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Osteoporosis is an age-related disease of bone metabolism marked by reduced

bone mineral density and impaired bone strength. The disease causes the bones

to weaken and break more easily. Osteoclasts participate in bone resorption

more than osteoblasts participate in bone formation, disrupting bone

homeostasis and leading to osteoporosis. Currently, drug therapy for

osteoporosis includes calcium supplements, vitamin D, parathyroid hormone,

estrogen, calcitonin, bisphosphates, and other medications. These medications

are effective in treating osteoporosis but have side effects. Copper is a necessary

trace element in the human body, and studies have shown that it links to the

development of osteoporosis. Cuproptosis is a recently proposed new type of

cell death. Copper-induced cell death regulates by lipoylated components

mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the

lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated

protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading

to proteotoxic stress and eventually cell death. Therapeutic options for tumor

disorders include targeting the intracellular toxicity of copper and cuproptosis.

The hypoxic environment in bone and the metabolic pathway of glycolysis to

provide energy in cells can inhibit cuproptosis, which may promote the survival

and proliferation of various cells, including osteoblasts, osteoclasts, effector T

cells, and macrophages, thereby mediating the osteoporosis process. As a result,

our group tried to explain the relationship between the role of cuproptosis and its

essential regulatory genes, as well as the pathological mechanism of

osteoporosis and its effects on various cells. This study intends to investigate a

new treatment approach for the clinical treatment of osteoporosis that is

beneficial to the treatment of osteoporosis.
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1 Introduction

The balance of osteoclast-mediated bone resorption and

osteoblast-mediated bone formation is directly responsible for

maintaining bone homeostasis (1). Disruptions in this balance

caused by over-absorption or under-formation result in decreased

bone mass and deterioration of bone tissue microarchitecture,

resulting in osteoporosis(OP) (1, 2). Osteoporotic fractures

usually threaten people’s health, especially in older individuals,

and impose significant socioeconomic burdens (3). Currently, the

most common methods for treating OP include inhibiting

osteoclast activity and inducing bone formation (4). Inhibitors

that osteoclast differentiation and activation, such as estrogen,

bisphosphates, denosumab, calcitonin, and others, have been used

in the clinic for many years, but they have numerous side effects (4,

5). Drugs that promote bone formation, such as parathyroid

hormone and strontium ranelate, also pose many problems in

clinical use, such as nausea, dizziness, and leg cramps with long-

term use of the parathyroid hormone (6). The manufacturer

recalled Strontium ranelate as early as 2017 because long-term

use was toxic to the circulatory system (7). As a result, it is

advantageous to investigate new drugs and elucidate novel

mechanisms of action in the treatment of OP.

