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Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients

and themain cause of death in diabetic patients. Themainmanifestations of DKD

are proteinuria and decreased renal filtration capacity. The glomerular filtration

rate and urinary albumin level are two of the most important hallmarks of the

progression of DKD. The classical treatment of DKD is controlling blood glucose

and blood pressure. However, the commonly used clinical therapeutic strategies

and the existing biomarkers only partially slow the progression of DKD and

roughly predict disease progression. Therefore, novel therapeutic methods,

targets and biomarkers are urgently needed to meet clinical requirements. In

recent years, increasing attention has been given to the role of epigenetic

modification in the pathogenesis of DKD. Epigenetic variation mainly includes

DNA methylation, histone modification and changes in the noncoding RNA

expression profile, which are deeply involved in DKD-related inflammation,

oxidative stress, hemodynamics, and the activation of abnormal signaling

pathways. Since DKD is reversible at certain disease stages, it is valuable to

identify abnormal epigenetic modifications as early diagnosis and treatment

targets to prevent the progression of end-stage renal disease (ESRD). Because

the current understanding of the epigenetic mechanism of DKD is not

comprehensive, the purpose of this review is to summarize the role of

epigenetic modification in the occurrence and development of DKD and

evaluate the value of epigenetic therapies in DKD.

KEYWORDS

epigenetic modification, diabetic kidney disease, metabolic disorder, biomarker,
noncoding RNA
Introduction

Diabetic kidney disease (DKD) is a common complication of diabetes and a major cause of

end-stage renal disease (ESRD), which seriously affects the quality of life of patients (1–4). The

main pathological features of DKD are glomerular sclerosis, podocyte detachment, epithelial-

mesenchymal transition (EMT)/endothelial-to-mesenchymal transition (EndMT)/macrophage-

myofibroblast transition (MMT), excessive extracellular matrix (ECM) and renal tubular fibrosis.

These pathological changes affect glomerular and tubular function, leading to the progression of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1133970/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1133970/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1133970&domain=pdf&date_stamp=2023-06-30
mailto:yudehai@jlu.edu.cn
mailto:sunwx@jlu.edu.cn
https://doi.org/10.3389/fendo.2023.1133970
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1133970
https://www.frontiersin.org/journals/endocrinology


Liu et al. 10.3389/fendo.2023.1133970
proteinuria and decreased glomerular filtration capacity. A long-term

hyperglycemic environment in diabetics induces metabolic disorders,

oxidative stress and hemodynamic changes. Although these symptoms

occur with genetic mutations, they are, to a greater extent, related to

epigenetic variations (5). For instance, studies have found that even after

a long period of strict glycemic control, patients with diabetes may still

develop complications due to early high glucose (HG) exposure (4, 6, 7).

This metabolic memory phenomenon has been shown to be related to

DNA methylation and histone acetylation at the promoter, which

suggests that epigenetic modifications are subsumed in the

pathological process of diabetes and affect patients’ conditions over a

long period of time (8, 9). Therefore, a deeper understanding of the

epigenetic modifications in DKD can help to better understand the

pathogenesis of the disease and provide potential predictive and

therapeutic targets for DKD treatment. In the current study, we

conducted a comprehensive analysis and introduction of DKD-related

epigenetic mechanisms and epigenetic therapies based on searching the

published literature from PubMed (https://pubmed.ncbi.nlm.nih.gov)

andWeb of Science (http://www.webofknowledge.com/databases ). Our

aim is to encourage more clinicians and researchers to pay attention to

the function of epigenetic modifications in the occurrence and

development of DKD and conduct laboratory, preclinical and clinical

studies on the development of epigenetic drugs and therapeutic

strategies for DKD.
The pathogenesis of DKD

Diabetic patients often have high blood pressure, high blood

lipids, high uric acid and obesity, all of which may lead to kidney
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damage (10, 11). The pathogenesis of DKD is complex. The main

pathological characteristics of DKD are glomerulosclerosis and

renal fibrosis (12, 13). An impaired glomerular filtration barrier is

the primary cause of albuminuria. Renal fibrosis and albuminuria

are important causes of renal function loss, which is the

consequence of multiple factors and mechanisms. DKD-

associated renal fibrosis is defined by the excessive deposition of

ECM caused by various adverse stimuli (14–17). Understanding the

pathogenesis of DKD may help to prevent, slow down, or even

reverse DKD. Figure 1 briefly summarizes the pathogenesis of DKD.
Metabolism disorders

Glucose, lipid and hormone metabolism disorders caused by HG

exposure may lead to the accumulation of advanced glycation end

products (AGEs) and the activation of protein kinase C (PKC) (18–

22). AGEs can activate related signaling pathways, such as the nuclear

factor kappa-B (NF-kB) and transforming growth factor b (TGF-b)
pathways, promote EMT/EndMT, and result in glomerular podocyte

loss and progressive glomerulosclerosis (23–27). Activated PKC may

decrease endothelial nitric oxide synthase (eNOS) production, which

not only activates NF-kB-mediated inflammatory pathways but also

stimulates the production of vascular endothelial growth factor

(VEGF), inducing endothelial dysfunction and further (26, 28–30).
Oxidative stress

The HG environment activates polyols, PKC, hexosamine and

other pathways, leading to an increase in the oxidative stress
FIGURE 1

Briefly summarizes and illustration of the pathogenesis of DKD.
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response and reactive oxygen species (ROS) (31–33). ROS mediate

various signaling pathways, such as TGF-b, adenosine 5′
monophosphate-activated protein kinase (AMPK) and nuclear

factor-erythroid 2-related factor 2 (Nrf2), which pertain to the

cell cycle, cell proliferation, autophagy, inflammation and oxidative

stress (33–35). In DKD, the activation of ROS can promote

podocyte apoptosis and inflammatory factor release, and activate

the renal fibrosis signaling pathways, which results in renal fibrosis

and the decline of glomerular filtration function (23, 25, 27).
Inflammation

Diabetes is often accompanied by chronic inflammation. The

expression levels of inflammatory factors (e.g. tumor necrosis

factor-a (TNF-a), interleukin-6, interferon g (IFN-g) and

interleukin-17) are elevated in DKD patients (14–16, 36–41).

