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functional sorting of tumour
microenvironment prognostic
genes for breast cancer patients
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1Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key
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Medical Sciences, Tianjin Medical University, Tianjin, China, 2Faculty of Medicine, Macau University of
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Purpose: The aim of this study was to systematically establish a comprehensive

tumour microenvironment (TME)-relevant prognostic gene and target miRNA

network for breast cancer patients.

Methods: Based on a large-scale screening of TME-relevant prognostic genes

(760 genes) for breast cancer patients, the prognostic model was established.

The primary TME prognostic genes were selected from the constructing

database and verified in the testing database. The internal relationships

between the potential TME prognostic genes and the prognosis of breast

cancer patients were explored in depth. The associated miRNAs for the TME

prognostic genes were generated, and the functions of each primary TME

member were investigated in the breast cancer cell line.

Results: Compared with sibling controls, breast cancer patients showed 55

differentially expressed TME prognostic genes, of which 31 were considered as

protective genes, while the remaining 24 genes were considered as risk genes.

According to the lambda values of the LASSO Cox analysis, the 15 potential TME

prognostic genes were as follows: ENPEP, CCDC102B, FEZ1, NOS2, SCG2,

RPLP2, RELB, RGS3, EMP1, PDLIM4, EPHA3, PCDH9, VIM, GFI1, and IRF1.

Among these, there was a remarkable linear internal relationship for

CCDC102B but non-linear relationships for others with breast cancer patient

prognosis. Using the siRNA technique, we silenced the expression of each TME

prognostic gene. Seven of the 15 TME prognostic genes (NOS2, SCG2, RGS3,

EMP1, PDLIM4, PCDH9, and GFI1) were involved in enhancing cell proliferation,

destroying cell apoptosis, promoting cell invasion, or migration in breast cancer.

Six of them (CCDC102B, RPLP2, RELB, EPHA3, VIM, and IRF1) were favourable for

maintaining cell invasion or migration. Only two of them (ENPEP and FEZ1) were

favourable for the processes of cell proliferation and apoptosis.

Conclusions: This integrated study hypothesised an innovative TME-associated

genetic functional network for breast cancer patients. The external relationships

between these TME prognostic genes and the disease were measured.

Meanwhile, the internal molecular mechanisms were also investigated.
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Introduction

Breast cancer is a rapidly growing public health problem of

global concern (1). In developed countries, breast cancer has

become the second most common cause of cancer death in

women and is also the leading cause of cancer death in women in

low- and middle-income countries (2). Several elements have been

shown to be closely associated with breast cancer, such as hormone-

related elements, pregnancy-related elements, anthropometric

index elements, physical condition, dietary elements, and

environmental exposures (1). Clinically, breast cancer patients

can be classified into different subtypes. To date, classifications

have been based on different expression patterns of progesterone

receptor (PR), estrogen receptor (ER), and human epidermal

growth factor receptor-2 (HER-2). Traditional classification does

not fully reflect the heterogeneity of breast cancer. For this purpose,

breast cancer could also be divided into five different subtypes

according to genetic profiling, which represent the heterogeneity of

breast cancer (3). Clinically, the recommended diagnostic

methods for breast cancer patients are MRI, mammography,

ultrasonography, and PET (2). Among them, the recommended

technique for the diagnosis of breast cancer is mammography,

which, to date, represents the gold standard screening method for

breast cancer patients (4). However, approximately 20% of breast

cancers are missed by mammography (5). When mammography

fails to detect breast cancer, ultrasound and magnetic resonance

imaging can be used to detect breast cancer (3).

Tumour progression has long been thought to be associated with

epigenetic changes in tumour cells (6). There is increasing evidence that

the cells and matrix components surrounding tumour cells also play an

indispensable role in the tumour process. Together, these components

constitute the tumour microenvironment (TME) (7). The TME

consists of various TME-related genes localised or secreted by

immune cells and stromal cells, which play a critical role in tumour

proliferation andmetastasis (8). For example, some immune cells in the

TME, such as M1 macrophages, have a significant effect on tumour

inhibition by activating Th1 responses. At the same time, other cells

such as tumour-associated endothelial cells, cancer-associated

fibroblasts, and M2 macrophages in the TME can promote tumour

growth and proliferation (9) (10). In addition, localised stromal cells,

immune cells, and tumour cells in the TME can interact with each

other through cytokines, which could effectively accelerate tumour

growth and proliferation. For example, integrins and soluble factors

(e.g., IL-6, SDF1, and HGF) could mediate the interaction between

tumour cells and the stroma. Signalling pathways involving MAPK,

PI3K/Akt, ERK1/2, and STAT have been shown to be highly activated

in tumour cells. On the other hand, the activities of anti-apoptotic

proteins (e.g., Bcl-2 and Bcl-XL) could be enhanced in the TME, which

then initiate cancer development (11).

