels during COS and CLBR.

Concerning obstetric and neonatal outcomes, the maternal

hyperestrogenic milieu has been reported to has an adverse effect

on placentation and subsequent fetal growth (17–19). In comparison

with previous studies presenting increased risks of preeclampsia, low

birthweight and SGAwith elevating E2 levels in fresh embryo transfer

cycles, the present study found no association between E2 levels and

adverse maternal and neonatal outcomes. Cai et al. and Zhang et al.

conducted their studies in FET cycles and suggested that singleton

birthweight was negatively influenced by increasing peak E2 levels

during COS (35, 36). However, both studies were limited by the main

FET indication of failed fresh transfer and OHSS risk, which would
FIGURE 2

Adjusted odds ratios of adverse maternal and neonatal outcomes among live births with different estradiol levels on hCG-trigger day. OR, odds ratio;
CI, confidence interval. The analyses were adjusted for maternal age, maternal BMI, primary or secondary infertility, parity, infertility diagnosis,
protocol for stimulation, endometrial preparation regimen, embryo developmental stage, embryo quality, and number of embryos transferred
(The group of Q1 was taken as the reference group).
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lead to confounding outcomes as the patients included were generally

with worse prognoses. Consistent with our findings, a more recent

large cohort study reported that peak E2 level during COS was not

related to increased risks of low birthweight and SGA in freeze-all

cycles, although patients with maternal complications including

GDM and hypertensive disorders were excluded in the study (37).

A significant body of evidence has demonstrated that the

supraphysiologic E2 level in IVF treatments may impair

endometrial receptivity and adversely affect trophoblastic invasion

or placentation, which may explain the unfavorable results associated

with high E2 levels in fresh cycles (6–8, 17–19). However, it is also of

concern whether there is a negative effect on the quality of oocytes or

embryos attributable to high E2 levels (10–13). Many studies

indicated that the embryonic viability decreased and chromosomal

abnormalities increased after superovulation in animal experiments

(10, 11). In addition, hormonal stimulation has been hypothesized to

induce epigenetic alterations in both human and murine oocytes or

embryos derived from assisted reproduction treatment (12, 13).

However, contemporary studies have reported that ovarian

stimulation was not related to the chromosomal status of embryos

(38, 39) and no drastic epigenetic changes were found in placental

tissues with or without superovulation (40).

Furthermore, it is difficult to distinguish the effects of

supraphysiologic E2 level on oocytes or embryos from those on the

endometrium in fresh cycles, whereas a freeze-all strategy provides a

novel model to assess the sole impact of ovarian stimulation on oocyte

and embryo quality after ruling out the potential deleterious influences

on endometrium caused by a hyperestrogenic milieu (41). Our study,

focusing on pregnancy and obstetric outcomes, adds further to the

currently existing evidence by suggesting that the high E2 levels do not

appear to pose adverse effects on oocyte or embryo quality, and the

detrimental effect of intrauterine high E2 exposure could be avoided

by transferring embryos into a more physiologic uterine environment.

This is the first study to evaluate the impact of peak E2 level

during COS in freeze-all cycles. The strength of our study is the

large cohort size with an organized dataset that offered all the

relevant parameters in the analysis. The primary outcome of this

study, CLBR, allows us to capture all live births after one ovarian

stimulation cycle and the corresponding obstetric and fetal

outcomes, which also provides new insight into the relationship

between E2 level and the success of an IVF program.

We acknowledged that there are limitations in this study. The

retrospective nature of the analysis may increase the chance of

selection bias regarding the population characteristics as well as

cycle parameters (e.g. basal ovarian reserve, fertilization method,

embryo stage at transfer). In this regard, we utilized multivariable

regression models to adjust for potential confounders, and the result

of CLBR was reinforced by the GEE analysis. In addition, the policy of

transferring two cleavage-stage embryos was taken as a priority in our

IVF centers before 2019 and single blastocyst transfer was encouraged

afterward given the advantages of reduced multiple pregnancies and

improved pregnancy rates (42, 43). Thus, the results of our analysis

may not be generalizable to other populations where blastocysts were

cultured and transferred primarily. Further investigations on this

subject are still needed to evaluate the effect of high E2 levels on the
Frontiers in Endocrinology 09
oocyte competence and embryo developmental potential, as well as

the long-term health of IVF offspring.
5 Conclusion

Our study demonstrated that, in freeze-all cycles, the CLBR

progressively increased with the higher levels of peak serum E2 after

COS, while the risks of adverse obstetric and neonatal outcomes

were not increased, suggesting that high E2 levels may actually have

a very limited or no adverse effect on oocyte or embryo quality. Our

results provide reassuring findings for patients with high E2 levels

during COS and suggest that they may benefit from freeze-all cycles.

Nevertheless, given that the extremely elevated E2 levels would pose

additional risks such as OHSS and thromboembolic complications

after oocyte retrieval, COS for freeze-all cycles should be rational to

avoid aggressive stimulation and focus on the balance between

treatment efficiency and patients’ safety.
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