Abnormal expression of these cytokines may activate renal

fibrosis-related signaling pathways, induce EndMT/EMT/MMT,

and promote the accumulation of ECM, which ultimately

stimulates the expression of fibrosis-related proteins (e.g. a-
smooth muscle actin (a-SMA) and connective tissue growth

factor (CTGF)) and glomerulosclerosis (42–47).
Hemodynamic change

Diabetic patients’ kidneys are always exposed to an HG

environment for a long time. The long-term high level filtration

load may induce glomerular feedback dysfunction and aggravate

glomerular sclerosis (48). The renin-angiotensin-aldosterone

system (RAAS) can also be activated by HG exposure (e.g., the

products of HG-induced metabolic disorders and oxidative stress-

induced ROS) (49). The RAAS not only induces the constriction of

blood vessels in the kidney, but also upregulates TGF-b fibrosis-

associated pathways and inflammation (49–53). The decline in

blood flow and oxygen delivery at the glomerular filtration barrier

after renal vasoconstriction may promote glycolysis and metabolic

reprogramming and produce metabolites (e.g., lactate and L-serine)

(54–58). These metabolites are associated with multiple cellular

behavior variations, such as mitochondrial damage, histone

modification, and the activation of the renal cell fibrosis-related

signaling pathway, which may affect cell senescence and survival,

increase inflammation reflection, induce podocyte damage,

endothelial cell dysfunction, and renal tubular cell fibrosis, and

further aggravate kidney damage (59–64).
The epigenetic modification of DKD

DNA methylation in DKD

DNA methylation is a significant epigenetic regulatory

mechanism. DNA methylation is catalyzed by a family of DNA

methyltransferases that transfer a methyl group from S-adenyl
Frontiers in Endocrinology 03
methionine to the carbon of a cytosine residue (65). DNA

methylation can change chromosome structure, conformation,

stability and the interaction mode between DNA and protein,

thereby participating in a variety of regulatory mechanisms (e.g.,

gene transcription and imprinting, cell differentiation and fibrosis)

(66–70).

DNA methylation is associated with DKD. VanderJagt et al.

found that many methylation modifications occur from prediabetes

to diabetes. Among these methylation modifications, six genes are

associated with DKD, which may induce inflammation and

immunity and break urate homeostasis (71). By comparing the

DNA methylation of kidney proximal tubule cells in 10-week-old

db/db mice with that in normal mice, Marumo et al. considered that

at the early stage of DKD, several potentially functional genes were

significantly methylated, e.g., angiotensinogen (Agt) and claudin 18

(Cldn18), which may alter the progression of DKD (72). Park et al.

indicated that there are extensive methylation differences in DKD

kidneys, among which the change in TNF-amethylation has a close

connection with kidney function decline (73). In addition, the

application of reversed-phase high performance liquid

chromatography (RP-HPLC) to determine DNA methylation

levels in peripheral blood mononuclear cells also revealed

differences in genomic methylation levels between patients with

renal dysfunction and patients with simple diabetes (74, 75). These

abnormal changes may be a response to a chronically

hyperglycemic environment. Furthermore, the degree of

methylation in DKD varies from stage to stage. Lecamwasam

et al. collected blood samples from diabetic patients with chronic

kidney disease (CKD) and indicated that differential methylation

patterns of 5’-C-phosphate-G-3’ (CpG) sites are associated with

different stages of CKD. Of note, relative to the early CKD group,

the cysteine-rich secretory protein 2 (CRISP2) gene promoter

carried 12 hypermethylated CpG sites in the late CKD group,

which may lead to oxidative stress in inflammatory pathways (76).
Histone modification in DKD

Histones are an important component of nucleosomes and a

general term for alkaline proteins that bind to DNA (77–79). The

free N-terminus at the end of histones can undergo various

modifications, including acetylation, methylation, phosphorylation,

and ubiquitination (80). Once histones are modified, the function of

chromatin will be changed: first, the charge of amino acids will be

changed, and the affinity between histones and DNA will be decreased;

second, binding to specific surfaces and regulating transcriptional

activity will also be changed (79). Figure 2 briefly summarizes the

histone epigenetic modifications and their regulatory roles in DKD.

Histone methylation
Histone methylation is a process in which methyl groups are

transferred to lysine and arginine residues in the histone tail by

histone methyltransferase (81). Histone methylation is a dynamic

and reversible process because the methylation of histones can be

erased by histone demethylases (82). Histone methylation plays a
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regulatory role similar to that of DNA methylation. Whether it

functions in transcriptional repression or activation depends on the

methylation degree and the modification site.

Histone methylation is an important epigenetic modification in

DKD. In diabetic mice, upregulation of TGF-b may promote the

recruitment of the histone H3 lysine 4 (H3K4) methylation

methyltransferase SET7/9 and upregulate the expression levels of

H3K4me and p21. This may lead to glomerular cell injury, severe

glomerular sclerosis, albuminuria, and a decreased glomerular

filtration rate (83). Histone methylation also affects podocyte

survival and function. The foot processes of podocytes are attached

to the basement membrane of the glomeruli. Foot process effacement

and simplification can lead to proteinuria, which is a sign of podocyte

injury (84, 85). Adjacent podocytes connect through the slit

diaphragm and form an important barrier for glomerular filtration

proteins (86). Therefore, the structure and arrangement of podocytes

are very important to kidney function (85). PAX transcription

activation domain interacting protein (PTIP) is a part of the H3K4

methyltransferase complex (87). Lefevre et al. found that the H3K4

trimethylation (H3K4me3) level declined in PTIP knockout mouse

podocytes, which may affect the transcription of the neurotrophic

tyrosine kinase receptor type 3 (Ntrk3) gene, resulting in podocyte

development disorder and abnormal podocyte arrangement and

eventua l ly leading to tubulo inters t i t ia l fibros i s and

glomerulosclerosis (88, 89). Furthermore, PTIP can interact with

dachshund homolog 1 (DACH1) and be recruited by DACH1 to its

promoter-binding sites. In podocytes, DACH1-PTIP recruitment can

repress transcription, limit promoter H3K4me3, and affect the

transcription of downstream genes (89–92). Cao et al. found that

DACH1 played a safeguard role in podocytes. DACH1 expression is

dramatically decreased in DKD patients, which may result in

proteinuria. In DACH1 knockdown podocytes combined with

hyperglycemia, DACH1-PTIP promoter binding was reduced,

transcriptional repression was lost, and the H3K4me3 expression

level was increased (88).
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Decreased expression of H3K27me3 in DKD may aggravate

podocyte injury and fibrosis. Enhancer of zeste 2 polycomb

repressive complex 2 subunit (EZH2), a methyltransferase, can

regulate podocyte oxidative stress and renal injury in diabetes (93,

94). DKD patients often have metabolic disorders and high levels of

AGEs. Liebisch et al. found that in podocytes of diabetic mice, high

levels of AGEs can downregulate EZH2 expression levels, decrease

H3K27me3 levels, and induce podocyte injury (95). Siddiqi et al.