The miRNAs (short for microRNAs) are a super-family of small

non-coding RNAs, most of which are approximately 21 nucleotides

in length. Although these miRNAs cannot be translated, they can

regulate transcription by binding to the 5’ or 3’ non-coding regions

of mRNA (12). The miRNAs play an important role in tumour

development and are thought to be key factors in TME. The
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miRNAs can affect tumour progression by regulating the cell

cycle, manipulating programmed cell death, controlling cell

invasion, and targeting angiogenesis (13).

Since TME has received more and more attention in cancer

research, we have thoroughly analysed the expression of 760 TME-

relevant prognostic genes and their prognostic values in breast

cancer patients. In addition to the broad screening, the internal

functions of each primary TME prognostic gene for breast cancer

prognosis were also thoroughly investigated in this integrated study.
Materials and methods

Data source

We used two independent data sources in this study. The breast

cancer patients from the TCGA-BRCA database were considered as

a constructing database. At the same time, the breast cancer patients

from the GSE162228 chip were treated as a testing database.

For the constructing database, we downloaded the gene

information profile and corresponding clinical information of breast

cancer patients from The Cancer Genome Atlas (TCGA, https://tcga-

data.nci.nih.gov/tcga/) database, which contains 1,082 breast cancer

patients with complete survival information. In addition, for the testing

database, we downloaded a dataset from the GEO database (GEO,

https://www.ncbi.nlm.nih.gov/geoprofiles/?term=GSE162228), which

contains 109 breast cancer patients with complete survival

information. The genetic information of the breast cancer patients in

the GEO dataset was analysed using the Affymetrix Human Genome

U133A Array platform.
TME-relevant prognostic gene
identification and selection

In this study, the identification and selection of TME-relevant

prognostic genes followed the previously established protocol (14).

Essentially, the complete list of genes was obtained from 10

published studies providing transcriptomic signatures for multiple

immune and stromal cell populations (15–25).

The final differentially expressed TME-relevant prognostic

genes for breast cancer patients were selected and verified in two

steps: first, a single-factor Cox regression analysis for breast cancer

prognosis was developed to analyse the expression values of each

TME-relevant prognostic gene in breast cancer samples, with a

threshold of p< 0.05; second, bootstrapping was performed to test

the genes that passed the initial filtering for robustness as follows:

70% of patients randomly selected from the cohort were tested for

the survival impact of their genes.
LASSO Cox regression analysis

To avoid over-fitting the model, redundant prognosis-related

molecules were removed from the dimension using LASSO Cox
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regression analysis. The model’s penalty parameter (lambda value)

was also determined using 10-fold cross-validation, with the

smallest lambda value selected to remove redundant prognosis-

related molecules.

For this purpose, the glmnet function package of the R language

was performed for LASSO Cox regression analysis to further infer

the TME prognostic genes related to breast cancer prognosis. The

following formula was established to calculate the risk score for each

individual breast cancer sample:

Risk Score =o
n

i=1
Coef i *Xi

In this formula, Coefi represents the risk coefficient of each

factor estimated by the LASSO-Cox model. Xi indicates the

expression activity of each TME prognostic gene. The breast

cancer patients of the constructing database and the testing

database could be subdivided into a high-risk group and a low-

risk group based on the median of the corresponding calculated

risk score.
Survival analysis

The survival and survminer packages in the R language were

used to analyse the survival of each patient. The package was based

on the Kaplan–Meier method (26).
Prediction of miRNA targets

The targets of potential miRNAs were achieved via miRBase

(www.h t tp : / /www.mi rba se . o rg ) , Ta rge tScan (h t tp : / /

www.targetscan.org), miRanda (http://www.microrna.org/

microrna/home.do), miRWalk (http://www.ma.uni-heidelberg.de/

apps/zmf/mirwalk), TarBase (http://diana.cslab.ece.ntua.gr/

tarbase), and miRecords (http://mirecords.biolead.org).
Cell culturing

The mda-MB-453 cell line, purchased from ATCC Co., was

selected as a breast cancer cell line in this study and cultured in L15

culturing medium with 10% fetal bovine serum plus 1% P/S.
Luciferase reporter assay

The 3’ non-coding region of each TME gene was synthesised

and inserted into the XhoI and NotI sites of the pCheck2 reporter

luciferase vector downstream of the luciferase gene. The wild type

(WT) or mutant plasmid and negative control or miRNA were

transfected together into mda-MB-453 cells. Final luciferase

analysis was performed using a dual luciferase reporter analysis

system (Promega, USA).
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Tumour manner analysis of
mda-MB-453 cells

The corresponding TME prognostic gene siRNAs (50 nmol/L)

(OriGene) and the corresponding negative control transfection

were obtained by Lipofectamine-2000 (Sigma-Aldrich, USA).

