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Bulk and single-cell
transcriptome analyses of
islet tissue unravel gene
signatures associated with
pyroptosis and immune
infiltration in type 2 diabetes

Yaxian Song1†, Chen He2†, Yan Jiang1, Mengshi Yang1, Zhao Xu1,
Lingyan Yuan1, Wenhua Zhang1 and Yushan Xu1*

1Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic
Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China,
2Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University,
Kunming, China
Introduction: Type 2 diabetes (T2D) is a common chronic heterogeneous

metabolic disorder. However, the roles of pyroptosis and infiltrating immune

cells in islet dysfunction of patients with T2D have yet to be explored. In this

study, we aimed to explore potential crucial genes and pathways associated with

pyroptosis and immune infiltration in T2D.

Methods: To achieve this, we performed a conjoint analysis of three bulk RNA-

seq datasets of islets to identify T2D-related differentially expressed genes

(DEGs). After grouping the islet samples according to their ESTIMATE immune

scores, we identified immune- and T2D-related DEGs. A clinical prediction

model based on pyroptosis-related genes for T2D was constructed. Weighted

gene co-expression network analysis was performed to identify genes positively

correlated with pyroptosis-related pathways. A protein–protein interaction

network was established to identify pyroptosis-related hub genes. We

constructed miRNA and transcriptional networks based on the pyroptosis-

related hub genes and performed functional analyses. Single-cell RNA-seq

(scRNA-seq) was conducted using the GSE153885 dataset. Dimensionality was

reduced using principal component analysis and t-distributed statistical neighbor

embedding, and cells were clustered using Seurat. Different cell types were

subjected to differential gene expression analysis and gene set enrichment

analysis (GSEA). Cell–cell communication and pseudotime trajectory analyses

were conducted using the samples from patients with T2D.

Results: We identified 17 pyroptosis-related hub genes. We determined the

abundance of 13 immune cell types in the merged matrix and found that these

cell types were correlated with the 17 pyroptosis-related hub genes. Analysis of

the scRNA-seq dataset of 1892 islet samples from patients with T2D and controls
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revealed 11 clusters. INS and IAPP were determined to be pyroptosis-related and

candidate hub genes among the 11 clusters. GSEA of the 11 clusters

demonstrated that the myc, G2M checkpoint, and E2F pathways were

significantly upregulated in clusters with several differentially enriched pathways.

Discussion: This study elucidates the gene signatures associated with pyroptosis

and immune infiltration in T2D and provides a critical resource for understanding

of islet dysfunction and T2D pathogenesis.
KEYWORDS

differentially expressed gene, type 2 diabetes, pyroptosis, immune infiltration, single-
cell RNA
1 Introduction

Diabetes mellitus is a chronic disease with high death and disability

rates and large global economic burden. Type 2 diabetes (T2D)

accounts for > 90% of all diabetes cases. The prevalence of T2D in

China has increased rapidly in recent decades (1). A key pathological

feature of T2D is hyperglycemia, which results from insulin resistance

in peripheral tissues and islet beta cell dysfunction. Current therapies

for T2D are directed toward reducing elevated blood glucose levels by

improving insulin sensitivity in partial peripheral tissue, enhancing

insulin secretion from the remaining beta cells, and promoting urinary

glucose excretion. However, interventions focused on improving islet

beta cell dysfunction are lacking. T2D is often associated with a strong

genetic predisposition (2), but its genetics remain poorly understood

(3). Understanding the diverse molecular processes and

pathophysiological mechanisms, especially islet beta cell dysfunction,

which triggers T2D is crucial to improve the prevention and treatment

of this disease.

Islet dysfunction is an important pathophysiological mechanism in

T2D (4). Islet inflammation plays a crucial role in islet dysfunction (5–

7). This process is characterized by immune cell infiltration (7–9), cell

death (10, 11), fibrosis (12), and amyloid deposition (13, 14). The link

between islet inflammation and dysfunction has been well explored

(15). Multiple studies on T2D have shown that targeting islet

inflammation could help maintain normal islet function (9, 16). In

addition, histological changes, including immune cell infiltration (8, 17)

and pyroptosis (10), have been observed in the islets of patients

with T2D.

Microarray is a promising and widely used method for large-scale

gene expression profiling. Several studies have been performed to

enhance our understanding of the molecular mechanisms underlying

T2D pathogenesis. Recent studies have focused on the relationships

between T2D-related genes and immune infiltration (18, 19) as well as

between pyroptosis- and diabetes-related genes (20). Pyroptosis is a

type of programmed cell death associated with inflammation and

immunity (21). However, the roles of pyroptosis and infiltrating

immune cells in islet dysfunction of patients with T2D have yet to

be explored.
02
T2D is a chronic, heterogeneous, and progressive disease.

Elucidating the molecular basis underlying islet dysfunction,

which has been implicated in the pathogenesis of T2D, has been a

major focus of diabetes research. Conventional bulk RNA

sequencing (RNA-seq) measures the average RNA levels in

samples. Advances in single-cell RNA sequencing (scRNA-seq)

have enabled specific profiling of cell populations (22). Single-cell

transcriptome analysis provides novel insights into cellular

functional alterations that contribute to islet dysfunction and T2D

pathogenesis (23) and may reveal cellular heterogeneity in T2D. In

the present study, we aimed to identify novel biomarkers (genes

related to disease phenotypes, pyroptosis, and immune infiltration)

in T2D by performing a conjoint analysis of three bulk RNA-seq

datasets of islets. We constructed miRNA and transcriptional

networks based on the identified genes and performed functional

analyses. We then analyzed the pyroptosis-related genes and

infiltrating immune cells in different molecular subtypes of T2D.

Furthermore, we analyzed single-cell data of islets to reveal the

heterogeneity in T2D. This study elucidates the gene signatures

associated with pyroptosis and immune infiltration in T2D and

provides an important foundation for understanding of islet

dysfunction and T2D pathogenesis.
2 Materials and methods

2.1 Data acquisition

Three bulk RNA-seq datasets (GSE118139, GSE25724, and

GSE20966) were downloaded from the National Center for

Biotechnology Information Gene Expression Omnibus (GEO)

database. GSE118139 (24) was obtained using the GPL22120

platform Agilent-078298 human ceRNA array V1.0 4X180K

[Probe Name Version] (Homo sapiens). GSE118139 contains data

from four human islet samples, of which two were from patients

with T2D and two were from patients without diabetes. GSE25724

(25) was obtained using the GPL96 platform [HG-U133A]

Affymetrix Human Genome U133A Array. GSE25724 contains
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data from 13 human islet samples, of which six were from patients

with T2D and seven were from patients without diabetes. GSE20966

(26) was obtained using the GPL1352 platform [U133_X3P]

Affymetrix Human X3P Array. GSE20966 contains data from 20

human islet samples, of which 10 were from patients with T2D and

10 were from patients without diabetes. We downloaded the raw

data from these three datasets and merged them into a matrix file

containing 18 samples from patients with T2D and 19 samples from

patients without diabetes. Batch effects were eliminated using the

removeBatchEffect function of the limma package in R. The quality

of the datasets was assessed using boxplots, principal component

analysis (PCA), and heatmaps. After removing the batch effects, the

merged matrix was used for subsequent analyses.