found that in diabetic rats, depletion of EZH2 may decrease

H3K27me3 levels and increase glomerular thioredoxin interacting

protein (TxnIP) expression levels, which may promote ROS

accumulation, increase matrix production, and lead to podocyte

injury and proteinuria (96). Similarly, Ye et al. studied the safeguard

role of H3K27me3 and EZH2 in a rat DKD model and indicated

that in rat renal mesangial cells, TGF-b downregulated the

expression of EZH2, decreased the enrichment of the epigenetic

repressive mark H3K27me3 at the fibrotic gene promoter (e.g.,

Serpin family E member 1 (Serpine1) and C-C motif chemokine

ligand 2 (Ccl2), and increased fibrosis protein expression and renal

fibrosis (97). Ubiquitously transcribed tetratricopeptide repeat on

chromosome X (UTX) is a demethylase that removes dimethyl and

trimethyl groups from H3K27 (98). UTX expression is increased in

the renal tubules of diabetic mice and DKD patients (99). Increased

UTX may promote the transcription of inflammatory factor genes

and DNA damage. However, administration of the H3K27

demethylase inhibitor GSK-J4 alleviated inflammatory damage to

renal tubules in diabetic mice (99).

Glucocorticoid receptor (GR) and mineralocorticoid receptor

(MR) play pivotal roles in DKD-associated fibrosis and

inflammation. GR and MR are expressed in a variety of renal

cells (e.g., podocytes, endothelial cells and fibroblasts). The absence

of GR may induce renal fibrosis and albuminuria (100, 101).

Overactivation of MR may lead to endothelial dysfunction, renal

fibrosis, and renal water and salt metabolism dysfunction (102,

103). Water and salt metabolism disorder is a common metabolic
FIGURE 2

The histone epigenetic modifications and their roles in DKD.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1133970
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1133970
abnormality in DKD patients (104). Disturbance of renal water and

salt metabolism may lead to sodium retention, blood pressure

elevation, glomerular sclerosis, and tubulointerstitial fibrosis

(102). The expression levels of GR and MR are closely related to

epigenetic modification. Disruptor of telomeric silencing-1 (Dot1)

is a histone lysine methyltransferase whose function and activity are

regulated by GR (104). When MR is deficient, GR can modify Dot1

methyltransferase activity through the serum/glucocorticoid-

regulated kinase 1 (Sgk-1) and aldosterone (a corticosteroid)-

dependent signaling pathways, thereby relaxing chromatin in

relevant locations and promoting transcription to compensatively

increase epithelial sodium channel expression (104–107). In this

way, kidney salt retention can be regulated and the filtration

function of the kidney can be ensured.

Histone acetylation
Histone acetylation usually occurs on lysine residues. Lysine is

positively charged, and DNA is negatively charged. Under normal

conditions, histone proteins and DNA are tightly bound by

interaction. When histone acetylation occurs, acetyl-coenzyme A

is transferred to the lysine side chain, which disrupts the interaction

between histones and DNA and leads to nucleosome structure

relaxation and a subsequent increase in accessibility to transcription

factors (108, 109).

Histone acetylation plays an important role in the onset of

DKD. Chen et al. found increased acetylation of H3K9 and H3K18

in the renal cortex of diabetic mice, which is related to inflammatory

responses and glomerulosclerosis (110). Sufyan et al. found that the

increased acetylation of H3K9 and H3K23 is associated with

albuminuria and glomerulosclerosis in a mouse model (83).

Lizotte et al. found that H3K9/14 acetylation was associated with

insulin resistance, podocyte apoptosis and kidney injury (111).

Histone deacetylases (HDACs) are epigenetic regulatory factors

that can reverse the histone acetylation process. HDACs can be

divided into four groups according to their homology: class I

includes HDAC1/2/3/8; class II includes HDAC4/5/6/7/9/10; class

III includes sirtuin (SIRT)1-7; and class IV includes HDAC11 (112).

Wang et al. found that the expression of HDAC2/4/5 was increased

in streptozotocin (STZ)-induced diabetic rats and db/db mice, and

the increased expression of HDAC4 exacerbated inflammation and

led to podocyte injury (113).

HDAC3, as a profibrotic factor, plays a pivotal role during the

genesis of DKD (114). The expression level of HDAC3 is upregulated

in renal tubular epithelial cells of DKD mice (115). Klotho protein

protects the kidney by regulating the expression of fibrinogen and

prevents renal fibrosis by inhibiting profibrotic signaling pathways (e.g.,

TGF-b/small mothers against decapentaplegic (Smad) and wingless/

integrated (Wnt)/b-catenin (115, 116). HDAC3 may modulate the

expression of Klotho. Chen et al. found that HDAC3 promotes renal

fibrosis by inhibiting the transcription of the antifibrotic protein Klotho

(115). HDAC3 also regulates macrophage function, promotes

macrophage M2 polarization activation and leads to MMT, which is

a marker of renal fibrosis (117, 118). HDAC3 inhibitors can reverseM2

polarization and the phagocytic activity of macrophages and alleviate

renal fibrosis (115, 118).
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SIRT3 plays a protective role in DKD-related kidney injury. In

DKD patients, HG can downregulate SIRT3, which inhibits the

activity of antioxidant enzymes, aggravates oxidative stress, induces

mitochondrial dysfunction and leads to the accumulation of

metabolic substances such as ROS (60, 61). These variations cause

a series of changes in kidney cells, including metabolic

reprogramming and immunoreaction fibrosis, and eventually

induce kidney damage (61, 119–121). Protein Kinase B (AKT) is

involved in apoptosis and proliferation by regulating the

phosphorylation of forkhead box O (FoxO) (122). High levels of

SIRT3 may inhibit the activity of the Akt/FoxO signaling pathway

and reduce oxidative stress and renal tubular epithelial cell

apoptosis (123). SIRT3 also plays a role in maintaining

endothelial cell homeostasis (124). Srivastava et al. reported that

SIRT3 is involved in the regulation of EndMT, and SIRT3 deficiency

in mouse endothelial cells may induce/aggravate renal fibrosis.

However, renal fibrosis can be relieved by the overexpression of

SIRT3 (124).

Histone ubiquitination
Ubiquitin is a protein with a highly conserved sequence (125).