Cell death is linked to OP. For example, ferroptosis disrupts

osteoblast differentiation (8), and inducing osteoclast apoptosis can

maintain bone mass (9). A new type of cell death, known as

“cuproptosis,” has recently been proposed (10). In contrast to

other recognized death mechanisms, such as pyroptosis and

necroptosis, it is a distinct non-apoptotic programmed death

mechanism (11). copper initiates it and requires the mediation of

protein lipoylation in the mitochondria; specifically, the

tricarboxylic acid (TCA) cycle’s lipoylated components are

directly bound by the copper to cause cuproptosis, resulting in

lipoylated protein aggregation and subsequent loss of iron-sulfur

cluster protein, which inevitably leads to proteotoxic stress and

eventually cell death (10). In addition, using genome-wide CRIPSR-

Cas9 dysfunction screening, Cuproptosis was linked to 10 essential

genes, including regulator Ferredoxin 1(FDX1) and six lipoylated

protein genes encoding either lipoic acid pathway elements (three

key lipoic acid pathway enzymes - Lipoyltransferase 1(LIPT1),

Lipoic Acid Synthetase(LiAS) , and Dihydrolipoamide

Dehydrogenase(DLD) or lipoylated protein targets (three

components of the pyruvate dehydrogenase complex, including

Dihydrolipoamide S-acetyltransferase (DLAT), Pyruvate

Dehydrogenase E1 Subunit Alpha 1(PDHA1), and Pyruvate

Dehydrogenase E1 Subunit Beta(PDHB), and knockdown of the

above seven genes could rescue cuproptosis, it also includes the

negative regulators Metal Regulatory Transcription Factor 1

(MTF1), Glutaminase(GLS), and Cyclin-Dependent Kinase

Inhibitor 2A(CDKN2A) (10). Furthermore, 728 postmenopausal

women(aged between 45 and 80 years old) were divided into two

groups based on whether they had OP; the bone mineral density

and blood copper content of these women were evaluated, and the

results showed that the serum copper level of osteoporotic women

was lower than that of healthy women (12). There was a statistical
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difference between the two groups, and in addition, there was a

positive correlation between serum copper level and bone mineral

density (12). Similarly, some studies have found that elevated serum

copper concentration negatively correlates with the risk of OP (13,

14). Furthermore, some researchers investigated the link between

copper intake and OP; the findings revealed that dietary and total

copper intake was positively correlated with increased bone mineral

density in adults and negatively related to the risk of OP (15).

Through the above studies, we found that serum copper levels in

patients with OP were low, and total copper intake also affected OP.

Therefore, we searched the Web of Science, Pubmed, and other

databases for copper, cuproptosis, and cuproptosis-related genes to

elucidate the potential link with osteoporosis and explore new

therapeutic avenues.
2 The potential link between
copper and OP

Our bodies contain between 50 and 120 mg of copper, with

muscles and bones accounting for roughly two-thirds of the copper

content (16, 17). Copper is essential for energy metabolism at the

cellular level because its primary function is to constitute the

enzyme that transfers electrons (oxidase) to reduce molecular

oxygen (18). Among these enzymes, we discovered lysyl oxidase,

a copper-dependent monoamine oxidase that can use lysine and

hydroxylysine (found in collagen and elastin) as substrates to

produce cross-links required for the development of connective

tissues such as bones (19–21). In addition, copper is a cofactor for

many enzymes in collagen synthesis, especially metalloenzymes

(22). Because it constitutes an essential element, its deficiency

may lead to bone metabolism disorders and contribute to OP

development (23, 24). Several in vitro studies have found that

copper has a positive effect on the regulation of bone metabolism

cells, and copper has been found to stimulate the differentiation of

mesenchymal stem cells into the osteogenic lineage (25).

Furthermore, copper is a cofactor of antioxidant enzymes that

scavenge bone radicals and promote osteoblast activity (26).

However, it has been noted that the beneficial effects of copper

are dose-dependent, with low doses promoting osteoblast growth

and high doses causing cytotoxicity (27). Furthermore, Li et al.

discovered that copper deficiency might reduce superoxide

dismutase activity in the antioxidant enzyme system, resulting in

osteoclast activation and increased bone resorption (18). Therefore,

the trace element copper appears to be linked to OP, which

intrigued our interest in the concept of “cuproptosis,” recently

proposed by Tsvetkov et al. (10).
3 The potential link between
cuproptosis and OP

Tsvetkov et al. provided a detailed description of cuproptosis

(10). First, copper ionophore-induced cell death primarily depends

on intracellular copper accumulation (10). Second, copper
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ionophores cause a distinct type of regulated cell death that differs

from other known death mechanisms (10). Furthermore, cells that

rely on mitochondrial respiration are nearly 1000-fold more

sensitive to copper ionophore-induced cell death than cells that

rely on glycolysis; however, mitochondrial respiration can be

inhibited under various conditions, including hypoxia,

mitochondrial antioxidants, inhibitors of mitochondrial function,

and the presence of fatty acids, in addition, glutathione depletion

can lead to copper-dependent cell death (10). oligomers’

accumulation is also critical for the development of cuproptosis

(10). Finally, the knockdown of 7 genes (including “FDX1, LIPT1,

LIAS, and DLD, as well as DLAT, PDHA1, and PDHB”) rescued

copper-induced cell death (10). According to research on the

epidemiology and pathogenesis of OP, the associated elevated

ROS can cause OP (28). Studies have shown that hypoxia is

critical in protecting bones from ROS-mediated damage (29),

while bones and bone marrow cavities are in natural hypoxia.