Additionally, we downloaded the single-cell transcriptomic

dataset GSE153855 (27) from the GEO database. This dataset was

obtained using the GPL16791 platform Illumina HiSeq 2500 (Homo

sapiens). GSE153855 contains data from 11 human islet samples, of

which five were from patients with T2D and six were from patients

without diabetes.
2.2 Differential gene expression analysis

We performed a differential gene expression analysis of the merged

dataset to compare the transcriptomes of the islet samples from

patients with and without T2D. Data were analyzed using the limma

package in R (version 3.52.2) (28). Differentially expressed genes

(DEGs) related to T2D were defined as upregulated genes with a log

fold change (FC) above 0.5 or downregulated genes with a logFC lower

than -0.5 at P < 0.05.
2.3 Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses

GO (29) enrichment analysis including biological process,

molecular function, and cellular component categories is a common

method for large-scale functional enrichment studies of genes at

different dimensions and levels. KEGG provides genomic and

molecular information (30). KEGG pathway analysis is widely used

in bioinformatics to annotate and enrich pathways. T2D-related DEGs

were subjected to GO and KEGG pathway analyses using the

clusterProfiler package in R (31), with P < 0.05 as a significance

threshold. The results of the enrichment analyses were visualized using

bubble plots.
2.4 Differential expression analysis
according to ESTIMATE immune score

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression Data (ESTIMATE) (32) is used to infer the

proportion of stromal and immune cells via gene expression

signatures. This algorithm was used to calculate the immune,

stromal, and ESTIMATE scores. The samples were divided into
Frontiers in Endocrinology 03
high- and low-immune score groups according to their median

immune scores, and the differential genes between the two groups

were analyzed using the limma package in R (version 3.52.2) (28).

Significant differential gene expression was defined as P < 0.05, and

absolute values of logFC were > 0.05. Volcano and histogram plots

were generated using the ggplot2 package in R (version 3.3.6) (33),

and a heatmap was plotted using the pheatmap package in R

(version 1.0.12) (34).
2.5 Expression analysis of
pyroptosis-related genes

By querying the gene set of pyroptosis-related genes in the

MSigDB (http://software.broadinstitute.org/gsea/msigdb) database

(35, 36) and reviewing previous studies (37), we obtained 31

pyroptosis-related genes that were expressed in the merged

matrix (Table S1). Heatmaps and boxplots were created to display

the expression patterns of the 31 pyroptosis-related genes in the

merged matrix. We then queried the chromosomal locations of

these genes based on the human reference genome

(UCSC.HG19.Human.CytoBandIdeogram) from the GENCODE

database (38). The RCircos package in R (version 1.2.2) (39) was

used to create a Circos plot for the expression distributions of the

genes on the chromosome. A correlation-based heatmap was

generated using the corrplot package in R (40), and correlation

scatter plots were created using the ggpubr package in R (version

0.4.0) (41).
2.6 Construction of a clinical
prediction model

The association between the genes and T2D was assessed

through univariate logistic regression analysis and genes with P <

0.5 were selected for further least absolute shrinkage and selection

operator (LASSO) regression. A nomogram was established using

the results of LASSO regression to predict risk. A calibration curve

was generated to evaluate the relationship between nomogram

predictive probability and observed outcome. In addition, we

constructed receiver operating characteristic (ROC) curves and

calculated the areas under the ROC curve (AUCs) to assess the

predictive performance of the model (R package pROC).
2.7 Gene set variation analysis (GSVA)

GSVA (42) is a nonparametric, unsupervised method for

estimating variations in gene set enrichments through expression

dataset samples. The pyroptosis pathway score in the merged

matrix was measured using the GSVA package in R (version

1.42.0). The GSVA algorithm transforms gene expression data

into a gene set sample matrix, producing an enrichment score for

each sample and pathway. Each pathway gene set was computed

using the Kolmogorov–Smirnov rank test statistic.
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2.8 Gene set enrichment analysis (GSEA)

GSEA is used to identify classes of genes or proteins that are

overrepresented in a large group of samples (43) and are highly

correlated with disease phenotypes. The merged matrix was analyzed

using GSEA to identify significantly enriched or depleted gene sets.

Gene sets (msigdb.v7.0.entrez.gmt) were downloaded from the

Molecular Signatures database (MSigDB) (16). GSEA was performed

using the clusterProfiler package in R (version 4.4.4).
2.9 Weighted gene co-expression network
analysis (WGCNA)

WGCNA (44) is a widely used data mining method to construct

biologically relevant modules based on pairwise correlations between

gene expression profiles. Genes with the top 25% variance of gene

expression values were screened for cluster analysis following the

WGCNA tutorial (https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/Tutorials/). An

appropriate soft threshold was selected to calculate the adjacency

matrix, which was converted to a topological overlap matrix (TOM).

Then, we hierarchically clustered this TOM and used the

cutreeDynamic function with method ‘tree’ to identify modules of

correlated genes (minimum module size of 30 genes). The pathways

enriched by GSVA were fused with pyroptosis-related modules to

observe the correlation between each module and pyroptosis. A

correlation heatmap was drawn to obtain the gene sets

corresponding to the modules positively correlated with pyroptosis.
2.10 Protein–protein interaction
(PPI) establishment and identification
of hub genes