The siRNA-transfected cells were harvested and the

proliferation ability was measured using the CCK-8 method

(Fisher, China). At the same time, the apoptosis ability of the

cells was examined by the method of flow cytometry after Annexin

V FITC/PI double staining. For transwell migration assays, 2.5×104

cells were seeded in the appropriate serum-free medium into the

pre-coated upper chamber. The 500-ml complete medium was used

as chemoattractant in the lower chambers. The incubation time was

set at 48 h, after which cells without migration or invasion were

removed. The final number of migrated or invaded cells was

examined using Image-Pro Plus version 6.0 software. All

experiments were repeated three times independently.
Statistical analysis

The multi-factor Cox regression model was built to analyze

whether risk score could predict the survival of patients with breast

cancer independently of all other factors. The statistical analysis was

established by R software, with version number v4.2.2.
Results

TME prognostic gene selections for breast
cancer prognosis

First, the breast cancer patients from the TCGA-BRCA database

were used as a constructing database. We focused on TME genetic

profiling in breast cancer patients. The selection scope was based on

a complete list of 760 TME genes, which are listed in Supplementary

Table S1. Differential analysis was performed using single-factor

Cox regression analysis. The 760 TME-relevant prognostic gene

expression values were treated as continuous variables in the

regression analysis. The 55 differentially expressed TME

prognostic genes were finally screened out as p-value<

0.05 (Table 1).

In the list, the genes with HR value less than 1 were favourable

for breast cancer prognosis (protective TME prognostic genes). On

the other hand, the genes with HR value greater than 1 were

unfavourable for breast cancer prognosis (risk TME prognostic

genes). For this purpose, 31 of the 55 genes were considered as

protective genes, while the remaining 24 genes were considered as

risk genes.

To remove redundant prognosis-related molecules, the 55

differentially expressed TME prognostic genes were then plotted

in a LASSO Cox regression analysis. As shown in Figure 1A, the

optimal number of differentially expressed TME prognostic genes
frontiersin.org
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was determined to be 15 (Figure 1A, with the lowest lambda value).

Therefore, the forest plot of the top 15 genes with the smallest p-

value among the 55 genes is shown in Figure 1B. The 15 TME

prognostic genes were ENPEP, CCDC102B, FEZ1, NOS2, SCG2,

RPLP2, RELB, RGS3, EMP1, PDLIM4, EPHA3, PCDH9, VIM,

GFI1, and IRF1.

The expression values of 15 TME prognostic genes were then

weighted with the regression coefficients of the LASSO Cox

regression model to generate a risk score for predicting survival

in breast cancer patients. Each patient’s risk score was calibrated

individually. Using the risk score as a further selection criterion, the

1,082 patients were divided into a high-risk group and a low-risk

group based on the median of the risk score. According to

the survival analysis, the patients in the high-risk sample

showed an overall poor survival rate compared to the low-risk

sample (Figure 1C).

In addition, it could be shown that the AUC of the 1-year, 3-

year, and 5-year survival period of the breast cancer patients were

0.666, 0.721, and 0.681, respectively, obtained from the time-

dependent ROC (Figure 1D). These results indicated that the risk

model could accurately predict the prognosis of breast cancer

patients. Meanwhile, the 15 TME prognostic genes were

remarkably different when comparing the high-risk and low-risk

groups (Figure 1E), which further confirmed the specificity of the 15

TME prognostic genes as well as the efficiency of the risk score

constructed by them.
TABLE 1 The Univariate Cox analysis results for differentially expressed
TME prognostic genes.