Recently, it has been shown that osteoblasts and osteoclasts,

which maintain bone homeostasis, are oxygen-sensing cells (30),

and hypoxia regulates bone remodeling and bone remodeling

turnover (31). However, continuous exposure to hypoxic

conditions will increase (NF)-kB-ligand(RANKL) formation,

promoting osteoclast formation (32). OP occurs due to changes

in the bone marrow microenvironment and dysregulation of

homeostasis among cells. The metabolic mechanisms associated

with cuproptosis may be related to these cells (33). For example,

glutamine plays an essential role in the energy metabolism of

osteoblasts (34). Biltz RM et al. early found active glutamine

absorption and metabolism in explants of the calvaria and long

bones (34). Recent studies have shown that matrix mineralization in

calvarial osteoblast cultures requires glutamine (35). Stable isotope

tracer experiments provide that converting glutamine into citrate

thus contributes to the production of energy in the mitochondria of

osteoblast precursors (36). Glutamine is also associated with

cuproptosis, and a reduction in its level significantly inhibits

cuproptosis. Therefore, it may affect the energy metabolism of

osteoblasts. Hypoxia may also inhibit cuproptosis (10), but the

relationship between hypoxia and copper is very complex. Hypoxia

can inhibit the antioxidant defense mechanism by increasing ROS,

thus promoting the cytotoxicity of copper (37). Many studies have

found that ROS-induced oxidative stress plays a vital role in OP.

ROS can indirectly affect osteoclast differentiation, survival, and

activation by stimulating bone formation-associated cells to

produce osteoprotegerin, macrophage colony-stimulating factor

(M-CSF), and RANKL, which are important regulatory factors

that recognize osteoclast precursor cells and osteoclasts to

conduct bone resorption signals. In addition, effector T cells

function through an mTOR-dependent pathway, using glycolytic

uptake of glutamine and glucose for energy, which may also inhibit

cuproptosis (33). In recent years, some people have studied the

relationship between the occurrence and development of OP and T

cells. In addition, M1 pro-inflammatory macrophages are glycolytic

cells that can inhibit cuproptosis while releasing various pro-

inflammatory factors involved in the development and

progression of OP. These factors may link OP to cuproptosis
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(Table 1). In addition, a possible correlation between crucial

genes related to cuproptosis and OP is described (Figure 1).
3.1 The potential link between
PDHA1 and OP

PDHA1 may be associated with OP through glycolysis. PDHA1

is a pyruvate dehydrogenase complex(PDC) member, which is

essential in glucose metabolism and involves mitochondrial

oxidative phosphorylation and the TCA cycle (38). Inhibition of

PDHA1 can promote the glycolysis of tumors by down-regulating

the activity of PDC (39), increasing glucose and glutamine

consumption, and inhibiting oxidative phosphorylation (40).

During oxidative phosphorylation, the PDC converts pyruvate to

acetyl coenzyme A (33). PDHA1 is a crucial element that connects

glycolysis and the TCA cycle (41). Glycolysis converts glucose to

pyruvate, which is further converted to acetyl coenzyme A or lactic

acid fermentation, depending on aerobic or anaerobic conditions

(42). Glucose has long been considered the primary nutrient for

osteoblasts; Borle AB et al. showed that bone explants and primary

cultured calvaria osteoblasts consume glucose rapidly (43). Zoch

ML et al. confirmed the notable glucose absorption by mouse bone

(44). Glut transporters are primarily responsible for glucose uptake

in osteoblast lineage cells. One study showed that Glut1 and Glut3

were detected in osteoblast cell lines (45). Lactate is the principal

end product of glucose metabolism in osteoblasts, regardless of

oxygen conditions (46). Historical studies of bone slices or primary

calvaria osteoblasts have reported that most glucose carbon is

secreted in lactate, even in large amounts of oxygen (47). The

production of lactate from glucose under conditions of sufficient

oxygen is similar to the Warburg effect observed in many cancer

cells, also known as aerobic glycolysis (48). In line with this study,

Guntur et al. demonstrated that aerobic glycolysis is the main mode

of glucose metabolism in primary calvarial osteoblasts (49).