Histone ubiquitination often occurs at specific lysine residues in the

C-terminal tails of histone H2A and histone H2B (126). Three

enzymes are involved in the process of histone ubiquitination. First,

the ubiquitin molecule is activated by E1 (ubiquitin-activating

enzyme) in an ATP-dependent manner; then, the activated

ubiquitin moiety forms a complex with E2 (ubiquitin-conjugating

enzyme) with the assistance of E1, and the complex is transferred to

the target protein with the assistance of specific E3 (ubiquitin ligase)

(127). The process of ubiquitination is dynamic and reversible, and

deubiquitination enzymes can reverse this process (128). The

ubiquitin proteasome system is involved in the degradation of

many types of proteins, which is associated with the regulation of

a series of cell behaviors and the occurrence of diseases (129, 130).

In diabetic patients, ubiquitin A-52 residue ribosomal protein

fusion product 1 gene (UbA52), which is associated with renal

tubular injury, and the UbA52 expression level can be upregulated

in response to increasing concentrations of glucose (131, 132).

Abnormal ubiquitination modifications have also been observed

in DKD models. Increased H2A ubiquitination and decreased H2B

ubiquitination levels have been observed in HG-treated mesangial

cells. In addition, these histone ubiquitination changes may

enhance the activation of TGF-b and influence the pathogenesis

of DKD (126, 133). Histone ubiquitination can regulate the

expression of downstream proteins by changing their occupancy

in the promoter region and thus promote renal fibrosis. For

example, decreased occupancy of H2AK119 monoubiquitination

(H2AK119Ub) at the TGF-b and monocyte chemoattractant

protein-1 (MCP-1) promoters may upregulate TGF-b pathway-

related factors in diabetic kidneys, activate fibrosis-related signals,

and accelerate renal fibrosis (134). Intriguingly, histone methylation

has been shown to be cross-regulated by histone ubiquitination.

Goru et al. found that in diabetic kidneys, decreased occupancies of

H2AK119Ub may increase occupancies of histone H3K36

dimethylation (H3K36me2) marks on the promoter of SET7/9
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and upregulate the protein SET7/9 expression. Of note, the

increased expression level of SET7/9 can increase the promoter

occupancies of H3K4me2 on the promoter of collagen type I alpha 1

(COL1A1), which may lead to ECM deposition in the kidney and

renal fibrosis (135).

Currently, ubiquitin proteasome system-related proteasome

inhibitors have been approved for cancer therapy with good

efficacy. However, studies on histone ubiquitination modification

in DKD are few, and related drug development remains in the

experimental stage. Aspirin and Carbobenzoxyl-L-leucyl-L-leucyl-

L-leucine (MG132) are potential proteasome inhibitors. Aspirin can

prevent and alleviate renal fibrosis in diabetic animals by increasing

histone H2AK119Ub and reducing SET7 deposition-induced ECM

(136). MG132 alleviates oxidative stress-induced damage to the

kidney by inhibiting diabetes-increased proteasome activity and

upregulating Nrf2 (137). Although these drugs are in the preclinical

stage, proteasome inhibitors have shown promising therapeutic

potential in DKD treatment.

Histone phosphorylation
Histone phosphorylation is a central step in chromosome

coagulation, transcriptional regulation, and DNA damage repair

during cell division (78, 138, 139). In DKD mice and patients, the

increase in histone H3 serine 10 (H3Ser10) phosphorylation may

upregulate vascular cell adhesion molecule 1 (VCAM-1), promote

glomerular endothelial activation, and activate DKD fibrosis and

inflammation progression (26, 140). Histone phosphorylation is

associated with albuminuria. Sayyed et al. found that

glomerulosclerosis and albuminuria were associated with

increased H3Ser10 phosphorylation, and the process of histone

phosphorylation could be reversed. Ccl2 blockade can prevent the

progression of DKD by blocking H3Ser10 phosphorylation (83).

Moreover, Tikoo et al. found that resveratrol (a kind of polyphenol)

can prevent kidney disease progression by reducing H3

dephosphorylation in diabetic rats (141, 142).
NcRNA changes in DKD

Long noncoding RNA (LncRNA) and DKD
LncRNAs are a class of RNA molecules whose transcript length

exceeds 200 nt (143). Instead of encoding proteins, lncRNAs

regulate cell behaviors by influencing gene transcription and

protein translation (144). LncRNAs are associated with the

occurrence and development of a variety of diseases. In DKD,

lncRNAs are involved in renal fibrosis, inflammation, podocyte

injury, albuminuria and other pathological processes in direct or

indirect ways (145).

LncRNAs are crucial during the genesis of DKD. LncRNAs can

affect protein expression by targeting microRNAs (miRNAs) and

related signaling pathways. miR-96-5P regulates the expression of

fibronectin, which is involved in renal fibrosis. It has been observed

that the expression level of miR-96-5P is downregulated in HG-

treated renal tubular epithelial cells and DKD mouse models (146).

LncRNA GAS5 can bind to miR-96-5p and inhibit its expression,
Frontiers in Endocrinology 06
thereby promoting renal fibrosis (146). HG may stimulate the

expression of lncRNA NR_038323. In STZ-induced DKD mice,

lncRNA NR_038323 may interact with miR-324-3p, which

upregulates the expression of dual-specificity protein

phosphatase-1 (DUSP1), downregulates the expression of collagen

I, collagen IV and fibronectin, and significantly improves renal

fibrosis and glomerular hypertrophy (147). In the early stage of

DKD, the expression level of lncRNA CYP4B1-PS1-001 is

significantly downregulated. However, the enforced expression of

lncRNA CYP4B1-PS1-001 can inhibit the proliferation and fibrosis

of murine mesangial cells by interacting with nucleolin (148, 149).

LncRNA SOX2OT can exert renal protective effects by inhibiting

renal fibrosis (150, 151). In DKD mice, overexpression of lncRNA

SOX2OT may alleviate hyperglycemia, decrease the expression of

fibronectin, suppress collagen-related interstitial fibrosis, enhance

the autophagy of mesentery cells, and significantly inhibit the

proliferation and fibrosis of mesentery cells (150).

LncRNAs are also associated with proteinuria. The expression

of lncENST00000436340 is increased in DKD patients. It has been

demonstrated that lncENST00000436340 may promote the

degradation of polypyrimidine tract binding protein 1 (PTBP1)

by enhancing its binding to mRNA, which regulates cytoskeletal

rearrangement, and leads to podocyte injury and urine protein

(152). LncRNA DLX6-AS1 is highly expressed in DKD patients and

podocytes cultured in HG. cAMP-response element binding protein

(CREB) can target DLX6-AS1, and overexpression of CREB may

increase the level of DLX6-AS1. High levels of DLX6-AS1 may

disrupt the podocyte structure, increase kidney inflammation, and

induce albuminuria (153).

