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Introduction: Diabetic kidney disease (DKD) is a long-term complication of

diabetes and causes renal microvascular disease. It is also one of the main causes

of end-stage renal disease (ESRD), which has a complex pathophysiological

process. Timely prevention and treatment are of great significance for delaying

DKD. This study aimed to use bioinformatics analysis to find key diagnostic

markers that could be possible therapeutic targets for DKD.

Methods: We downloaded DKD datasets from the Gene Expression Omnibus

(GEO) database. Overexpression enrichment analysis (ORA) was used to explore

the underlying biological processes in DKD. Algorithms such as WGCNA, LASSO,

RF, and SVM_RFE were used to screen DKD diagnostic markers. The reliability

and practicability of the the diagnostic model were evaluated by the calibration

curve, ROC curve, and DCA curve. GSEA analysis and correlation analysis were

used to explore the biological processes and significance of candidate markers.

Finally, we constructed a mouse model of DKD and diabetes mellitus (DM), and

we further verified the reliability of the markers through experiments such as

PCR, immunohistochemistry, renal pathological staining, and ELISA.
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Results: Biological processes, such as immune activation, T-cell activation, and

cell adhesion were found to be enriched in DKD. Based on differentially

expressed oxidative stress and inflammatory response-related genes (DEOIGs),

we divided DKD patients into C1 and C2 subtypes. Four potential diagnostic

markers for DKD, including tenascin C, peroxidasin, tissue inhibitor

metalloproteinases 1, and tropomyosin (TNC, PXDN, TIMP1, and TPM1,

respectively) were identified using multiple bioinformatics analyses. Further

enrichment analysis found that four diagnostic markers were closely related to

various immune cells and played an important role in the immune

microenvironment of DKD. In addition, the results of the mouse experiment

were consistent with the bioinformatics analysis, further confirming the reliability

of the four markers.

Conclusion: In conclusion, we identified four reliable and potential diagnostic

markers through a comprehensive and systematic bioinformatics analysis and

experimental validation, which could serve as potential therapeutic targets for

DKD. We performed a preliminary examination of the biological processes

involved in DKD pathogenesis and provide a novel idea for DKD diagnosis

and treatment.
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Introduction

Diabetes kidney disease (DKD) is a chronic kidney disease

caused by diabetes. About 40% of type 2 diabetes patients and 30%

of type 1 diabetes patients present with DKD (1, 2). With the

increasing prevalence of diabetes, the number of DKD patients has

also increased (3, 4). DKD patients present different forms of kidney

damage, which is characterized by continuous increase of

albuminuria excretion and/or a progressive decrease in

glomerular filtration rate (GFR), eventually developing into end-

stage renal disease (ESRD) (5). DKD is the main cause of ESRD, and

about 30% to 50% of worldwide ESRD is caused by DKD (6).

Therefore, it is urgent to explore early effective diagnosis and

intervention targets for exploring new diagnosis and treatment

strategies to improve the clinical DKD outcome.

The pathogenesis of DKD is complex and multifactorial.

Generally, DKD is mainly caused by hemodynamic changes and

metabolic disturbances (7). These changes subsequently lead to

activation of the renin-angiotensin-aldosterone system (RAAS) (8),

increases in metabolites and pro-inflammatory factors, and

dysregulation of many intracellular signaling cascades associated

with oxidative stress (9–11). In the state of diabetes, on one hand,

the self-oxidation of glucose causes mitochondrial overload and

excessive production of reactive oxygen species (ROS). On the other

hand, the body’s antioxidant capacity decreases, and the amount of

intracellular antioxidant (nicotinamide adenine dinucleotide

phosphate [NADPH]) is insufficient (12), resulting in an

imbalance between oxidants and antioxidants. In addition,
02
oxidative stress is also closely related to inflammatory cells, which

often coexist and activate each other. Excessive oxidative stress and

inflammatory responses lead to damage to the renal interstitium,

glomeruli, and renal podocytes, thereby impairing renal function.

Therefore, finding diagnostic and therapeutic targets for oxidative

stress and inflammatory response is expected to block the process of

renal injury in DKD and restore renal function.