Notably, stimulation of aerobic glycolysis by stabilizing Hifa in

preosteoblasts increased osteoblast production and bone formation

in mice. Therefore, it can be confirmed that glycolysis is the primary

metabolic pathway to meet the needs of ATP during osteoblast

differentiation. Transcription factor RUNX family transcription

factor 2 (RUNX2) can promote osteoblast differentiation and

plays an essential role in bone development and metabolism. In

addition, RUNX2 can promote the proliferation of tumor cells by

inhibiting the expression of PDHA1 and mitochondrial oxygen

consumption rate (50). The glucose metabolism in osteoblasts is

similar to that in tumor cells, both of which promote cell

proliferation indirectly or directly by enhancing the glycolysis

pathway. Therefore, we speculate that PDHA1 may be involved in

the proliferation and differentiation of osteoblasts by interfering

with the process of glycolysis, and PDHA1 in osteoblasts maybe is

suppressed, leading to the glycolysis and proliferation of osteoblasts

to affect the course of OP patients directly.

PDHA1 may be associated with OP by regulating inflammation.

The NLR Family Pyrin Domain Containing 3(NLRP3)

inflammasome was first reported and studied by Martinon and
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his team in 2002, and it is a multiprotein complex that can respond

to physiological and pathogenic stimuli in the body (51). A recent

study reported that the NLRP3 inflammasome plays a crucial role in

bone resorption (52); and plays a vital role in OP (53, 54). Lin et al.

found that when cells were stimulated with NLRP3 inflammasome

agonists, lactate fermentation was activated to produce lactate,
Frontiers in Endocrinology 04
which induced PKR phosphorylation, activating NLRP3

inflammasomes; in short, activation of NLRP3 inflammasomes

requires fermentation of lactic acid (42). Inhibition of PDHA1

will damage pyruvate conversion to acetyl coenzyme A (33). In

addition, NLRP3 inflammasomes play a crucial role in host defense

by promoting caspase I activation and maturation of IL-1b and IL-
FIGURE 1

Possible correlation between crucial genes related to cuproptosis and OP. Copper can induce cuproptosis by affecting the TCA cycle. Cuproptosis
may be associated with osteoporosis by affecting cell function; for example, it may alleviate osteoporosis by affecting the secretion of cellular
inflammatory and angiogenic factors. cuproptosis-related genes may be associated with osteoporosis through various mechanisms, but the specific
mechanisms need further study.
TABLE 1 The direct or indirect link between cuproptosis-related genes and OP.

Genes related to
cuproptosis

The bridge between
genes and OP The relationship between genes and OP

PDHA1
Osteoblasts, osteoclasts,

macrophages
PDHA1 inhibition may contribute to osteoblast proliferation; PDHA1 activation affects osteoblasts and
macrophages by inhibiting inflammatory factor release.

PDHB
Treg cells, macrophages,

osteoblasts

DJ-1 binds to PDHB in Tregs to maintain Treg cell differentiation and T cell integrity. PDHB may
affect macrophages by inhibiting ERK signaling; PDHB may affect osteoblast differentiation by affecting
mitochondrial homeostasis.

GLS
BMSCs, osteoblasts, osteoclasts,

osteocytes, chondrocytes,
macrophages

GLS1 affects cells by promoting glutamine metabolism, redox homeostasis, efferocytosis, and
antioxidant function.

LIAS
Treg cells, CD4+T cells,

macrophages
LIAS is mainly associated with oxidative stress and inflammation.