Univariate Cox analysis results

Gene Symbol HR (95% CI for HR) p-value z

ENPEP 1.66 (1.28–2.16) 0.000139074 3.81

CCDC102B 2.33 (1.44–3.75) 0.000522431 3.47

FEZ1 1.99 (1.33–2.98) 0.000855644 3.33

NOS2 1.94 (1.31–2.88) 0.000958565 3.3

SCG2 1.24 (1.09–1.41) 0.00128473 3.22

RPLP2 0.75 (0.63–0.90) 0.001925764 -3.1

RELB 0.73 (0.59–0.90) 0.003646782 -2.91

RGS3 1.76 (1.20–2.58) 0.003899135 2.89

EMP1 1.32 (1.09–1.60) 0.005084147 2.8

PDLIM4 0.78 (0.65–0.93) 0.005222158 -2.79

EPHA3 1.26 (1.07–1.49) 0.005598623 2.77

PCDH9 1.46 (1.11–1.93) 0.006761393 2.71

VIM 0.72 (0.57–0.92) 0.007530978 -2.67

GFI1 0.58 (0.39–0.87) 0.008598062 -2.63

IRF1 0.77 (0.64–0.94) 0.008833897 -2.62

EGR3 0.84 (0.73–0.96) 0.009926168 -2.58

SERPING1 0.78 (0.64–0.94) 0.010483576 -2.56

GPR157 1.32 (1.06–1.63) 0.011500637 2.53

EMP3 0.75 (0.59–0.94) 0.012977354 -2.48

NOVA2 1.87 (1.13–3.09) 0.014175508 2.45

APOD 0.91 (0.84–0.98) 0.01471526 -2.44

GZMB 0.84 (0.72–0.97) 0.014940485 -2.43

FBLN5 0.78 (0.64–0.95) 0.015242065 -2.43

LAMB3 0.86 (0.77–0.97) 0.015320158 -2.42

EGR2 0.81 (0.68–0.97) 0.020596099 -2.32

PLAT 0.88 (0.79–0.98) 0.02066215 -2.31

C1R 0.81 (0.68–0.97) 0.021310129 -2.3

ST3GAL1 1.20 (1.03–1.41) 0.021409383 2.3

NHSL2 1.48 (1.06–2.06) 0.021435989 2.3

RDX 1.30 (1.04–1.63) 0.021922109 2.29

PSPC1 0.69 (0.51–0.95) 0.024554127 -2.25

IGFBP6 0.82 (0.69–0.98) 0.028380367 -2.19

BHLHE41 0.84 (0.71–0.98) 0.028445965 -2.19

HSD17B6 1.34 (1.03–1.74) 0.030702069 2.16

ZBED2 0.71 (0.52–0.97) 0.030961087 -2.16

PTGER3 0.86 (0.75–0.99) 0.031050691 -2.16

PCDH17 1.47 (1.03–2.08) 0.032445543 2.14

(Continued)
TABLE 1 Continued

Univariate Cox analysis results

Gene Symbol HR (95% CI for HR) p-value z

RHOC 0.78 (0.62–0.98) 0.032588416 -2.14

HIVEP2 1.35 (1.02–1.78) 0.032782401 2.13

GLIPR1 0.70 (0.50–0.97) 0.03279175 -2.13

LAMC2 0.88 (0.79–0.99) 0.0329582 -2.13

ANXA5 0.71 (0.51–0.98) 0.035117301 -2.11

ACTG2 0.90 (0.82–0.99) 0.035668501 -2.1

TNFSF4 1.32 (1.02–1.72) 0.036985692 2.09

SFPQ 0.71 (0.52–0.98) 0.037613255 -2.08

EDIL3 1.15 (1.01–1.32) 0.037647622 2.08

PAFAH1B1 1.39 (1.02–1.89) 0.037714152 2.08

PLCL1 0.80 (0.65–0.99) 0.039631052 -2.06

TM4SF4 1.30 (1.01–1.68) 0.041774483 2.04

NGFR 0.85 (0.73–1.00) 0.044023122 -2.01

CAPG 0.83 (0.69–1.00) 0.045120591 -2

NID2 1.25 (1.00–1.55) 0.045980878 2

PAICS 1.24 (1.00–1.53) 0.047716607 1.98

NCAPD3 1.28 (1.00–1.63) 0.049061581 1.97

CTSZ 0.80 (0.63–1.00) 0.049850603 -1.96
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Verification of potential TME
prognostic genes and risk score
using the testing database

Previously, we selected primary TME prognostic genes from the

constructing database and obtained the corresponding risk factor

using the TME prognostic genes. We then sought to confirm the

results using an independent testing database (GSE database). Out

of 109 breast cancer patients (stage 0 patients were excluded) with

complete clinical information, 102 were processed for the study.

The age, TNM stage, and risk score of each individual breast cancer

patient were all subjected to multivariate Cox regression analysis to

decide whether the risk score was an independent prognostic

indicator for breast cancer patients in the test database. As shown
Frontiers in Endocrinology 05
in Figure 2A, it could be demonstrated that the risk score was

dramatically associated with the overall survival of the testing

database, and the samples with a high risk score had a higher risk

of death and were unfavourable for prognosis (HR = 3.8, 95% CI:

2.34–6, p< 0.001).

To investigate the prognostic value of the risk score established

by 15 potential TME-relevant prognostic genes, we further

regrouped patients from the testing database and performed

Kaplan–Meier survival analysis. Patients were divided into group

A (Figure 2B, <60 years old) and group B (Figure 2C, ≥60 years old).

Patients were defined as high risk or low risk based on the risk score

determined by 15 potential TME-relevant prognostic genes.

Regardless of age, patients in the high-risk group had a

significantly lower overall survival rate than those in the low-risk
A B

D

E

C

FIGURE 1

TME prognostic gene selections for breast cancer prognosis. (A) The plot of the determination of the tuning parameter lambda in the LASSO
regression model. The horizontal axis is the log (lambda) and the vertical axis is the partial likelihood deviation value. The lambda value
corresponding to the smallest value is the best. (B) Forest plot of the 15 most significant TME prognostic genes associated with breast cancer
prognosis. HR is the hazard ratio and 95% CI is the 95% confidence interval. (C) Kaplan–Meier survival curve in the TCGA dataset. The horizontal axis
represents time, while the vertical axis represents survival. Different colours represent different groups. The p-value is based on the log-rank test.
(D) The time-dependent ROC curve. The horizontal axis is the false-positive rate, while the vertical axis is the true-positive rate. The accuracy of
prediction is assessed by the AUC (area under the ROC curve) value. (E) The expression heat map of the 15 TME prognostic genes selected from the
TCGA dataset.
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group (Figures 2B, C). These results concluded that the risk score

constructed by primary TME prognostic genes was an

independently accurate indicator for predicting the prognosis of

breast cancer patients. Furthermore, the risk factor was shown to be

independent of TNM stage (Supplementary Figure 1).
Correlation between potential selected
TME prognostic genes and prognosis of
breast cancer patients

To investigate the relationships between 15 TME prognostic

genes and the prognosis of breast cancer patients in depth, the

expressions of these TME prognostic genes were re-entered into the

regression model with the survival probability of each individual

patient from the construction database. As shown in Figure 3, the

risk TME prognostic genes were negatively associated with

prognosis (Figures 3A–E, ENPEP, CCDC102B, FEZ1, NOS2, and

SCG2), while the protective TME prognostic genes were positively

associated with prognosis (Figure 3F, RPLP2). The remaining TME

prognostic genes are shown in Supplementary Figure 2. Based on

the results of forest plot (Figure 1B) and regression model analysis

(Figure 3), ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RGS3, EMP1,

EPHA3, and PCDH9 were suggested as risk TME prognostic genes.