Considering the important roles of pyroptosis and immunity in

diabetes, we analyzed whether any genes of the pyroptosis module

overlapped with T2D-related DEGs between the high- and low-

immune score groups. A PPI network based on overlapping genes

was constructed using the STRING database (45). PPI pairs were

identified using the confidence criterion (0.75). The degree of each

node was calculated using the CytoHubba plugin for Cytoscape

(version 3.7.1) (46). A bar chart was drawn according to the reverse

order of the degree of each node. Genes with more than 10 nodes were

selected as hub genes.
2.11 Construction of miRNA
interaction network

Candidate target miRNAs were predicted using the miRTarBase

database and analyzed using the multiMiR package in R (version

1.18.0) (47). Photoactivatable ribonucleoside crosslinking and

immunoprecipitation (PAR-CLIP) (48) is used to identify the

binding sites of RNA-binding proteins and miRNA-containing
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ribonucleoprotein complexes. The miRNA validation level was set

to “PAR-CLIP” to further screen miRNAs that interact with hub

genes. Finally, a miRNA–mRNA interaction network based on the

above prediction results was constructed using Cytoscape (version

3.7.1) (46).
2.12 Construction of transcriptional
regulatory network

Transcription factor (TF) lists were retrieved from the Cistrome

database (49, 50)(http://cistrome.org/), and differential gene

expression analysis of the merged dataset was performed to

identify differentially expressed TFs. A correlation test was

performed to identify TFs associated with hub genes, with an

absolute value of correlation coefficient > 0.4 and P < 0.001. The

resulting data were imported into Cytoscape (version 3.7.1) to

construct a transcriptional regulatory network.
2.13 Analysis of immune subtypes

The immune subtypes of each sample were predicted from the

merged gene expression profiles using the ImmuneSubtypeClassifier

package in R (version 0.1.0). A Sankey diagram was generated to

show the relationship between hub genes and six immune subtypes

using the ggalluvial package in R (version 0.12.3). The six immune

subtypes were wound healing (C1), IFN-g dominant (C2),

inflammatory (C3), lymphocyte depleted (C4), immunologically

quiet (C5), and transforming growth factor (TGF)-b dominant (C6).
2.14 Analysis of immune cell infiltration

To determine the relative abundance of 22 immune cells in the

merged matrix, we analyzed the transcriptomic data using

CIBERSORT (51). For each sample, the sum of all the estimated

fractions of immune cells was equal to one. Differences in immune

cell abundances between the high-risk and low-risk groups were

compared using the t-test, and P < 0.05 was considered to indicate

statistical significance. A correlation-based heatmap was generated

using the corrplot package in R. Correlations were calculated using

the Pearson’s correlation coefficient. Scatter plots and fitting curves

were constructed using the ggplot2 package in R. The merged

matrix was subjected to single-sample gene set enrichment

analysis (ssGSEA) using the GSVA package in R (version 1.42.0).

The infiltration levels of 28 subpopulations of tumor-infiltrating

lymphocytes were evaluated based on the cell marker gene

CellMarker (52). Box plots were constructed using pubr.
2.15 Unsupervised clustering of
T2D samples

Owing to the prevalence of heterogeneity between patients,

unsupervised clustering of T2D samples based on 17 hub genes
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could resolve this heterogeneity and reclassify the samples.

Unsupervised consensus clustering of the samples was performed

through aggregation hierarchical clustering using the

ConsensusClusterPlus package in R (version 1.60.0). Spearman’s

method was used to calculate the distance, and clustering was

conducted using K-means. We ascertained the optimal number of

clusters by considering a consensus matrix heatmap, consensus

cumulative distribution functions (CDFs), and the relative change

in area under the CDF curve. Boxplots and heatmaps were drawn to

determine the expression differences of hub genes, immune scores,

and immune cell infiltration levels among different clusters.
2.16 Quality control, cluster analysis, and
major cell type identification of single-cell
expression data

The single-cell RNA sequencing dataset GSE153855 was imported

into R and converted into a Seurat object using the Seurat package in R

(version 4.1.1) (53). A high proportion of transcript counts derived

from mitochondria-encoded genes might indicate low cell quality;

therefore, we removed cells with a percentage of mitochondrial

transcripts larger than 5%. We conducted quality control through

the counts and expression of sequencing genes and the percentage of

mitochondrial genes. Cells were filtered using nFeature_RNA> 200,

nCount_RNA < 6000, and percent.mt < 5 as cutoffs. Violin plots were

created to show the number of genes, gene expression values, and

percentage of mitochondrial genes. Dimensionality was reduced using

PCA. The first 10 principal components were chosen to further reduce

dimensionality and visualization using the t-distributed statistical

neighbor embedding (t-SNE) algorithm. The cell type information

for each cluster was annotated using built-in annotations from the

GSE153855 dataset. The reliability of the built-in annotation

information was visualized by creating bubble and violin plots, which

displayed the expression of marker genes reported in the literature for

various cell types of islets (54–57) in the clusters. We used the following

markers for cell type identification: beta cells (FXYD2), alpha cells

(KANSL3 and SOD2), delta cells (LAPTM4B, TMEM163, and UBR4),

macrophages (CD86), endothelial cells (FLT1), and ducts (PROM1).
2.17 Differential analysis of hub genes
among different cell types

DEGs were identified among all clusters using the

“FindAllMarkers” function, which uses the Wilcoxon rank-sum test.

The hub genes among the clusters were screened by taking the

intersection DEGs between the clusters and cluster marker genes.

The DoHeatmap function was used to generate an expression heatmap

for hub gene expression.
2.18 Pseudotime trajectory analysis

The differentiation pseudotime of the different cell subtypes was

inferred using the Monocle package in R (version.2.22.0) (58).
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Highly variable genes were identified using the “VariableFeatures”

function, and cells were ranked using the “setOrderingFilter”

function. Finally, the “DDRTree” method was used to reduce

dimensionality, and the “orderCells” function was used to

estimate the arrangement of cells along the trajectory. Plots of

cellular trajectories were drawn based on marker genes and clusters.

Each trajectory was analyzed using a standard protocol with

default parameters.
2.19 Cell–cell communication

The CellChat package in R (54) was used to infer and qualify

intercellular communication by combining single-cell expression

profiles with known ligands, receptors, and their cofactors. The

ligand–receptor interaction probability and perturbation test were

used to identify significant ligand–receptor relationship pairs. Cell–

cell communication networks were then integrated by adding the

number or strength of ligand–receptor pairs with significant

interactions between cell types. A heatmap was used to show the

contribution of the input and output pathways to the cells. The

numbers and weights of the interactions are shown by circular plots.
2.20 Statistical analyses

All data calculations and statistical analyses were performed

using R. For the comparison of two groups of continuous variables,

the statistical significance of normally distributed variables was

estimated using the independent t-test, and differences between

non-normally distributed independent variables were analyzed

using the Wilcoxon rank-sum test. Chi-square test or Fisher’s

exact test was used to compare and analyze the statistical

significance between two groups of categorical variables. The

correlation coefficients between different genes were calculated

using Pearson correlation analysis. All statistical tests were 2-

sided, and P < 0.05.