MiRNA and DKD
miRNAs are a class of small and highly conserved noncoding

RNAs that regulate protein expression at the posttranscriptional

level by interacting directly with the 3’UTR of target genes (154).

miRNAs also participate in the pathogenesis of DKD. It has been

demonstrated that the expression of miRNA-5b-181p is decreased

in a DKD mouse model, and supplementation with miRNA-5b-

181p-mimic may reduce albuminuria and alleviate abnormal

mesentery expansion (155). Since miRNA can be stably present in

urine in the form of exosomes, it can be used as a biomarker to

predict the progression of DKD. It has been reported that the

expression of miR-342b, miR-30 and miR-2a is significantly

increased in the urinary exosomes of DKD patients (156).

miR-33 and miR-21 play significant roles in renal fibrosis. miR-

33 can promote fibrosis by activating the TGF-b/Smad

inflammatory pathway (157, 158). In a folate-treated mouse

model, miR-33 deletion enhanced fatty acid oxidation, reduced

lipid accumulation, and protected mouse kidneys from fibrosis

(159). miR-21 expression is upregulated in DKD patients. It has

been demonstrated that miR-21 in the exosomes of renal tubular

cells can target the phosphatase and tensin homolog (PTEN)/AKT

pathway and promote renal fibrosis (160). TGF-b/Smad3 mediates

the upregulation of miR-21 in renal tubular epithelial cells, which in

turn positively regulates the expression of ECM and a-SMA in

TECs and fibrotic kidneys (161). The TGF-b/Smad3 pathway also
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induces the expression of renal tubule collagen I, promotes ECM

accumulation and accelerates renal fibrosis by promoting the

expression of miR-192 (162, 163).

Fibroblast growth factor receptor 1 (FGFR1) plays a key role in

the anti-EndMT process and in reducing kidney fibrosis (164, 165).

Koya et al. performed a series of studies on DKD-related EndMT

and found that there was EndMT-related crosstalk between miR-29,

miR-let-7 family members and FGFR1 (166–168). Overactivation of

the TGF-b/Smad signaling pathway may decrease the expression of

miR-29, which promotes the transcription of the inflammatory

factor IFN-g and inhibits FGFR1, leading to a downregulation of

FGFR1-dependent miR-let-7 (166, 169, 170). The decreased

expression of miR-let-7a enhances glycolysis, increases lactic acid

and ROS accumulation, turns on metabolic reprogramming and

leads to EndMT (54, 55, 167). Furthermore, N-acetyl-seryl-aspartyl-

lysyl-proline (AcSDKP) can maintain endothelial homeostasis and

protect the kidney from fibrosis by activating FGFR1 and miR-let-7

(167, 171–173).

Circular RNA (CircRNA) and DKD
CircRNAs are a class of single-stranded closed-loop RNAs that

mainly exist in the cytoplasm or exosomes. Functionally, circRNAs

can interact with proteins and other RNAs by acting as microRNA

sponges and regulate transcription in either a competitive or

noncompetitive fashion; in some cases, circRNAs can also be

translated into polypeptides and perform regulatory functions

(174–176).
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CircRNA profiles vary with different physiological states, so they

can be used as biomarkers and therapeutic targets of diseases. The

most common function of circRNAs in DKD is serving as molecular

sponges through targeting miRNA and functional proteins, such as

SIRT6, SRY-Box Transcription Factor 6 (SOX6), TGF-b1 and NF-kB.
CircRNAs are widely involved in DKD-related oxidative stress,

inflammation, ECM accumulation and renal fibrosis (177). Qin

et al. found that the HG environment can increase the expression

levels of circ_0123996 and SOX6 and decrease the expression of miR-

203a-3p in mesenchymal cells. Silencing circ_0123996 can suppress

cell proliferation and alleviate inflammation and fibrosis (178). Ge

et al. found that after exposing mesangial cells to a similar HG

environment as in DKD patients, the expression of circ_0000064 was

increased (179). Knockdown of circ_0000064 may inhibit the

expression of fibrosis-related proteins, such as type I collagen, type

IV collagen, and fibronectin (25, 179). Table 1 summarizes the DKD-

related circRNAs. Studies of the function of circRNAs in DKD

remain at the animal and cell experimental stages, and to date, no

circRNA drug has been approved for the clinical treatment of DKD.
DKD therapy

Current therapies in DKD
Currently, the main therapeutic strategies for DKD are to

alleviate or avoid proteinuria by controlling blood glucose and

blood pressure and enhancing renal filtration capacity. Since the
TABLE 1 DKD related circRNA.

Circ RNA Experimental object Change Pathway Effect Reference

Circ_0000064 Renal tubular epithelial cells ↑ miR-2-532p↓
ROCK3↑

Oxidative stress↑
Apoptosis↑
Fibrosis↑

(180)

Human renal mesangial cells ↑ miR-424-5p↓
WNT2B↑

Proliferation↑
Inflammation↑
ECM accumulation↑

(181)

Mouse mesangial cells ↑ miR-30c-5p↓
Lmp7↑

Oxidative stress↑
Inflammation↑
ECM accumulation↑

(182)

Circ_EIF4G2 NRK-52E cells ↑ miR-218↓
SERBP1↑

Fibrosis↑ (183)

Circ_15698 Mouse mesangial cells ↑ miR-185↓
TGF-b↑

ECM accumulation↑ (177)

Circ_AKT3 Mouse mesangial cells ↓ miR-296-3p↑
E-cadherin↓

Apoptosis↑
ECM accumulation↑

(184)

CircRNA_0000491 Mouse mesangial cells ↑ miR-101b↓
TGFbRI↑

ECM accumulation↑ (185)

Mouse mesangial cells ↑ miR-455-3p↓
HMBG1↑

Apoptosis↑
Inflammation↑
Oxidative stress↑
Fibrosis↑

(186)

(Continued)
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TABLE 1 Continued

Circ RNA Experimental object Change Pathway Effect Reference

Circ_0037128 Human mesangial cells ↑ miR-17-3p↓
AKT3↑

Proliferation↑
Fibrosis↑

(187)

Podocytes ↑ miR-31-5p↓
KLF9↑

Podocytes injury↑ (188)

Circ_0080425 Mouse mesangial cells ↑ miR-24-3p↓
FGF11↑

Proliferation↑
Fibrosis↑

(189)

Human umbilical vein endothelial cells ↑ miR-140-3p↓
FN1↑

Cell dysfunction↑ (190)

CircRNA_010383 Mouse glomerular mesangial cells
Mouse tubular epithelial cells

↓ miR-135a↑
TRPC135↓

ECM accumulation↑ (191)