In contrast, RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1 were

suggested as protective TME prognostic genes.

Among them, there was an apparent linear internal

relationship for CCDC102B (Figure 3B), but non-linear

relationships for others (Figures 3A, C–F).
Frontiers in Endocrinology 06
Prediction of potential miRNAs for
TME prognostic gene of breast
cancer prognosis

The 15 TME prognostic genes and associated potential target

miRNAs were searched using six well-established search tools,

namely, miRBase, TargetScan, miRanda, miRWalk, TarBase, and

miRecords. The search results were sorted according to

TarGetScore (the complete list is shown in Table 2).

In the list, the higher the score, the higher the confidence. The

primary miRNAs with prediction scores above 80 were considered

relatively reliable, while those with prediction scores below 60 were

considered less reliable. The final network of 15 TME prognostic

genes and targeting miRNAs was constructed using all primary

miRNAs with prediction scores greater than 80 (Figure 4A).

Notably, all miRNAs with high scores interacted with EPHA3,

suggesting that the miRNA-manipulated signalling cassette may

play a pivotal role in the functions of this TME prognostic gene.

To further validate our predictive results, the direct interactions

between potential miRNAs and targeted TME prognostic genes were

supported by the luciferase reporter assay. As shown in Figure 4B, the

WT-specific fragments of the 3’ UTR of EPHA3 and mutant (MUT)

were cloned into the luciferase reporter. Subsequently, hsa-miR-559

(with the highest predictive score for EPHA3) and non-targeting

miRNA control were transfected into mda-MB-453 cells. According

to the luciferase reporter assay results, hsa-miR-559 could directly bind

to the3’UTRofEPHA3and inhibit its function (WT;Figure4C).On the

other hand, the inhibition was significantly reduced when the sequence

of the identified interaction site was mutated (mutant; Figure 4C).
A

B C

FIGURE 2

Verification of potential TME prognostic genes and risk score using testing database. (A) Multivariate Cox regression analysis forest plot. (B, C) The
Kaplan–Meier survival curve of breast cancer patients<60 years old and ≥60 years old, respectively.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1131525
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xiao et al. 10.3389/fendo.2023.1131525
Diverse functions of TME prognostic genes
for breast cancer development

To date, it has been suggested that promoting cell proliferation,

destroying cell apoptosis, promoting cell invasion, and promoting

cell migration are the primary causes of cancerogenesis. Based on

these hypotheses, we sought to investigate the functions of 15 TME

prognostic genes. We used siRNA technology to knock down the

expression of each TME prognostic gene. Knockdown of risk TME

prognostic genes (ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RGS3,

EMP1, EPHA3, and PCDH9) could induce decreased cell

proliferation, increased cell apoptosis, and impaired cell invasion

or migration. In contrast, deletion of protective TME prognostic

genes (RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1, shown in

dark colour in each graph) showed the opposite pattern.
Frontiers in Endocrinology 07
Among the 15 TME prognostic genes, most of them (NOS2,

SCG2, RGS3, EMP1, PDLIM4, PCDH9, and GFI1) were involved in

all three entries, while 6 of them (CCDC102B, RPLP2, RELB,

EPHA3, VIM, and IRF1) were favourable for maintaining cell

invasion or migration. Furthermore, only two of them (ENPEP

and FEZ1) were favourable for the processes of cell proliferation

and apoptosis (Figures 5A–C).
Discussion

The TME generally refers to the non-cancerous cells and various

components present in the tumour, consisting of immune cells and

stromal cells as well as molecules (27). The constant connections

between tumour cells and TME components play a pivotal role in
A B

D

E F

C

FIGURE 3

Correlationship between potential selected TME prognostic genes and prognosis of breast cancer patients. The relationship analysis between
prognosis of breast cancer patients and ENPEP (A), CCDC102B (B), FEZ1 (C), NOS2 (D), SCG2 (E), and RPLP2 (F), respectively.
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TABLE 2 The list of TarGetScore for TME-associated miRNAs.