The general idea and methodologies used in this study are

shown in a flow chart (Figure 1).
3 Results

3.1 Functional analysis of T2D-related
genes and ESTIMATE immune score

Three bulk RNA-seq datasets (GSE118139, GSE25724, and

GSE20966) were combined into a merged matrix, with 18 islet

samples from patients with T2D and 19 islet samples from patients

without diabetes. Heatmaps (Figures S1A, B), box plots (Figures 2A,

B), and PCA plots (Figures S2A, B) indicated the successful removal

of batch effects from the merged matrix, which was then used for

subsequent analyses. A total of 918 T2D-related DEGs (220

upregulated and 698 downregulated) were identified. GO terms

were analyzed, as shown in Figures 2C–E and Table S2, to explore

the functions of the DEGs.
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The box plot shows the differences in the ESTIMATE, immune,

and stromal scores between the T2D and non-diabetes mellitus

(non-DM) groups (Figure 2F). The immune score was significantly

higher in the T2D group than in the non-DM group. Based on the

median value of the immune score, the samples were divided into

two groups (high- and low-immune score groups). The volcano plot

(Figure S2C) shows that 835 immune-related genes were

differentially expressed between the high- and low-immune score

groups. The Venn diagram displays 550 immune and T2D-related

genes (Figure S2D; Table S3). The heatmap (Figure 2G) shows the

expression differences of these genes between the low- and high-

immune score groups as well as between the T2D and non-

DM groups.
3.2 Panorama of pyroptosis-related genes
and correlation analysis of pyroptosis-
related genes in T2D

The heatmap (Figure 3A) and boxplot (Figure 3C) display the

expression patterns of the 31 pyroptosis-related genes in the T2D

and non-DM groups. APIP, DDX3X, DHX9, and TNFRSF21 were

significantly downregulated in the T2D group, whereas CASP1,

GBP2, GSDMB, GSDMD, NLRP1, NOD2, PYCARD, TREM2, and

ZBP1 were significantly upregulated in the T2D group. The Circos

plot (Figure 3B) shows the expression distributions of the 31

pyroptosis-related genes on the chromosome.

We analyzed the association between the 31 pyroptosis-related

genes and T2D. The correlation heatmap (Figure S3A) shows the

correlated expression patterns of the 31 pyroptosis-related genes.

The top four significant negative and positive correlations of gene

pairs are shown by correlation scatter plots (Figures S3B–I): AIM2-
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HMGB1 (r = -0.628, P < 0.001; Figure S3B), DDX3X-TREM2 (r =

-0.614, P < 0.001; Figure S3C), HMGB1-TREM2 ((r = -0.611, P <

0.001; Figure S3F),NLRX1-DHX9 (r = -0.719, P < 0.001; Figure S3I),

CASP1-CASP8 (r = 0.844, P < 0.001; Figure S3D), NOD2-ZBP1 (r =

0.843, P < 0.001; Figure S3E), NLRP3-CASP1 (r = 0.794, P < 0.001;

Figure S3G), and GSDMB-NLRP2 (r = 0.78, P < 0.001; Figure S3H).
3.3 Construction of the clinical
prediction model

We evaluated the predictive power of the 31 pyroptosis-related

genes for T2D. As shown in the univariate forest plot (Figure 4A), 13

pyroptosis-related genes were significantly associated with the

prevalence of T2D: DDX3X, GBP2, GSDMB, GSDMD, NLRP1,

NOD2, PYCARD, TNFRSF21, APIP, CASP6, DHX9, TREM2, and

ZBP1. LASSO regression was performed on these 13 genes. The

lambda value with the minimal average deviance was determined as

the optimal lambda (-3.7) through cross-validation (Figures 4C, D).

GBP2, NLRP1, and NOD2 were identified, and a nomogram

(Figure 4B) was constructed to predict the probability of T2D. ROC

analysis revealed that this risk score for T2D had high predictive

power, with an AUC of 0.968 (Figure 4E). The calibration curve

(Figure 4F) also demonstrated the accuracy of the nomogram-

predicted probability.
3.4 WGCNA

Data from patients with T2D in the merged matrix were used

as inputs for WGCNA. Meanwhile, we performed GSVA and

extracted the pyroptosis-related pathway GO_PYROPTOSIS
FIGURE 1

Data analysis flow chart. T2D, type 2 diabetes; non-DM, non-diabetes mellitus, ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data; scRNA, single-cell RNA; WGCNA, weighted gene co-expression network analysis; DEGs, differentially expressed genes.
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into WGCNA. We selected b = 14 as the soft thresholding power to

ensure a scale-free network (Figures 5A, B). Figure 5C shows the

trait and GO_PYROPTOSIS pathway scores for each sample.

We constructed a hierarchical clustering tree and identified 12

modules after fusing them (Figure 5D). Among the 12 modules, six

(magenta, darked, black, blue, dark turquoise, and grey) had 1193

genes that were positively correlated with the GO_PYROPTOSIS

pathway (Figure 5E).
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3.5 PPI network establishment and
identification of pyroptosis-related
hub genes

To further analyze the differentially expressed immune and T2D-

related genes in the pyroptosis-related modules, we intersected 1193

genes in the pyroptosis-related modules with 550 immune and T2D-

related DEGs and obtained 115 genes (Figure 6A; Table S4). Then, we
A B

D E

F G

C

FIGURE 2

GO analyses of T2D-related genes; ESTIMATE immune score, and 550 immune and T2D-related genes in the merged matrix. (A) Box plot of three
datasets without batch effect correction. (B) Box plot of three datasets after batch effect correction. Red represents T2D patient, whereas black
represents non-DM control. (C–E) Top 10 significantly enriched cellular components, biological processes, and molecular functions. (F) Box plot
showing the differences in ESTIMATE, immune, and stromal scores between the T2D and non-DM groups. (G) Heatmap showing the expression
differences of 550 immune and T2D-related genes between the low- and high-immune score groups as well as between the T2D and non-DM groups.
ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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constructed a PPI network using the STRING database and visualized

the network using Cytoscape (Figure 6C). We identified the top 20

genes based on the number of nodes (Figure 6B) and then selected the

top 17 genes with > 10 nodes as pyroptosis-related hub genes: INS,

CHGA, GCG, GAD2, NEUROD1, PCSK1, ABCC8, GRIA2, CHGB,

STMN2, GNAS, IAPP, CPE, KCNQ1, NKX2-2, SCG5, and SLC17A6.
3.6 Construction of miRNA interaction and
transcriptional regulatory network