DLAT osteoclasts
DLAT may affect OP mainly by influencing the conversion of pyruvate to acetyl-CoA in PDC and
mitochondrial metabolism.

FDX1
Macrophages, Treg cells, CD4+T

cells
FDX1 may affect cells through metabolic, immune-related pathways.

CDKN2A
Bone marrow adipocytes, BMSCs,

osteoblasts, osteoclasts,
macrophages, etc.

The P16(INK4A) protein encoded by CDKN2A is a typical marker of cellular senescence- release of
senescent cells and inflammatory factors involved in the progression of osteoporosis.

DLD Osteoclasts, osteoblasts
DLD is associated with osteoporosis through antioxidation and affects energy production in cell
metabolism. In addition, DLD can also participate in the treatment of osteoporosis by promoting
osseointegration.

MTF1
Osteoblasts, osteoclasts,

macrophages, etc.
MTF1 has a direct or indirect relationship with osteoporosis by controlling the balance of metal ions
and redox, regulating the expression of related genes, and protecting against metal toxicity.

LIPT1
Osteoblasts, osteoclasts,

macrophages, etc.
LIPT1 may be involved in osteoporosis by participating in the tricarboxylic acid cycle and affecting
mitochondrial energy metabolism.
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18, and dysregulation of their activity leads to auto-inflammatory

diseases (55). OP is a chronic inflammatory disease. Macrophages

are one of the most critical antigen presenters in the body and are an

essential tool for the body to remove pathogenic microorganisms.

Osteoclasts are differentiated from mononuclear macrophages,

highly differentiated multinucleated giant cells directly involved in

bone resorption. Macrophages, the precursor cells of osteoclasts,

contain receptor activator of nuclear factor-kB (RANK), which can

be induced to form osteoclasts via M-CSF and receptor activator of

RANKL to participate in bone resorption (2). Scholars now

generally agree that macrophages in the local microenvironment

are mainly divided into classic (M1) macrophages and atypical

(M2) macrophages (56). M1-type macrophages mainly play a pro-

inflammatory, antibacterial, and antigen-presenting function, while

M2-type macrophages mainly play an inhibitory role in

inflammation and tissue repair (57). Recently, Cui et al. found

that bionic nanovesicles transforming skeletal endothelial cell-

associated secretory phenotypes can treat OP due to suppressed

M1 macrophage polarization and enhanced M2 polarization (58).

Wei Tong et al. found that deacetylation of macrophage SIRT-3 at

lysine 83 can activate PDHA1 and inhibit the activation of NLRP3

inflammasome and the release of IL-1b (59). In conclusion, PDHA1

may be an effective regulator of glycolysis and inflammation and is

regulated by distinct transcriptional mechanisms (33).
3.2 The potential link between
PDHB and OP

PDHB, like PDHA1, belongs to two E1 subtypes of the pyruvate

dehydrogenase complex, located mainly in the mitochondria of

cells, which catalyze the conversion of glucose-derived pyruvate to

acetyl coenzyme A (60). It is the critical component linking

glycolysis and TCA cycle metabolic pathways. Mutations or

defects in the PDHB gene can lead to various metabolic diseases

(61, 62). on the other hand, Acetyl coenzyme A promotes the

expression of inflammatory cytokines by regulating histone

acetylation (63). Danileviciute et al. identified deglycase DJ-1

(encoded by the PARK7 gene, a critical familial Parkinson’s

disease gene) as a pacemaker regulating pyruvate dehydrogenase

(PDH) activity in CD4 regulatory T cells; Deglycase DJ-1 binds to

PDHB in Tregs and inhibits the phosphorylation of PDHA, thereby

promoting PDH activity and oxidative phosphorylation to keep T

cells functional integrity and the differentiation of Treg cells (64).

An extracellular signal-regulated kinase (ERK) is a critical member

of the mitogen-activated protein kinase MAPKs family, which plays

an essential role in the development of OP; Wang et al. found that

isobavachalcone can prevent OP by inhibiting the ERK activation,

NF-kB pathways, and polarization of M1 macrophage (65).