Symbol miRNA Expectation score

EPHA3 hsa-miR-559 99.59458

EPHA3 hsa-miR-548a-5p 99.36135273

EPHA3 hsa-miR-548ab 99.36135273

EPHA3 hsa-miR-548ad-5p 99.36135273

EPHA3 hsa-miR-548ae-5p 99.36135273

EPHA3 hsa-miR-548ak 99.36135273

EPHA3 hsa-miR-548am-5p 99.36135273

EPHA3 hsa-miR-548ap-5p 99.36135273

EPHA3 hsa-miR-548aq-5p 99.36135273

EPHA3 hsa-miR-548ar-5p 99.36135273

EPHA3 hsa-miR-548as-5p 99.36135273

EPHA3 hsa-miR-548au-5p 99.36135273

EPHA3 hsa-miR-548ay-5p 99.36135273

EPHA3 hsa-miR-548b-5p 99.36135273

EPHA3 hsa-miR-548bb-5p 99.36135273

EPHA3 hsa-miR-548c-5p 99.36135273

EPHA3 hsa-miR-548d-5p 99.36135273

EPHA3 hsa-miR-548h-5p 99.36135273

EPHA3 hsa-miR-548i 99.36135273

EPHA3 hsa-miR-548j-5p 99.36135273

EPHA3 hsa-miR-548o-5p 99.36135273

EPHA3 hsa-miR-548w 99.36135273

EPHA3 hsa-miR-548y 99.36135273

PCDH9 hsa-miR-7-1-3p 97.86567

PCDH9 hsa-miR-7-2-3p 97.86567

SCG2 hsa-miR-3143 97.55045

EPHA3 hsa-miR-3163 97.42054

VIM hsa-miR-708-3p 97.16357

PCDH9 hsa-miR-5688 97.03809

PCDH9 hsa-miR-520d-5p 96.82901

PCDH9 hsa-miR-524-5p 96.82901

PCDH9 hsa-miR-3973 96.6787

ENPEP hsa-miR-4427 96.52265

EPHA3 hsa-miR-551b-5p 95.62846

EPHA3 hsa-miR-5692a 95.48851

PCDH9 hsa-miR-495-3p 95.3761

VIM hsa-miR-4328 94.28759

EPHA3 hsa-miR-627-3p 94.25463

EPHA3 hsa-miR-4307 94.19724

(Continued)
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TABLE 2 Continued

Symbol miRNA Expectation score

EPHA3 hsa-miR-520d-5p 94.1869

EPHA3 hsa-miR-524-5p 94.1869

SCG2 hsa-miR-8485 93.95476

EPHA3 hsa-miR-3059-5p 93.88569

SCG2 hsa-miR-548aj-3p 93.04963

SCG2 hsa-miR-548x-3p 93.04963

SCG2 hsa-miR-4801 92.84489

PCDH9 hsa-miR-4801 92.36807

SCG2 hsa-miR-5692a 92.20465

PDLIM4 hsa-miR-619-3p 91.75736

RELB hsa-miR-3059-5p 91.64647

PCDH9 hsa-miR-4731-3p 91.57227

PCDH9 hsa-miR-153-5p 91.43969

ENPEP hsa-miR-3163 91.25889

FEZ1 hsa-miR-4474-3p 90.7065

EPHA3 hsa-miR-4474-3p 90.55867

VIM hsa-miR-124-3p 90.54101

VIM hsa-miR-506-3p 90.54101

PCDH9 hsa-miR-510-3p 90.54088

SCG2 hsa-miR-4731-3p 90.48228

ENPEP hsa-miR-551b-5p 90.42114

PCDH9 hsa-miR-4427 90.38796

ENPEP hsa-miR-3662 90.21936

SCG2 hsa-miR-95-5p 90.12317

FEZ1 hsa-miR-373-5p 89.94208

FEZ1 hsa-miR-616-5p 89.94208

FEZ1 hsa-miR-371b-5p 89.94208

PCDH9 hsa-miR-4699-3p 89.43566

EPHA3 hsa-miR-510-3p 89.2435

GFI1 hsa-miR-4777-5p 88.6116

EPHA3 hsa-miR-9902 88.42069

PCDH9 hsa-miR-4474-3p 88.3186

PCDH9 hsa-miR-627-3p 88.16555

IRF1 hsa-miR-12136 88.04969

EPHA3 hsa-miR-153-5p 87.93277

ENPEP hsa-miR-4777-5p 87.771

PCDH9 hsa-miR-95-5p 87.66373

EPHA3 hsa-miR-373-5p 86.72648

EPHA3 hsa-miR-616-5p 86.72648

(Continued)
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tumour initiation, progression, development, and metastasis (28).