A miRNA–mRNA interaction network based on the 17

pyroptosis-related hub genes was constructed, and 635 miRNAs
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were identified. The miRNA–mRNA interaction network is shown

in Figure 7A. A transcriptional regulatory network (Figure 7B)

based on the 17 pyroptosis-related hub genes was constructed. The

transcriptional regulatory network is shown in Figure 7B.
3.7 Enrichment analyses of pyroptosis-
related hub genes

GO terms were analyzed to explore the functions of

pyroptosis-related hub genes (Figures 8A–C). KEGG pathway

analysis indicated that the pyroptosis-related hub genes were

enriched in maturity-onset diabetes of the young, insulin

secretion, type 1 diabetes mellitus, and glutamatergic synapses
A B

C

FIGURE 3

Panorama of pyroptosis-related genes in T2D. (A) Heatmap displaying the expression patterns of 31 pyroptosis-related genes in the T2D and non-
DM groups. (B) Circos plot showing the distribution of 31 pyroptosis-genes on the chromosome. (C) Box plot displaying the expression patterns of
31 pyroptosis-related genes in the T2D and non-DM groups. ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; **** , P < 0.0001.
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(Figure 8D). The signaling pathway of maturity-onset diabetes of

the young is shown in Figure 8E. Four hub genes (NKX2-2,

NEUROD1, INS, and IAPP) were significantly downregulated.

The ssGSEA algorithm was used to calculate the pyroptosis score

of each sample in the merged matrix based on the 17 pyroptosis-

related hub genes, and the samples were divided into high- and

low-pyroptosis score groups according to the median pyroptosis
Frontiers in Endocrinology 09
score. GSEA (Table S5) and GSVA (Table S6) were performed to

compare the high- and low-pyroptosis score groups. The top five

pathways in the GSEA results are shown in Figure 8F. The

heatmap of the GSVA pathway enrichment results shows

the resulting spectrum of the differential enrichment

of 177 pathways in the high- and low-pyroptosis score

groups (Figure 8G).
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FIGURE 4

Construction of a clinical prediction model. (A) Univariate forest plot showing the predictive power of 31 pyroptosis-related genes for T2D.
(B) Nomogram integrating GBP2, NLRP1, and NOD2 in T2D. (C) Diagram representing relationships between penalty parameters and binominal
deviances. (D) Diagram representing the relationships between penalty parameters and regression coefficients. (E) ROC curve of the nomogram
(AUC = 0.968). (F) Calibration curve of the nomogram.
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3.8 Analyses of immune subtypes and
correlation analyses of infiltrating
immune cells

The Sankey diagram demonstrates the association between

disease states, pyroptosis states, and immune subtypes

(Figure 9A). The disease states were almost uniformly distributed

among pyroptosis states and the C1, C3, and C4 immune subtypes.

The differential distributions of 28 types of infiltrating immune

cells were compared between the high- and low- pyroptosis score

groups as well as between the T2D and non-DM groups. In the high

pyroptosis score group (UP), the abundance of activated dendritic

cells, central memory CD4+ T cells, myeloid-derived stem cells

(MDSCs), and type 17 T helper cells significantly decreased,

whereas the abundance of immature dendritic cells significantly

increased (Figure 9B). In the T2D group, the abundance of activated

CD4+ T cells, activated dendritic cells, central memory CD8+ T

cells, effector memory CD8+ T cells, macrophages, MDSC, natural

killer cells, natural killer T cells, neutrophils, type 1 T helper cells,
Frontiers in Endocrinology 10
and type 17 T helper cells significantly increased, whereas the

abundance of effector memory CD4+ T cells, immature dendritic

cells, and memory B cells significantly decreased (Figure 9C).

We evaluated the infiltration of 22 immune cell types in the

merged matrix by using the CIBERSORT algorithm and determined

the abundance of 13 immune cell types. The correlation heatmap

depicted possible correlations between the 13 types of immune cells

(Figure S4A). The significant negative and positive correlations

between the two types of immune cells are shown in Figures S4B–F.
3.9 Analysis of pyroptosis-related hub
genes and immune infiltration in different
molecular subtypes

We classified the T2D samples into a merged matrix through

unsupervised consensus clustering. The optimal number of clusters was

determined to be two after comprehensive consideration of the delta

area curve, CDF, and consensus matrix heatmap (Figures S5A–C).
A B
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FIGURE 5

WGCNA. (A) Analysis of scale-free index for various soft-threshold powers. (B) Analysis of mean connectivity for various soft-threshold powers.
(C) Dendrogram of samples and heatmap of pyroptosis trait. (D) Cluster dendrogram plots of the 12 coexpressed modules identified by WGCNA in
different colors. (E) Heat map describing the relevance of modules (rows) to pyroptosis (columns). Blue represents negative correlations, whereas red
represents positive correlations.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1132194
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2023.1132194
The heatmap (Figure 10A) and box plot (Figure 10C) reveal the

expression distributions of the pyroptosis-related hub genes in different

molecular subtypes (clusters 1 and 2). The expression of 17 pyroptosis-

related hub genes was high in cluster 2 and low in cluster 1. The box

plot shows the difference in ESTIMATE, immune, and stromal scores
Frontiers in Endocrinology 11
between clusters 1 and 2 (Figure 10B). The immune score was

significantly higher in cluster 1 than in cluster 2. Figure 10D shows

the differences in the abundance of the 13 types of immune cells

between the two clusters. The abundance of monocytes and CD8+ T

cells was significantly higher in cluster 2 than in cluster 1.
A B

C

FIGURE 6

Protein–protein interaction network and identification of pyroptosis-related hub genes. (A) Venn diagram showing the intersection between immune
and T2D-related genes with genes in pyroptosis-related modules. (B) Bar graph showing the top 20 genes in the intersection. (C) Protein–protein
interaction network of genes in the intersection.
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3.10 Correlation analysis between
pyroptosis-related hub genes and
infiltrating immune cells

We then analyzed the association of the 17 pyroptosis-related hub

genes with the 13 types of infiltrating immune cells. The correlation

heatmap depicts the possible correlations between the 17 hub genes

and 13 types of immune cells (Figure 11A). The top four significant

negative and positive correlations are shown by correlation scatter plots

(Figures 11B–I): B cell memory and INS (r = -0.351, P < 0.05;

Figure 11B), B cell memory and GCG (r = -0.385, P < 0.05;

Figure 11C), macrophages M1 and PCSK1 (r = -0.363, P < 0.05;

Figure 11F), macrophages M1 and IAPP (r = -0.395, P < 0.05;

Figure 11I), plasma cells and INS (r = 0.374, P < 0.05; Figure 11D),

macrophages M0 and GNAS (r = 0.397, P < 0.05; Figure 11E),

macrophages M0 and NEUROD1 (r = 0.371, P < 0.05; Figure 11G),

and T cells CD8 and ABCC8 (r = 0.38, P< 0.05; Figure 11H).
3.11 Quality control, cluster analysis, and
major cell-type identification of single-cell
expression data

Single-cell RNA-seq analysis was performed on five T2D and

six non-T2D samples from the GSE153855 dataset. Cells were

filtered using nFeature_RNA >200, nCount_RNA < 6000, and

percent.mt < 5 as cutoffs. The violin plots show the number of

genes (nFeature), expression values of genes (nCount), and

percentage of mitochondrial genes (percent.mt) (Figures 12A–C).