Recently, a study on nasopharyngeal carcinoma showed that

PDHB could inhibit RasV12-driven ERK signal transduction and

cell growth (66). PDHB is located in mitochondria, and the mutual

effect between PDHB and NIMA-associated kinase ten may be

indispensable to maintaining mitochondrial function; the

knockdown of NIMA-associated kinase ten will damage the

respiration of mitochondria (67). There are more mitochondria
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per unit surface area of osteoclasts than almost any other cell, and

the energy needed for osteoclast differentiation mainly comes from

mitochondrial oxidative metabolism (68). Therefore, PDHB may

affect osteoclast differentiation through interaction with NIMA-

associated kinase ten.
3.3 The potential link between GLS and OP

Glutamine is the most abundant non-essential amino acid in

circulation and has a variety of metabolic uses in cells (69).

Glutamine metabolism has emerged as a critical regulator of

many cellular processes in diverse pathologies (70). It is initiated

by GLS, the primary enzyme responsible for glutamine catabolism

(70). The activity of GLS is encoded by two protein isoforms,

Kidney type Glutaminase A (KGA, or glutaminase 1, encoded by

Gls1), and Liver type Glutaminase (LGA, or glutaminase 2, encoded

by Gls2) (70). Huang et al. used quantitative PCR (qPCR) analysis

to show that bone marrow mesenchymal stromal cells (BMSCs)

express Gls1 at much higher levels than Gls2, Gls2 expression is

even negligible under both undifferentiated and differentiated

conditions, suggesting that Gls1 encodes most of the GLS activity

in BMSCs (70). That Gls1 has a regulatory BMSCs proliferation and

osteoblast endowment (70). The mechanism may be because

inhibition of GLS significantly reduces the content of downstream

metabolite a-ketoglutarate (a-KG), and transaminase-dependent

a-KG production is critical for the proliferation, specification, and

differentiation of BMSCs (70). In addition, it has been found that

micRO-RNA-200a-3p is highly expressed in the serum of OP

patients; it can inhibit osteogenic differentiation of BMSCs by

targeting GLS, thus accelerating the progression of OP (71).

Knockdown of micRO-RNA-200a-3p can promote osteogenic

differentiation of BMSCs; GLS overexpression similarly reversed

the inhibitory effect of micRO-RNA-200a-3p on osteogenic

differentiation (71). miR-206 can directly bind to the 3’-UTR

region of GLS mRNA, thereby inhibiting GLS expression and

glutamine metabolism; rescue experiments to restore GLS lead to

recovery of glutamine metabolism and osteogenic differentiation

(72). GLS expression and activity are regulated by Wnt/Mtorc1

signaling during osteoblast differentiation (36). MTOR, a protein

synthesis master regulator, affects the transcriptional activity of

ERR a (73). Glutaminase (GLS) is the target gene of estrogen-

related receptor a (ERR a) (73). ERR a and its coactivator PGC-1 a
direct GLS, especially in the early stage of osteogenic differentiation,

guide mitochondrial glutamine-dependent anaplerosis and make a-
KG production into the TCA cycle (73). In conclusion, mTOR

affects the ERRa/PGC-1a/Gls signaling pathway to stimulate

mitochondrial glutamine anaplerosis, coordinating energy

production to help meet increased energy demand from new

protein synthesis and promoting osteogenic differentiation of

BMSCs (73). GLS inhibition impairs the induction of osteoblast

markers (74). In contrast, Huang et al. found that the ERRa/PGC-
1b/Gls regulation axis can drive metabolic adaptation that promotes

osteoblast differentiation (75). The effect on osteoblasts or

osteoclasts may depend on the coactivator of ERR a, namely

PGC-1a or PGC-1b. Hypoxia-inducible factor HIF-1a (a key
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transcription factor in hypoxia signaling) mediates glutathione