CircRNA_0000309 Podocytes ↓ miR-188-3p↓
GPX4↑

Proliferation↑
Fibrosis↑
Podocytes apoptosis↑

(192)

Circ_HIPK3 Rat mesangial cells ↑ miR-185↓
TGF-b↑
Cyclin D1↑

Proliferation↑ (193)

Circ_0114428 Glomerular mesangial cells ↑ miR-185-5↓
Smad3↑

Proliferation↑
Fibrosis↑
EMT↑

(194)

Circ_ACTR2 Human renal mesangial cells ↑ miR-205-5p↓
HMGA2↑

Proliferation↑
Inflammation↑
ECM accumulation↑
Oxidative stress↑

(195)

Circ_AOK1 Human glomerular epithelial cells ↑ miR-520h↓
Smad3↑

Proliferation↑
Fibrosis↑
EMT↑

(196)

Circ_0123996 Mouse mesangial cells ↑ miR-149-5p↓
Bach1↑

Proliferation↑
Fibrosis↑

(197)

Human mesangial cells ↑ miR-203a-3p↓
SOX6↑

Proliferation↑
Inflammation↑
Fibrosis↑

(178)

Circ_0068087 Renal tubular epithelial cells ↑ miR-106a-5p↓
ROCK2↑

Apoptosis↑
Inflammation↑
Oxidative stress↑
Fibrosis↑

(198)

Circ_0125310 Mesangial cells ↑ miR-422a↓
IGF1R↑
P38↑

Proliferation↑
Fibrosis↑

(199)

Circ_WBSCR17 Renal tubular epithelial cells ↑ miR-185-5p↓
SOX6↑

Apoptosis↑
Inflammation↑
Fibrosis↑

(200)

Circ_000166 Renal tubular epithelial cells ↑ miR-296↓
SGLT2↑

Fibrosis↑ (201)

Circ_0037128 Renal tubular epithelial cells ↑ miR-497-5p↓
NFAT5↑

Inflammation↑
Oxidative stress↑
Fibrosis↑

(202)

Circ_0003928 Renal tubular epithelial cells ↑ miR-506-3p↓
HDAC4↑

Oxidative stress↑
Apoptosis↑

(203)

Circ_SMAD4 Mouse glomerular mesangial cells ↓ miR-377-3p↑
BMP7↓

Inflammation↑
ECM accumulation↑
Apoptosis↑

(204)

(Continued)
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direct cause of DKD in diabetic patients is high blood glucose,

lowering blood glucose is the priority for controlling the

progression of DKD. Some hypoglycemic drugs also have

therapeutic effects on renal disorders. For example, SGLT2

inhibitors (e.g., empagliflozin) not only reduce the tubule

reabsorption of glucose but also improve the kidney filtration

capacity and delay the progression of kidney disease by reducing

glomerular pressure and albuminuria (219). Overactivation of the
Frontiers in Endocrinology 09
RAAS may trigger glomerular hypertension, which in turn

promotes the constriction of bulbar arterioles, damages

endothelial cells, and leads to albuminuria. Therefore, the use of

antihypertensive drugs can significantly prevent renal dysfunction

while maintaining normal blood pressure (220). RAAS inhibitors

are widely used drugs for the treatment of DKD and have been

proven to be effective in all stages of DKD (220–222). Table 2

summarizes the main regular drugs for DKD treatment.
TABLE 1 Continued

Circ RNA Experimental object Change Pathway Effect Reference

Circ_0123996 Mesangial cells ↑ miR-203a-3p↓
SOX6↑

Proliferation↑
Inflammation↑
Fibrosis↑

(205)

Circ_0008529 Renal tubular epithelial cells ↑ miR-485-5p↓
WNT2B↑

Apoptosis↑
Inflammation↑

(206)

Circ_0000285 Podocytes ↑ miR-654-3p↓
MAPK6↑

Podocytes injury↑ (207)

Circ_LRP6 Mouse glomerular mesangial cells ↑ miR-205↓
HMGB1↑
TLR4↑
NF-kB↑

Proliferation↑
Oxidative stress↑
Inflammation↑
ECM accumulation↑

(208)

Circ_NUP98 Human glomerular mesangial cells ↑ miR-151-3p↓
HMGA2↑

Oxidative stress↑
Inflammation↑
Fibrosis↑

(209)

Circ_HIPK3 Renal tubular epithelial cells ↓ miR-326↑
miR-487a-3p↑
SIRT1↓

Proliferation↓
Apoptosis↑

(210)

Circ_0060077 Renal tubular epithelial cells ↑ miR-145-5p↓
VASN↑

Apoptosis↑
Oxidative stress↑
Inflammation↑
Fibrosis↑

(211)

Circ_TLK1 Human mesangial cells ↑ miR-126-5p↓
miR-204-5p↓
AKT↑
NF-kB↑

Inflammation↑
Oxidative stress↑
ECM accumulation↑

(212)

Circ_FBXW12 Human mesangial cells ↑ miR-31-5p↓
LIN28B↑

Inflammation↑
Oxidative stress↑
ECM accumulation↑

(213)

Circ_0003928 Renal tubular epithelial cells ↑ miR-151-3p↓
Anxa2↑

Apoptosis↑
Inflammation↑

(214)

Circ_0000181 C57BL/6 mice ↑ miR-667-5p↓
NLRC4↑

Inflammation↑ (215)

Circ_LARP4 Mouse mesangial cells ↓ miR-424↑
Bax↓

Apoptosis↑
Fibrosis↑

(216)

Circ_0054633 Human umbilical vein endothelial cells ↑ miR-218↓
ROBO1↑
HO-1↑

Vascular endothelial cell dysfunction↓ (217)

Circ_ITCH Rat mesangial cells ↓ miR-33a-5p↑
SIRT6↓

Inflammation↑
Fibrosis↑

(218)
f

↑, upregulation; ↓, downregulation; ROCK, Rho kinase; WNT2B, Wnt family member 2B; Lmp7, large multifunctional protease 7; SERBP1, SERPINE1 mirna binding protein 1; TGFbRI, TGFb-
receptor type I; HMGB1, high mobility group box 1; KLF9, kruppel-like factor 9; FGF11, fibroblast growth factor 11; FN1, fibronectin 1; TRPC135, transient receptor potential cation channel 135;
GPX4, glutathione peroxidase 4; HMGA2, high-mobility group AT-hook 2; Bach1, BTB and CNC homology 1; Sox6, SRY-Box Transcription Factor 6; IGF1R, type 1 insulin-like growth factor
receptor; SGLT2, sodium-glucose cotransporter 2; NFAT5, nuclear factor of activated T cells 5; HDAC, histone deacetylase; BMP7, bone morphogenetic protein 7; MAPK6, mitogen-activated
protein kinase 6; TLR4, toll-like receptor 4; SIRT, sirtuin; VASN, vasorin; LIN28B, Lin-28 homolog B; Anxa2, annexin A2; NLRC4, NOD-like receptor family CARD domain-containing protein
4; ROBO1, roundabout 1; Bax, Bcl-2 associated X protein; HO-1, heme oxygenase‑1.
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Potential epigenetic therapies in DKD
Presently, studies of epigenetic drugs for DKD mostly