With the popularization of gene chips and high-throughput

sequencing, many disease databases have gradually been improved,

and more and more effective data can be used to reveal the

pathogenesis of diseases and new therapeutic targets. For example,

Ma used a bioinformatic approach to analyze gene expression profiles

and underlying functional networks in cardiac tissue from patients

with dilated cardiomyopathy (13). Huang analyzed the correlation of

serum 25-hydroxyvitamin D levels in the progression of proteinuria

in DKD and its underlying mechanisms (14). Yang explored seven

immune-related genes that can predict the progression of

atherosclerotic plaque based on machine learning (15). However,

existing studies have some deficits, such as analysis based on a single

dataset, limited number of patients, and no multi-faceted validation

of bioinformatics methods, which affects prediction capability or

reliability. This study integrated DKD datasets from different sources,

used a variety of biological information methods to screen diagnostic

markers related to oxidative stress and inflammatory response in

DKD, and thoroughly examined the biological functions and

potential mechanisms of diagnostic markers. This discovery may

provide a promising direction for clarifying the diagnosis and

pathogenesis of DKD.
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Materials and methods

Data sources and processing

DKD gene expression profiling data were downloaded

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/), including seven datasets, GSE111154,

GSE142025, GSE162830, GSE163603, GSE96804, GSE1009, and

GSE30122. Table 1 presents more details concerning the above

datasets. Excluding the samples irrelevant to this study, 214 samples

were finally obtained, including 101 normal samples and 113 DKD

samples. The “sva” R package was applied for removing batch effects

from different datasets (16). A Principal component analysis (PCA)

was utilized to assess the effect of batch effect removal and visualize the

distribution of DKD and normal patient samples. Subsequently,

we obtained 458 oxidative stress-related genes from the

Gene Ontology (GO) knowledgebase (http://geneontology.org/)

and 200 inflammatory response re la ted genes from

MsigDB (HALLMARK_INFLAMMATORY_RESPONSE)

(http://www.broad.mit .edu/gsea/msigdb/) as shown in

Supplementary Table 1.
Identification of DEGs and functional
enrichment analysis

The “limma” R package was used for differential analysis (|log2FC|

>0.5, padj < 0.05) (17). The”ggplot2” R package was applied for

drawing volcano plots showing the distribution of differentially

expressed genes (DEGs). The up- and down-regulated genes were

analyzed using an Over-Representation Analysis (ORA). The R

package “msigdbr” was used to provide a reference gene set. The

enrichment analysis results from the “C2,” “C5,” and “H” gene sets

were selected for visual display.
Consensus clustering analysis of DEOIGs

The R package “ConsensusClusterPlus” was used for consensus

unsupervised clustering analysis (18), and separated patients into

different molecular subtypes based on the expression levels of

differentially expressed oxidative stress- and inflammatory
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response-related genes (DEOIGs). A consensus matrix plot,

consensus cumulative distribution function (CDF) plot, relative

alterations in area under the CDF curve, and tracking plot to find

the optimal number of clusters were used. The “clusterProfiler” R

package was used for performing gene set enrichment analysis

(GSEA) (19). The single sample gene set enrichment analysis

(ssGSEA) analysis was utilized to quantify pathways related to

DKD (20).
Weighted gene co-expression
network analysis

Based on the expression similarity of 113 DKD samples, genes

were divided into different modules using the weighted correlation

network analysis (WGCNA) method (21). According to the

importance assessment of genes in the module and the

correlation analysis between modules and subtypes, a module

highly related to DKD was found, and the genes in this module

were used for subsequent research.
Screening and validation of diagnostic
markers for DKD

The module genes obtained from WGCNA analysis were

uploaded to the String database (https://cn.string-db.org/) for

protein interaction analysis, and the protein–protein interaction

(PPI) network file was exported for further analysis based on the

Cytoscape 3.9.0 software. The CytoHubba plug-in of the Cytoscape

3.9.0 software was applied for screening core genes. The plug-in

utilized 12 algorithms, including MCC, dmnc, MNC, degree, EPC,

bottleneck, eccentricity, closeness, radiology, betweenness, stress,

and clustering efficiency to score the genes and screen the genes that

satisfied the 12 algorithms as candidate genes. Next, we utilized the

Least Absolute Shrinkage and Selection Operator (LASSO) logistic

regression (analyzed by the “glmnet” R package (22)), Random

Forest (RF) as analyzed by the “randomForest” R package, and

Support Vector Machine_Recursive Feature Elimination

(SVM_RFE)) (23) to screen candidate genes, and the overlapping

genes of the three algorithms were regarded as diagnostic markers.

The expression data and clinical information data, such as
TABLE 1 Details of the datasets included in this study.