Subsequently, we performed PCA for dimensionality reduction to
Frontiers in Endocrinology 12
visualize the overall distribution of the data (Figure S6A) and the

relationship between the number of principal components and

standard deviation (Figure S6B). In this study, we selected 10

principal components for cell clustering. Eleven distinct clusters

were identified among 1892 cells using t-SNE (Figure S6C). Figure

S6D shows the clusters for the T2D and non-T2D samples.

In addition, clustering analysis was performed separately using

t-SNE for the T2D and non-T2D samples. The cell types for each

cluster were annotated using built-in annotations in the GSE153855

dataset. The bubble and violin plots show the reliability of the built-

in annotation information (Figures S2E–F). The respective marker

genes were relatively highly expressed in the corresponding cells,

which proved that the built-in cell annotations in this dataset were

reliable. Seven distinct clusters were identified among 760 cells from

the T2D samples through t-SNE (Figure 12D). Figure 13E shows the

visualization of t-SNE colored according to the cell type in the T2D

samples. As shown in Figures 12D, E, the cell types distributed in

the seven clusters were as follows: alpha in cluster 0 (252, 98.824%),

exocrine in cluster 1 (183, 100%), alpha in cluster 2 (99, 94.286%),

beta in cluster 3 (76, 98.701%), delta in cluster 4 (62, 95.385%),

ductal in cluster 5 (38, 71.698%), and macrophage in cluster 6 (22,

100%). Meanwhile, nine distinct clusters were identified among

1132 cells from the non-T2D samples through t-SNE (Figure 12F).

Figure 12G shows the visualization of t-SNE colored according to

the cell type in the non-T2D samples. As shown in Figures 12F, G,

the cell types distributed in the nine clusters were as follows: alpha

in cluster 0 (330, 100%), alpha in cluster 1 (164, 95.906%), beta in

cluster 2 (126, 99.213%), ductal in cluster 3 (94, 78.333%), exocrine

in cluster 4 (100, 100%), delta in cluster 5 (92, 97.872%), beta in

cluster 6 (87, 98.864%), gamma in cluster 7 (66, 83.544%), and

stellate in cluster 8 (23, 100%).
A B

FIGURE 7

miRNA–mRNA interaction network and transcriptional regulatory network. (A) Interaction network diagram of pyroptosis-related hub genes and
miRNAs. (B) Interaction network diagram of pyroptosis-related hub genes and transcription factors.
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3.12 Differential analysis of hub genes
among different cell types

DEGs were screened among the 11 cell types. The hub genes in the

different cell types were identified by intersecting DEGs with 115 genes
Frontiers in Endocrinology 13
and visualized using a heatmap (Figure 13A). The distributions of

various cell types in the T2D and non-T2D samples were also

visualized (Figure 13B). The cell types distributed in the T2D

samples were as follows: alpha (351, 46.184%), exocrine (185,

24.342%), beta (79, 10.395%), delta (63, 8.289%), ductal (38, 5%),
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FIGURE 8

Enrichment analyses of pyroptosis-related hub genes. (A) Enriched GO terms in the “cellular component” category. (B) Enriched GO terms in the
“biological process” category. (C) Enriched GO terms in the “molecular function” category. (D) Top 10 significantly enriched KEGG pathways of
pyroptosis-related hub genes. (E) Abnormal expression of pyroptosis-related hub genes in maturity-onset diabetes of the young signaling pathway.
(F) Enrichment map showing the top 5 pathways from pyroptosis score-based GSEA. X-axis represents enrichment score, and Y-axis represents
pathway name. (G) Heatmap illustrating the enriched pathways between the low- and high-pyroptosis score groups as well as between the T2D and
non-DM groups. Red represents upregulation, whereas green represents downregulation.
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macrophage (22, 2.895%), mast (4, 0.526%), endothelial (3, 0.395%),

gamma (3, 0.395%), and stellate (1, 0.132%).
3.13 Cell–cell communication and
pseudotime trajectory analysis

CellChat was used to infer and quantify intercellular

communication. Figure 14A shows the contribution of the
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outgoing and incoming pathways to cell types. The outgoing and

incoming pathways with the largest contribution wereGCG, and the

cell type with the strongest correlation was alpha. We then drew

circle plots to visualize the numbers (Figure 14B) and weights

(Figure 14C) of cell interactions and found that alpha cells were the

largest in number and weight.

Pseudotime trajectory analysis was performed on the cell types

of the T2D samples by using the Monocle package. The trajectory

plots of cells are colored according to pseudotime progression, cell
A B

C

FIGURE 9

Correlation analyses among pyroptosis-related hub genes, immune subtypes, and infiltrating immune cells. (A) Sankey diagram demonstrating the association
among disease states, pyroptosis states, and immune subtypes. (B) Differential distributions of 28 types of infiltrating immune cells between the high- and
low-pyroptosis score groups. (C) Differential distributions of 28 types of infiltrating immune cells between the non-DM and T2D groups. Red represents
upregulation, while yellow represents downregulation.ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; **** , P < 0.0001.
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type, and state of cell population (Figures 14D–F). Figure 14E shows

that the trajectory plot was divided into five pseudotemporal states.