Functionally, the TME components could harbour tumour cells

through direct interaction with surrounding cells via the lymphatic

and circulatory systems to ultimately influence cancer development

(8). Thus, the TME has served as a potential therapeutic target for

cancer treatment and has attracted basic research and clinical interest

(29). In breast cancer, various preclinical and clinical studies have

provided ample evidence that TME genes are involved not only in

breast cancer progression but also in determining therapeutic

response (30). Furthermore, some of the TME genes have shown a

prominent value for the existing predictive and prognostic marker

panels. The significant alterations in the TME genes could be

recognised as a critical element in the development of breast cancer.
TABLE 2 Continued

Symbol miRNA Expectation score

EPHA3 hsa-miR-371b-5p 86.72648

PCDH9 hsa-miR-4778-5p 86.6743

SCG2 hsa-miR-5688 86.6212

RGS3 hsa-miR-6500-3p 86.09

EMP1 hsa-miR-548n 86.03104672

ENPEP hsa-miR-641 85.99173

ENPEP hsa-miR-3617-5p 85.99173

VIM hsa-miR-548n 85.9015

ENPEP hsa-miR-4778-5p 85.8444

CCDC102B hsa-miR-153-5p 85.66093

NOS2 hsa-miR-559 85.5333

GFI1 hsa-miR-5688 85.4781

SCG2 hsa-miR-495-3p 85.3661

SCG2 hsa-miR-7-1-3p 85.3661

SCG2 hsa-miR-7-2-3p 85.3661

PDLIM4 hsa-miR-9902 85.33963

CCDC102B hsa-miR-3163 84.9453

PCDH9 hsa-miR-3617-5p 84.7735

CCDC102B hsa-miR-548aj-3p 84.51465939

CCDC102B hsa-miR-548x-3p 84.51465939

PCDH9 hsa-miR-551b-5p 83.75769

GFI1 hsa-miR-3973 83.6984

PCDH9 hsa-miR-8485 83.6918

PDLIM4 hsa-miR-7111-5p 83.1606

PDLIM4 hsa-miR-4723-5p 82.8831

PDLIM4 hsa-miR-5698 82.8831

PDLIM4 hsa-miR-6870-5p 82.8831

EMP1 hsa-miR-4699-3p 82.7515

EPHA3 hsa-miR-6500-3p 82.61788

SCG2 hsa-miR-9902 82.6176

VIM hsa-miR-12136 82.6027

GFI1 hsa-miR-495-3p 82.5314

NOS2 hsa-miR-548a-5p 82.3559

NOS2 hsa-miR-548ab 82.3559

NOS2 hsa-miR-548ad-5p 82.3559

NOS2 hsa-miR-548ae-5p 82.3559

NOS2 hsa-miR-548ak 82.3559

NOS2 hsa-miR-548am-5p 82.3559

NOS2 hsa-miR-548ap-5p 82.3559

(Continued)
TABLE 2 Continued

Symbol miRNA Expectation score

NOS2 hsa-miR-548aq-5p 82.3559

NOS2 hsa-miR-548ar-5p 82.3559

NOS2 hsa-miR-548as-5p 82.3559

NOS2 hsa-miR-548au-5p 82.3559

NOS2 hsa-miR-548ay-5p 82.3559

NOS2 hsa-miR-548b-5p 82.3559

NOS2 hsa-miR-548bb-5p 82.3559

NOS2 hsa-miR-548c-5p 82.3559

NOS2 hsa-miR-548d-5p 82.3559

NOS2 hsa-miR-548h-5p 82.3559

NOS2 hsa-miR-548i 82.3559

NOS2 hsa-miR-548j-5p 82.3559

NOS2 hsa-miR-548o-5p 82.3559

NOS2 hsa-miR-548w 82.3559

NOS2 hsa-miR-548y 82.3559

EMP1 hsa-miR-708-3p 82.153

PCDH9 hsa-miR-641 82.0849

CCDC102B hsa-miR-4723-5p 82.0752

CCDC102B hsa-miR-5698 82.0752

CCDC102B hsa-miR-7111-5p 82.0752

CCDC102B hsa-miR-6870-5p 82.0752

GFI1 hsa-miR-4328 81.86927

PCDH9 hsa-miR-3143 81.8312

PCDH9 hsa-miR-619-3p 81.5165

EPHA3 hsa-miR-124-3p 80.9182

EPHA3 hsa-miR-506-3p 80.9182

ENPEP hsa-miR-510-3p 80.66176

EPHA3 hsa-miR-3662 80.33439

PCDH9 hsa-miR-4307 80.0189
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From the 760 TME-relevant prognostic genes, we narrowed

down our selection to 15 potential TME prognostic genes with a

notable differential expression pattern in breast cancer patients.

Among these, we proposed ENPEP, CCDC102B, FEZ1, NOS2,

SCG2, RGS3, EMP1, EPHA3, and PCDH9 as risk TME

prognostic genes. RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1

were identified as protective TME prognostic genes (Figure 2). As

every coin has two sides, the protective TME factors from stromal

cells or immune cells could abolish cancer cell metastasis or

facilitate the immune system defence mechanism. On the other

hand, risk TME factors from suppressive immune cells, together

with the extracellular matrix (ECM) element, could work together

to exhibit anti-tumour immunity and promote breast cancer

development. Either enhanced risk TME gene expression or

suppressed protective TME prognostic gene expression, caused by

dysfunctional or aberrant specific signalling pathways, could

contribute to the development of breast cancer. However, there

are some limitations to this study. For example, due to the

complicated and dynamic status of TME, it is quite difficult to

show the exact expression for each individual gene in TME. Our

identification of TME-relevant prognostic genes in breast cancer

patients was based on previous established literature searches and

summaries. At the same time, we did not claim that these genes are

only functional in TME, and we only focused on their functional

transition from TME to tumour progression. In the future, it may be

useful to show where (which cell types) and how (the expression

level) the TME-relevant prognostic gene is expressed in the breast

cancer environment.