Datasets Platforms Organism DKD Normal References Status

GSE111154 GPL17586 Homo sapiens 4 4 PMID: 30253844 Public on Jul 03, 2018

GSE142025 GPL20301 Homo sapiens 27 9 PMID: 32086290 Public on Dec 14, 2019

GSE162830 GPL20301 Homo sapiens 10 9 PMID: 33537765 Public on Dec 09, 2020

GSE163603 GPL16791 Homo sapiens 9 6 PMID: 35675394 Public on Dec 22, 2020

GSE96804 GPL17586 Homo sapiens 41 20 PMID: 29242313 Public on Jul 31, 2018

GSE1009 GPL8300 Homo sapiens 3 3 PMID: 15042541 Public on Apr 01, 2004

GSE30122 GPL571 Homo sapiens 19 50 PMID: 21752957 Public on Aug 03, 2011
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creatinine and GFR of DKD were downloaded from the Nephroseq

v5 online database (http://v5.nephroseq.org/) to verify the selected

diagnostic markers. A receiver operating characteristic (ROC) curve

was employed for evaluating the diagnostic efficacy of diagnostic

markers (24).
Establishment and validation of a
nomogram scoring system

The “RMS” R package was used to develop a diagnostic model

of DKD based on diagnostic markers. Using a nomogram scoring

system, each variable was assigned a score, and the scores for all

variables were then summed to obtain a total score for each sample.

The calibration curves were used to assess the accuracy of the

nomogram, and the Decision Curve Analysis (DCA) was chosen for

evaluating the clinical utility of the nomogram (25).
GSEA enrichment analysis of
biological functions and pathways
of diagnostic markers

The ssGSEA analysis was applied for quantifying 28 immune-

related gene sets. The samples were divided into high and low

expression groups according to the gene expression of each

diagnostic marker, and a GSEA analysis was used to explore the

biological functions and pathways associated with each gene. The

“h.all.v7.5.1.symbols.gmt” and “c5.all.v7.5.1.symbols.gmt” were

used as reference genomes.
Animal experiments

Twenty-four male BKS-DBmice (Strain NO. T002407, 12 each of

6 weeks old and 12 weeks old) and twenty-four age-matched non-

diabetic mice were purchased from GemPharmatech (Guangdong,

China). Blood and urine samples were collected, and the mice were

then sacrificed to obtain kidney samples, some of which were partially

stored in 4% paraformaldehyde, and the rest were immediately stored

at –80°C for subsequent studies. All animal experiments were

approved by the Ethics Committee of Sun Yat-sen University

(Approval No. SYSU-IACUC-2022-001575), and the entire

experimental procedure was carried out in strict compliance with

the Guide for the Care and Use of Laboratory Animals.

Blood was drawn via the tail vein and blood glucose levels were

measured using an ACCU-CHEK® Performa glucometer (Roche,

Manheim, Germany). Blood urea nitrogen (BUN), serum creatinine

(Scr), glycosylated hemoglobin (HbA1c), and urine creatinine were

detected using an automatic biochemical analyzer (Chemray 800,

Shenzhen, China). Urine albumin was measured using a

turbidimetric inhibition immunoassay (Nanjing Jiancheng

Bioengineering Institute, Nanjing, China, No. E038-1-1). Urinary

albumin-to-creatinine ratio (UACR) was calculated as urine albumin/

urine creatinine (mg/mg). Mouse kidney tissue fixed in 4%

paraformaldehyde was rinsed, dehydrated, routinely paraffin
Frontiers in Endocrinology 04
embedded, sectioned (5 µm), and stained by Hematoxylin-eosin

staining (H&E), Periodic Acid-Schiff stain (PAS), and Masson.

Meanwhile, mouse kidney sections were deparaffinized, hydrated,

and incubated in 10 mM sodium citrate buffer at 98°C for 20 min for

antigen retrieval. The sections were incubated with primary antibody

against TNC (Cat:67710-1-Ig, Proteintech, USA), PXDN (Cat:

FNab10858, FineTest, China), TPM1(Cat: A1157, Abclonal, China),

and TIMP1 (Cat: 106164-T08, Sinobiological, China) overnight at 4°

C. Then, the sections were incubated with the secondary antibody for

1 h at room temperature. The sections were then incubated with 3,3’-

diaminobenzidine for 20 min at room temperature. Stained sections

were visualized and imaged with a light microscope (Olympus,

Tokyo, Japan). Next, a double-sandwich enzyme-linked

immunosorbent assays (ELISA) for mouse TNC and TIMP1

(Elabscience, Wuhan, China) and PXDN (SAB, Maryland, USA)

were performed to determine their protein concentrations. We also

performed quantitative real-time polymerase chain reaction (qRT-

PCR) according to the manufacturer’s instructions (ACCURATE

BIOLOGY, Changsha, China). The relative quantification of mRNA

levels was calculated based on the 2−DDCt method, and actin beta

(ACTB) was used as an internal control. The PCR primer sequences

are shown in Supplementary Table 2.
Statistical analyses

The Unpaired t-Test and Wilcoxon Rank-Sum Test were used

to analyze the differences between the two groups. The differences

among multiple groups were analyzed by the Kruskal-Wallis test.