synthesis through stable stimulation of GLS, allowing cells to

maintain redox homeostasis even during baseline, oxidative or

nutritional stress to promote adaptive cellular metabolism, which

in turn supports the survival of implanted osteoblasts to promote

bone regeneration (76). Like this study, Steve et al. found that GLS1-

mediated glutamine catabolism supports anabolic processes and

redox homeostasis in osteoprogenitors, thereby promoting the

proliferation and differentiation of osteoprogenitors into

osteoblasts, at the same time, the deletion of GLS1 leads to an

osteoporotic phenotype by impairing bone formation (77). The

growth and development of longitudinal bones are through

endochondral ossification in the growth plate, during which

chondrocytes undergo proliferation, hypertrophy, apoptosis, and

eventual replacement by osteoblasts (78). Yue et al. obtained

abundant low molecular weight peptides of glutamate/glutamine

from sea cucumber intestine by enzymatic hydrolysis and

administered orally to adolescent mice and found that sea

cucumber intestine promoted the Sox9 entry into the

chondrogenic gene enhancer region to accelerate the cell cycle

through upregulation of glutamine-mediated histone acetylation

and ultimately accelerated growth plate chondrocyte proliferation,

effectively promoting longitudinal bone growth, in contrast,

deletion of GLS1 would inhibit glutamine metabolism in growth

plate chondrocytes and interfere with normal chondrocyte function,

ultimately leading to stunted long bone growth (79).

Macrophage reprogramming and phenotypic polarization are

controlled by glutaminolysis, an essential metabolic factor (80).

Some investigations have revealed that a-KG derives from

glutaminolysis is necessary for M2 polarization (81–83). Several

regulatory mechanisms have been identified for the involvement of

glutamine in macrophage activation (84). P-C H et al. found that a-
KG produced by glutaminolysis facilitates M2 phenotype formation

through epigenetic reprogramming of M2-specific marker genes

mediated by histone demethylase Jmjd3 (81). M-N A et al. have

shown that UDP-GlcNAc is essential for the polarization of M2

macrophages because it is responsible for the M2 marker proteins

glycosylation, and more than one-half of the nitrogen in UDP-

GlcNAc comes from glutamine (85). Feng et al. found that GLS1-

mediated glutaminolysis promoted the proliferation and adhesion

of mouse BMDMs and the infiltration and activation of M2

macrophages, and promoted the secretion of pro-angiogenic

cytokines such as VEGF-A (84). The weakening of the ability of

macrophages to clear apoptotic cells (i.e., efferocytosis) will enhance

the bone resorption capacity of osteoclasts, which is another crucial

factor in OP. Merlin et al. revealed that GLS1-mediated

glutaminolysis is essential to promote the clearance of apoptotic

cells (i.e., efferocytosis) by macrophages during homeostasis in mice

(86). The mechanism involves non-classical glutamine metabolism;

thus, it plays a massive role in removing dying cells and maintaining

tissue homeostasis (86). There is a link between OP and

inflammation in vivo; in other words, OP is also known as a

chronic inflammatory disease. ROS are the product of oxygen

metabolism, and high concentrations of ROS will disrupt the

balance of oxidants and antioxidants, leading to inflammatory

diseases. NF-kB is another critical factor regulating inflammation.
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Glutamine metabolism is also significant during inflammation, as

energy, biosynthesis, and antioxidant capacity are essential for an

appropriate immune response (87). Of course, because glutaminase

plays an essential role in metabolism and antioxidant function, its

transcription is also tightly regulated (88, 89). Merlin et al. found

that GLS1 overexpression can limit ROS production (86). In a rat

liver transplantation model, DM-aKG (a cell-permeable analog of

a-KG) perfusion inhibited NF-kB activity, up-regulated p-GSK3b
and Suppressor Of Cytokine Signaling 1(SOCS1) expression in