remain at the animal experimental stage, and histone

acetylation inhibitors are a research hotspot. We summarized

the potential epigenetic therapies for DKD in Table 3. HDACIs

have been widely studied in tumors and approved for the

treatment of cutaneous T-cell lymphoma and multiple

myeloma. HDACIs also have a protective effect against

diabetic kidney damage. For example, HDAC2 expression is

increased in diabetic rats, and administration of trichostatin A

(TSA) may decrease ECM-related protein and mRNA

expression and prevent (262). TSA also inhibits the activity of

the class II type of HDAC, which plays a similar role in blocking

EMT. Xu et al. found that the expression of HDAC5 was
Frontiers in Endocrinology 10
increased in the renal tubules of diabetic mice. After TSA

administration, the expression of HDAC5 was decreased and

the accumulation of ECM was alleviated (264). Valproate

(VPA), sodium butyrate (NaB), and vorinostat are all HDACIs

that inhibit class I and II HDACs (265). VPA is a branched

short-chain fatty acid that can alleviate the damage to renal

tubules in STZ-induced diabetic rats, reduce autophagy and

stress, reduce proteinuria, and prevent kidney fibrosis (258,

259, 266). NaB is another branched short-chain fatty acid that

can reduce inflammation and oxidative damage and relieve

albuminuria in diabetic rats (260, 267). Vorinostat can relieve

oxidative stress in STZ-induced diabetic rats, and decrease renal

tubular cell proliferation and glomerular matrix production

(261, 268).
TABLE 2 Regular therapies of DKD.

Drug Drug class Research category DKD related outcome Reference

Dulaglutide
Liraglutide

GLP-1 agonist Approved medication Urinary albumin/creatinine ratio↓
Albuminuria↓

(223–225)

Dapagliflozin
Canagliflozin
Empagliflozin

SGLT2 inhibitor Approved medication Blood pressure↓
Weight↓
Glomerular pressure↓
GFR↑
Albuminuria↓

(226–229)

Sitagliptin
Linagliptin

DPP-4 inhibitor Approved medication Blood glucose↓
Oxidative stress↓
Inflammation↓
Glomerular injury↓
Albuminuria↓

(172, 230–234)

Captopril
Losartan
Telmisartan
Irbesartan

ACEI and ARB Approved medication Blood pressure↓
GFR↑
Albuminuria↓

(220–222, 235)

Finerenone Mineralocorticoid (Aldosterone) receptor Antagonists Approved medication Renal fibrosis↓
Inflammation↓

(236–239)

Spironolactone Aldosterone receptor antagonists Approved medication Blood pressure↓
Inflammation↓
Albuminuria↓

(240, 241)

Sevelamer AGEs antagonist (phosphate binders) Approved medication Inflammation↓ (242)

Pirfenidone TGF-b inhibitor Approved medication Fibrosis↓ (243, 244)

Ruboxistaurin PKC inhibitor Clinical trial Fibrosis↓
Albuminuria↓

(245, 246)

Atrasentan ETR antagonist Clinical trial Fibrosis↓
Albuminuria↓
Blood pressure↓

(247–250)

AcSDKP Endogenous peptide Animal experiment Fibrosis↓ (168, 172, 234, 251, 252)

Fasudil ROCK inhibitor Animal experiment Inflammation↓
Fibrosis↓
Glomerulosclerosis↓

(253–256)

FPS-ZM1 RAGE inhibition Animal experiment Glomerular nephrin↑
Inflammation↓
Fibrosis↓
Podocyte injury ↓

(257)
↑, upregulation; ↓, downregulation; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose cotransporter 2; DPP-4, dipeptidyl peptidase 4; ACEI, angiotensin-converting enzyme inhibitor;
ARB, angiotensin receptor blocker; AGEs, advanced glycation end products; TGF-b, transforming growth factor b; PKC, protein kinase C; ETR, endothelin receptor; GFR, glomerular filtration
rate; FPS-ZM1, 4-chloro-N-cyclohexyl-N-(phenylmethyl)-benzamide; RAGE, receptor for advanced glycation end products.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1133970
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1133970
Although HDACIs have great potential in the treatment of

DKD, their drawbacks, such as adverse effects and poor

tolerance, should not be ignored (265, 269, 270). For life-

threatening diseases such as cancer, side effects such as nausea,

vomiting, and liver toxicity are acceptable. However, whether

the application of HDACIs is a good choice for chronic diseases

such as DKD should be discussed with great deliberation. In

addition, the specificity of HDACIs is poor. Because class I, II

and IV HDACs are all dependent on zinc for enzymatic

reactions, and most HDACIs target the zinc domain, HDACIs

have broad spectrum effects (commonly called pan-HDACIs)

(270, 271).
Conclusion and perspectives

Epigenetic modifications are common in diseases and some

epigenetic variations are highly specific in a certain disease or a

certain stage of disease, which provides us with potential

therapeutic targets in clinical treatments (272, 273). Presently,

many studies have confirmed the role of epigenetics in DKD. In

this review, we concluded the evidence for epigenetic

modifications associated with DKD by summarizing the

relevant literature, and we found that epigenetic modifications

are involved in the inhibition/activation of a variety of

pathogenic signaling pathways. Epigenetic variations affect

multiple renal cell functions, such as the activity of GR and

glucose metabolism (274, 275). In particular, epigenetic
Frontiers in Endocrinology 11
variation-induced EndMT/EMT processes are pivotal in the

genesis of DKD, which are the core events in kidney fibrosis

(Figure 3). Epigenetic modifications are a consequence of

exposure to HG and contribute to the progression of DKD.

Since DKD is the result of multiple factors and their complex

interactions, different epigenetic modifications may contribute

to the same outcome through different signaling pathways and

mechanisms. However, most of the existing epigenetic studies

have focused on the effect of a single variation on the changes in

the signaling pathway to promote or mitigate the occurrence of

DKD processes. Therefore, drugs or biomarkers designed for a

single target are probably not accurate, and the joint use of

multiple epigenetic drugs targeting different epigenetic

variations should be considered in future DKD treatment. In

addition, most of these studies were conducted in diabetic

animals or cell models under HG conditions, but we believe

that the human body environment is more complex and that

more influential factors and mechanisms should be involved in

DKD than animals and cells. Therefore, additional solid

experimental and clinical trial data from clinical specimens

and patients are eagerly anticipated.