Pearson or Spearman correlation test was used to analyze the

correlation between variables. R software (version 4.0.3) and

Adobe Illustrator (version 25.0) was utilized for statistical analysis

and drawing. P value < 0.05 was considered statistically significant.
Results

Data processing

The workflow of this study was shown in the flowchart

(Supplementary Figure 1). We downloaded seven datasets from the

GEO database with a total of 214 samples and used the “ComBat”

function of the “sva” R package to remove batch effects of data from

different sources. The PCA chart showed the data distribution before

and after (Figures 1A, B, respectively) removing the batch effect, and

the results indicated that the batch effect had been effectively corrected.

After the data were merged, the DKD and normal samples could be

accurately distinguished (Figure 1C). Using the “limma” R package for

differential analysis, we identified a total of 772 DEGs of which 381 and

391 were up- and down-regulated, respectively, as shown in the

volcano map (Figure 1D). Next, we performed an ORA enrichment

analysis on the resulting differential genes. It can be seen from the

circle network diagram that these genes were enriched in

pathways , such as “ INFLAMMATORY_RESPONSE,”

“EPITHELIAL_MESENCHYMAL_TRANSITION,” “APOPTOSIS,”

and “TNFA_SIGNALING_VIA_NFKB” (Figure 1E). The TreeMap
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revealed that up-regulated genes were mainly involved in biological

processes, such as immune activation, T-cell activation, and cell

adhesion, while down-regulated genes were mainly enriched in

biological functions related to metabolic regulation (Figure 1F).

These findings were correspondingly verified by Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment

analysis (Figure 1G).
Frontiers in Endocrinology 05
Identification of distinct subgroups in DKD

First, we intersected oxidative stress and inflammatory

response-related genes (OS_Infla) with previously obtained DEGs

and obtained 84 DEOIGs (Figure 2A). Next, we used the R package

“ConsensusClusterPlus” to classify DKD patients into different

subgroups based on these 84 DEOIGs. When the consensus
A B

D
E

F G

C

FIGURE 1

Differentially expressed gene (DEG) identification of diabetic kidney disease (DKD) and enrichment analysis. (A, B) Principal component analysis (PCA)
showing the expression distribution of seven DKD datasets before (A) and after (B) batch effect removal. (C) PCA analysis revealed significant
differences in transcriptome levels between DKD samples and normal samples. (D) Volcano plot of differentially expressed genes (DEGs) between
DKD samples and normal samples. The DEGs in the pathways related to the occurrence and development of DKD reported in the literature are
displayed in different colors. Hallmark gene sets (E), gene ontology (GO) (F), KEGG (G) enrichment landscape of the reference gene set.
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matrix k value was 2, the crossover among DKD samples was the

smallest, which met the selection standards (Figures 2B-E).

Consequently, 113 DKD samples were divided into two distinct

clusters, DKD subtypes 1 and 2 (C1 and C2, respectively). The

heatmap showed that most DEOIGs were up-regulated in the C1

subtype, while they were down-regulated in the C2 subtype and
Frontiers in Endocrinology 06
normal samples (Figure 2F). The GSEA enrichment analysis

indicated that ECM-receptor interactions were enriched in the C1

subtype, while metabolic pathways were enriched in the C2 subtype

(Figure 2G). We quantified the ssGSEA enrichment scores of

different immune cell subgroup to be used for investigating the

relationship between DKD subtypes and immune cells. The results
A B

D E

F

G

H

C

FIGURE 2

Identification of DKD subtypes. (A) Venn diagram showing the intersection of oxidative stress and inflammation-related genes (OS_Infla) and DEGs.
(B) Consensus matrix when k was 2. (C) Consensus distribution function (CDF) when K was between 2 and 9. (D, E) Relative changes in the area
under the CDF curve for k = 2 to 9. (F) Expression heatmap of genes related to oxidative stress and inflammatory response among C1 and C2
subtypes and normal samples. (G) A gene set enrichment analysis (GSEA) of the status of biological pathways in two DKD subtypes. (H) The
mountain graph showing the differences in DKD characteristic pathway scores among C1 subtype, C2 subtype, and normal samples. (Kruskal–Wallis
test, ****P < 0.001, ***P < 0.005, *P < 0.05).
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indicated that the C1 subtype was enriched in more immune-

related cells, such as regulatory T-cells, macrophages, activated

B-cells, and plasmacytoid dendritic cells (Supplementary

Figure 2). We then found the pathways that have been reported

to be closely related to DKD in recent years by consulting the

literature and quantifying the resulting pathways using a ssGSEA

analysis. The mountain map showed the pathway ssGSEA score of

the two subtypes and normal samples, which revealed that the Wnt,

Notch, and apoptosis pathway were high in C1 subtype, and

peroxiding proliferator-activated receptor (PPAR), peroxisome,

mammalian target of rapamycin (mTOR), autophagy, AMPK,

and other pathways were lower in the C1 subtype (Figure 2H).
Frontiers in Endocrinology 07
Construction of WGCNA and identification
of key modules