Alpha cells were mainly distributed in states 3, 4, and 5.
3.14 GSEA among different clusters

GSEA was performed among the 11 clusters to illustrate the

biological functions associated with these clusters (Figure 15). A

relatively large number of differential pathways were enriched in

clusters 5(endothelial cells) and 9 (macrophages). In addition,

the TGF, myc targets v1, myc targets v2, mitotic spindle, G2M

checkpoint, and E2F target signaling pathways were significantly

upregulated in cluster 5. Results showed that UV response

upregulation, unfolded protein response, tumor necrosis factor

a signaling via the NF-kB, reactive oxygen species, P53, myc

targets v2, myc targets v1, G2M checkpoint, E2F targets, and

DNA repair signaling pathways were significantly upregulated in

cluster 9.
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4 Discussion

T2D is a lifelong metabolic disorder with a worldwide prevalence

of 10.5% in 2021 (59). T2D is a genetic disease, but its genetics remains

poorly understood (3). Therefore, the pathophysiological mechanisms

that trigger T2D should be elucidated to improve the management of

this disease. In this study, we explored the potential crucial genes and

pathways associated with pyroptosis and immune infiltration in T2D in

a merged matrix from three bulk RNA-seq datasets of islets. We

constructed miRNA and transcriptional networks based on these hub

genes and performed functional analyses. Furthermore, these

pyroptosis-, immune-, and T2D-related genes were analyzed using

scRNA-seq data to explain the cellular heterogeneity in T2D. Our study

provides insights into the molecular mechanisms underlying islet

inflammation and human T2D pathogenesis caused by

islet dysfunction.

In this study, we identified 918 T2D-related DEGs in the

merged matrix. GO analysis revealed that these genes were highly

enriched for the synthesis, secretion, and mode of action of
A B

DC

FIGURE 10

Analysis of pyroptosis-related hub genes and infiltrating immune cells in different molecular subtypes. (A) Heatmap of the expression distribution of
pyroptosis-related hub genes in different molecular subtypes (clusters 1 and 2). (B) Box plot showing the differences in ESTIMATE, immune, and
stromal scores between clusters 1 and 2. (C) Box plot of the expression distribution of pyroptosis-related hub genes between clusters 1 and 2.
(D) Box plot showing the difference in 13 types of immune cells between clusters 1 and 2. ns, P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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hormones or peptides. The immune scores were significantly higher

in the T2D group than in the non-diabetic group. Then, 550

immune- and T2D-related DEGs were obtained. Our results

indicated that the immune system plays a crucial role in T2D

pathogenesis, consistent with previous findings that immunologic–
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metabolic crosstalk is involved in T2D development (60–62).

Accumulating evidence has shown that pyroptosis, a programmed

proinflammatory cell death pathway, is activated during T2D

development (63–65). We identified 31 pyroptosis-related genes

in the merged matrix.
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FIGURE 11

Correlation analyses between pyroptosis-related hub genes and infiltrating immune cells. (A) Correlation heatmap depicting possible correlations
between 17 hub genes and the 13 types of immune cells. Red represents positive correlation, blue represents negative correlation, and white represents
no significant correlation. (B) Correlation of memory B cells and INS (r = -0.351, P < 0.05). (C) Correlation of memory B cells and GCG (r = -0.385, P <
0.05). (D) Correlation of plasma cells and INS (r = 0.374, P < 0.05). (E) Correlation of M0 macrophages and GNAS (r = 0.397, P < 0.05). (F) Correlation of
M1 macrophages and PCSK1 (r = -0.363, P < 0.05). (G) Correlation of M0 macrophages and NEUROD1 (r = 0.371, P < 0.05). (H) Correlation of CD8+ T
cells and ABCC8 (r = 0.38, P < 0.05). (I) Correlation of M1 macrophages and IAPP (r = -0.395, P < 0.05).
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After LASSO regression, GBP2, NLRP1, andNOD2 were used to

construct a clinical prediction model. The AUC value of the model

was 0.968, suggesting that this model exhibited excellent accuracy

(66) and might be an ideal target for the diagnosis of T2D. GBP2, a

member of the GTPase family, triggers pyroptosis by supporting

inflammasome activation (67). GBP2 has been identified as
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a candidate gene in diabetic retinopathy (68). Polymorphisms

in NLRP1 affect susceptibility to type 1 diabetes in the Chinese

Han population (69). NOD2, a member of the nucleotide

oligomerization domain (NOD)-linked receptor family, is

associated with immune and chronic inflammatory disorders

(70). NOD2 is upregulated in diabetic cardiomyopathy and
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FIGURE 12

Quality control, cluster analysis, and major cell type identification of single-cell expression data GSE153855. (A) Violin plot showing numbers of
genes (nFeature) of samples. (B) Violin plot showing expression values of genes (nCount) of samples. (C) Violin plot showing percent of
mitochondria genes (percent.mt) of samples. (D) Dimensionality reduction plot using t-SNE showing seven distinct clusters of T2Dsamples. (E)
Dimensionality reduction plot using t-SNE showing annotated the cell-type for each cluster of T2D samples. (F) Dimensionality reduction plot using
t-SNE showing nine distinct clusters of non-T2D samples. (G) Dimensionality reduction plot using t-SNE showing annotated the cell type for each
cluster of non-T2D samples.
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silencing this gene could protect against diabetes-induced

cardiomyopathy (71). However, Ozbayer et al. reported that

NOD2 is not associated with T2D (72).

We identified 115 genes associated with pyroptosis, immune

cell infiltration, and T2D and considered 17 of these genes to be

pyroptosis-related hub genes. In the present study, INS was the top

gene with the most nodes, and it appeared to be closely related to

T2D. Mutations and translation defects in INS have been associated

with diabetes (73). A recent study has reported that INS could be

regulated by m6A modification, providing a prediction for the

occurrence of T2D (74). Most of the other hub genes, including

GCG (75), NEUROD1 (76), PCSK1 (77), ABCC8 (78), STMN2 (79),

IAPP (80), KCNQ1 (81), NKX2-2 (82), SCG5 (83), CPE, and GNAS

(84), have been strongly associated with the onset or development

of T2D. CHGA, GAD2, GRIA2, CHGB, and SLC17A6 have not been

previously reported to be associated with T2D.

To probe the potential upstream and downstream regulators of

hub genes, we constructed miRNA–mRNA interaction and

transcriptional regulatory networks. Each miRNA can target many

mRNAs, and a single mRNA can be regulated by several miRNAs.