Despite the many breakthroughs in cancer research, there is still

a lack of solid evidence for the cancer process due to the extremely
Frontiers in Endocrinology 10
complicated molecular mechanisms that underlie the disorders. In

breast cancer, we prefer the “seed-and-soil” hypothesis, which

suggests that the primary localised breast cancer cells represent

“seed” cells (31). The permissive secondary tissues could be

considered as “soil” for migrative or invasive cancer cells. The

permissive secondary tissues could be considered as “soil” for

migrative or invasive cancer cells. Based on this hypothesis,

the TME could be considered as a “fertiliser” consisting of

ECM, various inflammatory cytokines, and other remodelling

enzymes (32). The cancer cells themselves interact with the

surrounding functions and components of the TME to initiate or

suppress cancer development. Our parallel data demonstrated that

CCL, a critical chemokine (C-C) motif ligand of the TME,

exerts both anti-cancer properties dependent on the recruitment

of anti-cancer tumour-infiltrating lymphocytes (TILs), which

destroy cancer cells, and pro-cancer functions correlating with

the recruitment of cells functional to stimulate tumour growth,

enhance tumour cell migration, and block the activities of

tumour suppressors (article in preparation). These were similar to

previously published data (33–35).

Using a broad screening approach, we identified 15 attractive

TME genes. Furthermore, we testified the functions of each

individual TME from three aspects, namely, cell proliferation, cell

apoptosis, and cell invasion or migration manipulation. From the

results, the enhancement of cell proliferation and the attenuation of

cell apoptosis could be closely related, and none of the TME

prognostic genes showed a single function for them. Therefore,

cell proliferation and cell apoptosis could be combined in this study.

As expected, seven of the TME prognostic genes (NOS2, SCG2,

RGS3, EMP1, PDLIM4, PCDH9, and GFI1) showed dual functions
A

B C

FIGURE 4

Prediction of potential miRNAs for TME prognostic gene of breast cancer prognosis. (A) The establishment of a network of 15 TME prognostic genes and targeting
miRNAs using themiRNAs with TarGetScore scores greater than 80. (B) The schematic depicting the wild type (WT) and themutant (MUT)-specific fragments of 3’
UTR of EPHA3. (C) The luciferase reporter assays results for hsa-miR-559 in breast cancer cells. ** as an indication of P < 0.01 comparedwith internal control.
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in breast cancer progression. The rest had only a single function in

breast cancer development (Figure 6).

Some of the potential members are “old hands” in breast cancer

research. For example, ENPEP has been shown to be a key factor

involved in breast cancer cell proliferation through the function of

inducing G2/M cell cycle arrest and reducing anchorage-

independent cell growth of mammary origin (36). Si and

colleagues claimed that coiled-coil domain containing 102B

(CCDC102B) was apparently increased in metastatic lesions in

lymph nodes of breast cancer patients (37). Increased expression

of CCDC102B was required for breast cancer metastasis. Here, the

functions of CCDC102B may be achieved through the regulation of

NF-kB pathway components. The FEZ1 gene was mapped to

chromosome 8p22 (a common aberration in human tumours).

Mutations in the FEZ1 gene have been found in a variety of
Frontiers in Endocrinology 11
cancers (38). EMP1, which stands for epithelial membrane

protein gene 1, together with EMP2 and EMP3 belong to the

PMP22 (peripheral myelin protein 22-kDa) gene family. There

are six members of this gene family, namely, brain cell membrane

protein 1, MP20, EMP1, EMP2, EMP3, and PMP22. In lung cancer,

EMP1 has been implicated as a biomarker for gefitinib resistance.

EMP1, EMP2, and EMP3 have been reported as novel therapeutic

targets in human cancer (39). Previously, the PDLIM4 gene was

identified as a tumour suppressor. In breast cancer cells, the

PDLIM4 gene encodes an adaptor protein that functions as a key

regulator of stress fibre assembly, actin cytoskeleton remodelling,

and epithelial–mesenchymal transition (40). The IRF1 gene has

been shown to have essential functions during the epithelial–

mesenchymal transition process. However, IRF1 is also required

for the maintenance of epithelial differentiation. This dual role of
A

B

C

FIGURE 5

Diverse functions of TME prognostic genes for breast cancer development. The cell proliferation analysis (A), the cell apoptosis examination (B), and
the cell invasion or migration measurement (C) comparing untreated control and 15 TME prognostic gene siRNA-transfected breast cancer cells.
* as an indication of P < 0.05 compared with internal control.
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IRF1 is context-dependent, particularly for the modulation of

epithelial–mesenchymal plasticity, which may be of interest for

future breast cancer treatment (41).

Overall, we have identified several interesting TME prognostic

genes involved in breast cancer progression through a large-scale

screening approach. The targeted miRNAs and the molecular

mechanisms highlighted were validated both in vivo and in vitro,

opening a new window for future studies.
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