We used 113 DKD samples from seven different datasets to

screen the top 5000 genes using the median absolute deviation for

the WGCNA analysis. Subsequently, we evaluated the scale-free

fitting index and average connectivity of various soft threshold

powers on the basis of the scale-free R2. Our study selected the soft-

threshold power of b = 6 and scale-free R2 = 0.8744133 to construct

a standard scale-free network with the Pick Soft Threshold function

(Figure 3A). Ultimately, we identified six modules (Figure 3B). A

correlation heatmap was used to explore the correlation of each
A

B

D

E

C

FIGURE 3

Weighted Gene Co-Expression Network Analysis (WGCNA). (A) Scale-free fit index and network connectivity under different soft thresholds. (B) The
gene hierarchical clustering dendrogram. The modules corresponding to the branches are marked with color represented by the color band under
the tree. (C) Heatmap of the correlation between gene modules and DKD subtypes. (D) Absolute value comparison of the correlation between
genes within each module and DKD subtypes. (E) Scatter plot of module eigengenes in blue module.
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module with diabetic kidney disease, and we found the MEblue

module with the highest correlation with C1 and C2 subtypes

(Figure 3C). The gene significance score was applied for analyzing

the association between genes and DKD subtypes, which showed

that MEblue had the highest gene significance score (Figure 3D).

The correlation scatterplot further demonstrated that the genes in

MEblue module not only strongly correlated with the MEblue

module but also significantly correlated with the diabetic kidney

disease subtypes (Figure 3E). Thus, we extracted genes in the

MEblue module for subsequent analysis.
Identification of diagnostic markers in
diabetic kidney disease

We obtained 473 differential genes (|log2FC| > 1, padj < 0.05)

through a differential analysis of the two subtypes in diabetic kidney

disease. A Venn diagram revealed that after intersecting with the

1458 genes in the MEblue module, 347 intersecting genes were

found (Supplementary Figure 3). The PPI network diagrams of the

above-described 347 genes were constructed using the STRING

online network tool, and the exported results were analyzed in

Cytoscape software. The Upset plot was used to pick the

intersecting genes that satisfied the 12 algorithms of the

CytoHubba plugin, and finally we obtained 279 genes

(Supplementary Figure 4). Based on these 279 genes, we further

screened diagnostic markers using different bioinformatic methods.

Using the LASSO regression algorithm, 12 genes were picked as

potential biomarkers (Figures 4A, B). The random forest (RF)

algorithm identified 15 candidate genes (Figures 4C, D). The

SVM–RFE algorithm showed that when the number of

eigengenes genes was 64, the accuracy was the highest up to 0.956

(Figure 4E). Ultimately, we obtained four genes as diagnostic

markers for DKD (Figure 4F).
Diagnostic value and validation of four
diagnostic markers

The boxplot showed the expression of the four signature genes

in the seven combined GEO datasets (Figure 5A). It can be seen that

expression of the four genes in DKD samples was higher than that

in normal samples. The samples in the Nephroseq v5 online

database also verified their high expression (Figure 5B), indicating

their potential roles during the occurrence and development of

DKD. In the combined GEO dataset, we found that the area under

the curve (AUC) of the ROC curve was 0.808 when all four genes

were fitted into one variable, which yielded a better result than when

they were used alone as diagnostic variables (Figure 5C). We also

assessed the diagnostic efficacy of these four genes in an

independent patient cohort from the GSE142025 dataset. The

AUC values of the ROC curves for each gene were all greater

than 0.8 showing that these four genes could diagnose DKD

(Figure 5D). Correlation analysis showed that the expression of

four genes positively correlated with creatinine (Figure 5E) and

negatively correlated with GFR (Figure 5F).
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Nomogram construction of DKD diagnosis
model based on characteristic genes