In recent years, epigenetic detection technology has

developed rapidly. With the wide application of high-

throughput sequencing technology in the clinic, the detection

of epigenetic changes (mainly DNA methylation and noncoding

RNA profiles) in kidney tissues or the peripheral blood of DKD

patients has become easier, faster and cheaper to implement

(276, 277). These sequencing results are of great value for the
TABLE 3 Epigenetic therapies of DKD.

Type Drug Applications DKD related research
status

Treatment outcomes in
DKD

Reference

HDACI VPA Approved for use in epilepsy Animal experiment Apoptosis↓
Fibrosis↓

Kidney injury↓

(258, 259)

HDACI NaB In a clinical trial to treat schizophrenia Animal experiment Fibrosis↓
Apoptosis↓

Inflammation↓
DNA damage↓
Albuminuria↓

(260, 261)

HDACI TSA Pre-clinical Animal experiment Fibrosis↓
Albuminuria↓

(262)

HDACI Vorinostat Approved for use in cutaneous T cell
lymphoma

Animal experiment Oxidative stress↓
ECM↓

Albuminuria↓

(261)

HDAC SIRT3 Pre-clinical Animal experiment Oxidative stress↓
Kidney injury↓

(123)

H3K27 demethylase
inhibitors

GSK-J4 Pre-clinical Animal experiment Inflammation↓
Fibrosis↓

Glomerulosclerosis↓
Albuminuria↓

(263)
f

↑, upregulation; ↓, downregulation. HDACI, histone deacetylase inhibitor; VPA, valproate; TSA, trichostatin A; SIRT, sirtuin.
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precision diagnosis and drug development of DKD. Moreover,

the CRISPR−Cas9 system is being tried as a novel tool for editing

a specific epigenetic variation, which is a potential approach for

the prevention and treatment of DKD (276, 278, 279).
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FIGURE 3

Epigenetic variation-induced EndMT/EMT processes in DKD.
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Abbreviation Full name

DKD diabetic kidney disease

ESRD end-stage renal disease

EMT epithelial-mesenchymal transition

EndMT endothelial-to-mesenchymal transition

MMT macrophage-myofibroblast transition

HG high glucose

ECM extracellular matrix

AGEs advanced glycation end products

PKC protein kinase C

NF-kB nuclear factor kappa-B

TGF-b transforming growth factor b

eNOS endothelial nitric oxide synthase

VEGF vascular endothelial growth factor

ROS reactive oxygen species

AMPK adenosine 5′ monophosphate-activated protein kinase

Nrf2 nuclear factor-erythroid 2-related factor 2

TNF-a tumor necrosis factor-a

IFN-g interferon g

a-SMA a-smooth muscle actin

CTGF connective tissue growth factor

RAAS renin-angiotensin-aldosterone system

Agt angiotensinogen

Cldn18 claudin 18

RP-HPLC reversed-phase high performance liquid chromatography

CKD chronic kidney disease

CpG 5'-C-phosphate-G-3'

CRISP2 cysteine-rich secretory protein 2

PTIP PAX transcription activation domain interacting protein

DACH1 dachshund homolog 1

Ntrk3 neurotrophic tyrosine kinase receptor type 3

EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit

TxnIP thioredoxin interacting protein

Serpine1 serpin family E member 1

Ccl2 C-C motif chemokine ligand 2

UTX ubiquitously transcribed tetratricopeptide repeat on
chromosome x

GR glucocorticoid receptor

MR mineralocorticoid receptor
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Abbreviation Full name

Dot1 Disruptor of telomeric silencing-1

Sgk-1 serum/glucocorticoid-regulated kinase 1

H3K histone H3 lysine

me3 trimethylation

me2 dimethylation

SIRT sirtuin

HDAC histone deacetylase

STZ streptozotocin

Smad small mothers against decapentaplegic

Wnt wingless/Integrated

AKT protein Kinase B

FoxO forkhead box O

UbA52 ubiquitin A-52 residue ribosomal protein fusion product 1
gene

Ub monoubiquitination

MCP-1 monocyte chemoattractant protein

COL1A1 collagen type I alpha 1

MG132 carbobenzoxyl-L-leucyl-L-leucyl-L-leucine

VCAM-1 vascular cell adhesion molecule 1

Ser serine

DUSP1 dual-specificity protein phosphatase-1

PTBP1 polypyrimidine tract binding protein 1

CREB cAMP-response element binding protein

PTEN phosphatase and tensin homolog

FGFR1 fibroblast growth factor receptor 1

AcSDKP N-acetyl-seryl-aspartyl-lysyl-proline

SOX6 SRY-Box Transcription Factor 6

SGLT2 sodium-glucose cotransporter 2

TSA trichostatin A

VPA valproate

NaB sodium butyrate

ROCK Rho kinase

WNT2B Wnt family member 2B

Lmp7 large multifunctional protease 7

SERBP1 SERPINE1 mirna binding protein 1

TGFbRI TGFb-receptor type I

KLF9 kruppel-like factor 9

FGF11 fibroblast growth factor 11

FN1 fibronectin 1
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Abbreviation Full name

TRPC135 transient receptor potential cation channel 135

GPX4 glutathione peroxidase 4

HMGA2 high-mobility group AT-hook 2

Bach1 BTB and CNC homology 1

IGF1R type 1 insulin-like growth factor receptor

NFAT5 nuclear factor of activated T cells 5

BMP7 bone morphogenetic protein 7

MAPK6 mitogen-activated protein kinase 6

HMGB1 high mobility group box 1

TLR4 toll-like receptor 4

VASN vasorin

LIN28B Lin-28 homolog B

Anxa2 annexin A2

NLRC4 NOD-like receptor family CARD domain-containing
protein 4

ROBO1 roundabout 1

HO-1 heme oxygenase−1

Bax Bcl-2 associated X protein

GLP-1 glucagon-like peptide-1

DPP-4 dipeptidyl peptidase 4

ACEI angiotensin-converting enzyme inhibitor

ARB angiotensin receptor blocker

ETR endothelin receptor

GFR glomerular filtration rate

FPS-ZM1 4-chloro-N-cyclohexyl-N-(phenylmethyl)-benzamide

RAGE receptor for advanced glycation end products

lncRNA long noncoding RNA

miRNA microRNA

circRNA circular RNA
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