Growing evidence has indicated that miRNAs, endogenous regulators

of gene expression, are involved in T2D pathogenesis (85). Srividya

et al. have summarized miRNAs as biomarkers for T2D diagnosis

(86). A meta-analysis identified 40 miRNAs that are associated with

T2D (87). Transcriptional regulatory networks describe the

regulatory interactions between TFs and their target genes. Similar

to miRNAs, a single TF usually regulates multiple genes, and a gene is

regulated by multiple TFs. In the present study, GO analysis revealed

that these genes were also highly enriched for the synthesis, secretion,

and mode of action of hormones or peptides. These results were

consistent with the GO analysis results of the T2D-related DEGs. For

KEGG pathway analysis, the pyroptosis-related hub genes were

enriched in maturity-onset diabetes of the young, insulin secretion,

type 1 diabetes mellitus, and glutamatergic synapses. The signaling

pathway of maturity-onset diabetes of the young showed the greatest
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impact on T2D. Previous studies have shown that the maturity-onset

diabetes of the young pathway plays a significant role in T2D

pathogenesis (88, 89). GSEA and GSVA were performed for the

high- and low-pyroptosis score groups, respectively. These results

complemented the GO and KEGG pathway analyses.

Abnormal differentiation of components of the immune system

is involved in the progression of T2D (90–93). In the present study,

disease states were almost uniformly distributed among pyroptosis

states and among the wound healing (C1), inflammatory (C3), and

lymphocyte-depleted (C4) immune subtypes. We determined the

abundance of 13 immune cell types in the merged matrix and found

correlations among them. Multiple immune cell types were

identified in the islets. Immune cells and inflammatory mediators

accumulate in the islets of both animal models and humans (7, 17,

94). A recent study has confirmed the effect of T cells on T2D (95).

Wang et al. summarized the role of the imbalance between T helper

17 and regulatory T cells in T2D (96). In the present study, we

identified two molecular subtypes (clusters 1 and 2) by performing

unsupervised clustering for T2D samples in the merged matrix.

Cluster 2 showed a high expression of 17 pyroptosis-related hub

genes and a high abundance two types of immune cells (monocytes

and CD8+ T cells). Macrophage count increases in the islets of

patients with T2D, and islet macrophage infiltration correlates with

islet dysfunction (7, 8). Inflammation triggers the differentiation of

monocytes into macrophages. Wu et al. performed an analysis of

single-cell data on human pancreas and found that monocytes and

CD8+ T cells are enriched in the T2D pancreas (97). Our results

are consistent with previous reports that monocytes and

macrophages are the primary immune cell subsets that

contribute to islet inflammation during T2D development (98).

We also found correlations between the 17 pyroptosis-related

hub genes and 13 immune cell types. The relationship between

pyroptosis regulators and immune infiltrate characterization has

been discussed in diseases, including cancer and periodontitis

(99, 100).
A B

FIGURE 13

Differential analyses of hub genes among different cell types and distribution of the various cell types in T2D and non-T2D samples. (A) Heatmap of
hub genes among 11 clusters. (B) Distribution of various cell types in T2D and non-T2D samples.
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In this study, we identified 11 cell types from the scRNA-seq

dataset. The islets of Langerhans are composed of multiple types of

endocrine cells (alpha, beta, delta, gamma, and epsilon) with

distinct functions and non-endocrine cells (101–103). Maayan

et al. found that human pancreatic cells can be divided into 14

cell populations based on the expression of unique transcripts and

references (104). Joshua et al. performed single-nucleus ATAC-seq

on human pancreatic islets and identified 12 distinct cell clusters

(105). The location of the respective marker genes was consistent
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with the distribution of each cluster, suggesting the accuracy of the

cluster analysis and major cell-type identification. We found

differences in the distribution of various cell types between the

T2D and non-T2D samples, revealing the heterogeneity caused by

T2D. Our results are in concordance with the results of a previous

study that b-cell mass decreases and a-cell volume increases in the

pancreatic tissue of patients with T2D (106). We obtained candidate

hub genes for different cell subtypes by intersecting DEGs with 115

genes. INS and IAPP were determined to be pyroptosis-related and
A B

D E F

C

FIGURE 14

Cell–cell communication and pseudotime trajectory analysis. (A) Heatmap of the contribution of outgoing and incoming pathways. (B) Circle plot of
numbers of cell interactions. (C) Circle plot of weights of cell interactions. (D) Pseudotime trajectory colored according to pseudotime progression.
(E) Pseudotime trajectory colored according to cell type. (F) Pseudotime trajectory colored according to state of cell population.
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candidate hub genes. The relationships of INS and IAPP with T2D

have been reported in previous studies (74, 80, 107).

Our intercellular communication analysis showed that the gene

with the largest contribution was GCG and the cell type with the

strongest correlation with T2D was alpha.GCG has been considered

an islet alpha cell type-specific gene to cluster alpha cells (56, 108).

GCG encodes a variety of peptides, of which glucagon and

glucagon-like peptide-1 have attracted increasing attention

because of their effects on glucose metabolism. In the last few

decades, multiple novel drugs for T2D treatment have been

developed based on the utilization of the signaling systems of

GCG products (109). Pseudotime trajectory analysis showed that

cell types of T2D existed along the trajectory, and alpha cells were

located at the end of the trajectory line. Chiou et al. presented a

detailed characterization of islet cell types and state regulatory

programs, which provided a wide perspective to interpret the

genetic mechanisms underlying T2D (104). In the present study,

we found that myc targets v1, myc targets v2, G2M checkpoint, and

E2F target pathways were significantly upregulated in clusters 5 and

9. MYC is a signaling pathway capable of regulating apoptotic cell

death, proliferation, survival, and differentiation (110). A previous

study found that myc, a member of the Wnt signaling pathway, is

upregulated in the islets of patients with T2D (111). The G2M cell

cycle checkpoint plays a critical role in diabetic oxidative stress

signaling (112). The E2F signaling pathway is associated with the

proliferation and regeneration of islets from patients with T2D

(113). These results suggest that cell death, proliferation, and

regeneration play important roles in islet dysfunction in T2D.

However, this study has some limitations. First, the merged and

scRNA-seq datasets used in this study are still relatively small. A
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larger number of cells in the scRNA-seq dataset are required to

identify rare cell subpopulations or detect minor changes in gene

expression. Second, the lack of detailed clinical data hindered the

evaluation of the relationship between clinical characteristics of T2D

and gene expression. Third, further experiments, such as quantitative

real-time PCR, western blot, and immunohistochemistry, are

warranted to clarify the functions of the hub genes in T2D.

In conclusion, we identified candidate genes associated with

pyroptosis, immune infiltration, and disease phenotypes in T2D

development. Furthermore, we presented a detailed characterization

of islet cell types and their expression patterns in T2D. The combined

bulk RNA-seq data and cell type-specific data of islets provided

insights into the molecular mechanisms underlying T2D and novel

therapeutic targets for T2D treatment. We believe this hypothesis

generating study provides a critical resource for understanding of islet

dysfunction and T2D pathogenesis.
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