Based on the expression of the four diagnostic markers, we

constructed a diagnostic model based on logistic regression and

drew a nomogram (Figure 6A). In the nomogram, each gene

involved in the construction of the diagnostic model

corresponded to a score, and their scores were added to obtain a

total score, which corresponded to different diagnostic effects of

DKD. The calibration curve showed that the nomogram could

reliably diagnose DKD (Figure 6B). The ROC curve indicated that

the AUC value of this model was 0.801 (Figure 6C). DCA results

showed the net benefit (NB) evaluating the DKD patients’ outcomes

through the four individual genes or a combination of them. The

results illustrated that the combined nomogrammodel could lead to

a significant increase in the NB (Figure 6D).
Functional enrichment analysis of
diagnostic markers

To explore the biological processes involved in diagnostic

markers, we analyzed the correlation of these four diagnostic

markers with immune cells. The results indicated that they

positively correlated with most immune cell infiltration

(Figure 7A), such as activated CD4 T-cells, activated dendritic

cells, regulatory T-cells, macrophages and others. Next, we

divided the DKD samples into high and low expression groups

based on gene expression. The differentially expressed genes in the

high and low expression groups were subject to GSEA analysis to

explore the possible signal pathways involved, and it was found that

the pathway enrichment of the four genes was consistent. As a

result, all were significantly enriched in TNFA_SIGNALI

NG_VIA_NFKB, KRAS_SIGNALING_UP, INTERFERON

_GAMMA_RESPONSE, INFLAMMATORY_RESPONSE,

EPITHELIAL_MESENCHYMAL_TRANSITION (Figure 7B).

Functional enrichment showed that the high expression groups of

the four genes were all enriched in ADAPTIVE_IMMUNE_RESPO

NSE, T_CELL_ACTIVATION, IMMUNE_RESPONSE_

REGULATING_CELL_SURFACE_RECEPTOR_SIGNALING_PA

THWAY. The low expression group was enriched in biological

processes, such as SMALL_MOLECULE_CAT ABOLIC

_PROCESS , FATTY_ACID_CATABOLIC_PROCESS ,

INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_

COMPLEX (Figure 7C).
Validation in animal models

To further verify the diagnostic value of the four markers in the

diagnosis of early DKD, we utilized 12-week-old db/db mice as a

model of spontaneous DKD. We found that body weight, blood

glucose, HbA1c, serum creatinine, blood urea nitrogen, and urine

albumin/creatinine levels were significantly increased in DKD

group mice compared with normal control mice (Figure 8A,

Supplementary Figure 5). Pathological staining also showed
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mesangial cell proliferation, mesangial matrix expansion, and

irregular thickening of glomerular and tubular basement

membranes in the kidney tissue of DKD group mice (Figure 8B),

indicating that the spontaneous DKD model had been successfully

established. Next, we detected the mRNA expression levels of four

biomarkers, including TNC, PXDN, TIMP1, and TPM1. The results

showed that TNC, TPM1, and PXDN were significantly elevated in

the mouse model. Unfortunately, TIMP1 had an upward trend and

no difference between the two groups was found (Figure 8C). We

also detected three secreted proteins among four biomarkers in

mouse blood and urine. The results showed that TNC and PXDN

were consistently elevated in blood and urine while TIMP1 was

significantly elevated in urine but not significantly different in blood

(Figure 8D). Correlation analysis showed that whether in blood

samples or urine samples, these markers had obvious positive
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correlation with UACR. As for blood glucose and HbAc1, the

markers were not significantly correlated with them

(Supplementary Figures 6, 7). Immunohistochemical results

showed that the expression levels of TNC, TPM1, TIMP1, and

PXDN were elevated in the DKD mouse model (Figure 8E). To

further verify that the above changes are related to DKD rather than

diabetes, our study also added two groups of 6-week-old db/db mice

and normal mice. We found that body weight, blood glucose,

HbA1c were significantly increased in DM mice compared with

normal control mice, but there were no differences in serum

creatinine, blood urea nitrogen, and urine albumin/creatinine

levels between the two groups of mice (Supplementary

Figures 8A, B). Meanwhile, no significant difference was found in

renal pathological staining (Supplementary Figure 8C). The results

of qRT-PCR showed that there was no statistical difference in the
A B

D
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C

FIGURE 4

Identification of diagnostic markers. (A, B) A least operator shrinkage and selection operator (LASSO) logistic regression was used to screen
characteristic variables. (C) The relationship between the number and the error of random forest. Red, green, and blue represent the error of C1
subtype, C2 subtype and all samples. (D) Ordination plot of gene importance scores. (E) The accuracy curve of characteristic variables for the first
200 genes using the support vector machine–recursive feature eliminator (SVM–RFE) algorithm. The red circle indicates the position with the
highest accuracy. (F) Venn diagram showing the intersection feature variables filtered by the three algorithms.
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mRNA expression levels of TPM1 and TIMP1 between the two

groups. The expression of TNC and PXDN increased in the DM

group (Supplementary Figure 8D). In addition, the expression levels

of three secreted proteins were detected in the blood and urine

samples of mice in the DM group and 6-week-old normal mice, and

we found that only TNC in the blood samples was significantly

increased in the DM mice. For urine samples, there were significant

differences in the elevation of TNC and TIMP1 in DM mice

(Supplementary Figure 8E).
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Discussion

DKD is a common complication of diabetes (26) and the

leading cause of ESRD, which imposes a heavy burden on people

and has a noteworthy influence on health and quality of life (27).

Finding and mining DKD clinical biomarkers may effectively slow

down or even stop the progression of DKD. Recently, a large

number of studies have made many efforts to explore new targets

of DKD. Diao identified eight hub genes of DKD, such as Scd5,
A B

D
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C

FIGURE 5

Diagnostic efficacy and external verification of diagnostic markers. (A, B) The 4 diagnostic markers expression in seven DKD pooled datasets (A) and
external datasets (B). (C, D) Receiver operating characteristic (ROC) curves assessing the diagnostic efficacy of four diagnostic markers in seven DKD
combined datasets (C) and GSE142025 dataset (D). (E, F) Correlation analysis of gene expression levels with creatinine (E) and glomerular filtration
rate (GFR) (F). ****P < 0.001, ***P < 0.005, **P < 0.01, *P < 0.05.
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Coasy, and Idi1, by constructing a PPI network (28). Han used

machine learning to obtain two diagnostic markers of protein

kinase cAMP-dependent type II regulatory subunit beta and

transforming growth factor beta 1 (PRKAR2B and TGFBI,

respectively) (29) in glomerular injury in diabetic nephropathy.

Wei screened and identified biomarkers in early DKD based on

WGCNA, and initially explored the biological functions of

candidate markers (30). However, the existing biomarkers are not

enough to address the common DKD. At present, the number of

samples included in most bioinformatics analysis studies is too

small, and no research exploring early diagnostic markers based on

the pathogenesis of DKD is available. Therefore, we still urgently

need to uncover potential biomarkers with high specificity and

sensitivity for pathogenesis.

In this study, we downloaded multiple DKD datasets from the

GEO database, included a larger number of samples, merged the

datasets by removing batch effects, and obtained differential genes

between DKD patients’ kidney tissues and normal kidney tissues

through differential analysis. The enrichment analysis of differential

genes showed that biological processes such as immune activation, T-

cell activation, and cell adhesion were enriched in DKD, which was

consistent with previous reports (31, 32) in which immune regulation

was found to be involved in the occurrence and progression of DKD,
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andmany pro-inflammatory cytokines and chemokines played a vital

role in the DKD pathogenesis. It was reported that oxidative stress

and inflammatory response was an important pathogenesis of DKD

(33, 34). For further examination of the DKD pathogenesis, we

divided DKD patients into C1 and C2 subtypes based on DEOIGs.

Through a GSEA analysis, it was found that extra cellular matrix

(ECM)-receptor interaction was enriched in the C1 subtype with high

DEOIGs expression, while metabolism-related pathways were

enriched in the C2 subtype with low DEOIGs expression. As

reported in related studies, ECM organization and ECM structural

components could lead to accelerated extracellular matrix deposition

and renal fibrosis in DKD (35), and metabolic disorders were found

to play a key role in the development of DKD (36).

Machine learning is often used to find the key genes of diseases.

Wang et al. found the key genes of chronic kidney disease through

the WGCNA method (37). Liu et al. found the trait-related module

through the WGCNA method and identified the key gene FCER1G

(38). Their research revolves around the WGCNA method and the

PPI interaction network to find markers and conduct experimental

verification. On this basis, our research adds bioinformatics

methods for screening markers, such as Lasso, RF, SVM_RFE.

Ultimately, we obtained four potential DKD diagnostic markers,

namely TNC, PXDN, TIMP1, and TPM1. TNC is a large hexameric
A

B DC

FIGURE 6

Construction of the DKD diagnostic model. (A) Nomogram of the DKD diagnostic model on the basis of 4 diagnostic markers. (B, C) The calibration
(B) and ROC curves (C) were used to evaluate the diagnostic efficacy of the DKD diagnostic nomogram. (D) DCA illustrating the NB assessing the
outcome. ****P < 0.001, ***P < 0.005, **P < 0.01, *P < 0.05.
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extracellular matrix glycoprotein expressed in most normal adult

tissues (39). TNC is significantly up-regulated in damaged and

inflamed tissue (40), and it has also been reported to be

independently associated with increased cardiovascular adverse

events and death in patients with type 2 diabetes (41). However,

few studies on the role of TNC in the progression of DKD are

available. PXDN encodes a heme-containing peroxidase secreted

into the extracellular matrix, which is involved in extracellular

matrix formation and may play a role in the physiological and
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pathological fibrotic responses of the fibrotic kidney. TIMP1

belongs to the TIMP gene family, and the protein encoded by this

gene family is a natural inhibitor of matrix metallopeptidase, which

can regulate cell differentiation, migration, and cell death. It has

been reported that plasma levels of TIMP1 are associated with early

diabetic neuropathy and nephropathy in patients with type 1

diabetes (42). TPM1is a member of the highly conserved

tropomyosin family, widely distributed actin-binding proteins

that are involved in the contractile system of striated and smooth
A B

C

FIGURE 7

Biological function enrichment of diagnostic markers. (A) Heatmap of the correlation between diagnostic markers and immune cells. (B, C) GSEA
enrichment analysis when the reference gene sets are hallmark gene sets (B) and ontology gene sets (C).
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muscles and the cytoskeleton of non-muscle cells. No previous

studies have reported the role of TPM1 in DKD pathogenesis. We

found that these four genes had excellent diagnostic value in DKD

(AUC > 0.8) and were positively associated with creatinine and

negatively associated with GFR in DKD patients. Targeting the four

genes identified by our analysis may be a promising approach for

DKD treatment. Most notably, we have also developed a nomogram

combining four diagnostic markers with high AUC values and good

calibration that showed excellent accuracy and reliability in the
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diagnosis of DKD. It will hopefully be applied in the clinic and

contribute to the early diagnosis of DKD. It has been reported that

immune regulation correlates with the occurrence and development

of DKD (31, 32). To further explore the role of these four diagnostic

markers in immune regulation, we found that these four genes may

b e i n v o l v e d i n TNFA_ S IGNAL ING_V IA _NFKB ,

KRAS_SIGNALING_UP, INTERFERON_GAMMA_RESPONSE,

INFLAMMATORY_RESPONSE and other signaling pathways

through GSEA analysis thus providing a theoretical basis for our
A

B

D E

C

FIGURE 8

Validation of diagnostic markers in animal experiments. (A) The levels of body weight, blood glucose, serum creatinine, blood urea nitrogen, and
urine albumin-creatinine ratio in mice. (B) Hematoxylin and eosin (H&E), periodic acid Schiff (PAS), Masson staining of mouse kidney. (C) mRNA
expression levels of four diagnostic markers in kidney tissue. (D) Expression levels of markers in blood and urine. (E) Representative
immunohistochemical staining of the kidneys for the four markers. ns, P < 0.05.
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further research. It is worth noting that any bioinformatics analysis

needs to be validated experimentally, so we constructed a model of

spontaneous DKD and DM. Through a variety of experiments, the

results showed that the mRNA and protein levels of TNC, PXDN,

and TPM1 in the kidneys of the DKD model mice were consistently

elevated. In the mice of DM model, their expression either had no

significant difference, or the increase was not obvious. We also

detected significant differences in blood and urine compared to the

control group, suggesting that the three biomarkers we selected

deserve further investigation. It is undeniable that the experimental

results of TIMP1 are questionable. This discrepancy may be related

to the type of DKD model that we constructed or to species

differences. After all, our model is based on mice, and our

bioinformatics analysis is based on human sample analysis.

Combined with previous studies, we can see that the markers we

found were elevated in DKD samples as were the previous

biomarkers. In contrast, our biomarkers were significantly

elevated in blood and urine with good sensitivity. In addition, the

biomarkers we found are easy to detect, are fairly low-cost, and have

good clinical applicability. It is worth mentioning that the

spontaneous DKD model we constructed can reflect the early

manifestations of DKD. The increase of markers means that DKD

can be detected earlier, providing a new idea for clinical diagnosis.

Our study also has some limitations in which the deeper mechanism

exploration requires a large number of experiments to verify the

results, which is our subsequent experimental plan in the future.

In conclusion, we identified TNC, PXDN, TIMP1, and TPM1 as

potential diagnostic markers for DKD using a comprehensive and

systematic bioinformatics analysis and experimental validation,

established a nomogram containing these four diagnostic markers,

and preliminarily explored their possible biological functions in the

occurrence and development of DKD. These findings will provide a

novel idea for the early diagnosis and treatment of DKD.
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