Kupffer cells, shifted M1/M2 balance toward an anti-

inflammatory direction, and inhibited serum secretion of pro-

inflammatory cytokines and increased IL-10 (90). We also found

that some studies have shown that cytokines that promote OP can

up-regulate the expression of GLS1. For example, STAT1 is one of

the candidate genes for human OP (91). It has been reported that

INF-a in monocyte-derived macrophages (MDMs) can increase

human GLS1 promoter activity through STAT1 phosphorylation,

thereby enhancing GLS1 expression and glutamate production (92,

93). In addition, IL-1b and TNF-a can up-regulate GLS1

expression, which induces glutamate production leading to

neurotoxicity (94). In conclusion, GLS1 affects multiple cells

mainly through glutamine metabolism and antioxidant function,

thus influencing the course of OP.
3.4 The potential link between LIAS and OP

LIAS is a Fe-S cluster protein that catalyzes the final step in

lipoic acid biosynthesis (95). Lipoic acid(LA) is an essential

metabolite in various biochemical actions, such as antioxidants. It

performs various cellular functions in various metabolic pathways

(95), involving the decarboxylation reactions of pyruvate and a-KG
(96, 97). It plays a vital role in mitochondrial energy metabolism

(98). Mitochondria are known to be the “energy factory” of the cell,

providing energy through oxidative phosphorylation and ATP

synthesis. In addition, mitochondria are the primary source of

ROS and the most direct target of ROS (99). Oxidative stress

occurs when there is an imbalance between the production of

ROS and the scavenging capacity of the cellular antioxidant

system, and it is thought to be a pathogenic factor in many

disease states, including OP (100). LIAS is mainly related to

oxidative stress and inflammation. LIAS overexpression decreases

inflammatory responses (including reduced expression of pro-

inflammatory cytokines/chemokines and inhibition of NF-kB
activity) as well as reduces oxidative stress and enhances

antioxidant defenses (including increased production of NRF2

and Lias) to potentially protect mitochondrial function in diabetic

nephropathy mice (101). Similar to this study, Zhao et al. found that

silica significantly increased oxidative stress in wild-type and LiasH/

H mice (LIAS overexpression in mice) (102). However, unlike wild-

type mice, LiasH/H mice reduced oxidative stress induced by silica

through NRF2 signaling; they downregulated pro-inflammatory

cytokine expression by inhibiting NF-kB activation, alleviating the

severity of significant pathological alterations in the early stages of

silica-induced pulmonary fibrosis (102). Overexpression of LIAS in

experimental atherosclerotic mice significantly increased the
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number of Tregs (which can produce anti-inflammatory cytokines

such as IL-10); it was accompanied by a decrease in the infiltration

of CD4+ T cells (which can produce pro-inflammatory cytokines

such as INF-g) to reduce atherosclerosis (103). Corresponding to

this study, as early as 2010, Yi et al. found that genetic reduction of

LIAS expression increased atherosclerosis in male apolipoprotein E

deficient mice, which was associated with a reduction in

endogenous antioxidant defense reservoir due to reduced LIAS

expression (104). When LIAS is mutated, it stabilizes HIF-1a in a

non-hydroxylated form and leads to HIF-1 activation by inhibiting

prolyl hydroxylases (PHDs) activity, which may lead to enhanced

glycolytic effects in cells (105). In addition, LIAS’s expression level

was reported to be negatively correlated with M1 macrophages

(106). The above results suggest that LIAS may be included as a new

marker in the research field for OP treatment.
3.5 The potential link between
DLAT and OP

DLAT is the E2 subunit of the PDC in the glucose catabolism

pathway, and it plays a critical catalytic role in converting pyruvate

to acetyl-CoA (107). E4 transcription factor 1 is a widely expressed

transcriptional regulator that plays a crucial role in cell cycle control

and proliferation (108); it can interact with OP via P53 (109, 110).

E4 transcription factor 1 regulates DLAT, and these two ingredients

maybe regulate OP together (111). SIRT2 is a kind of deacetylase

with a wide range of physiological functions, and Jing et al. found

that SIRT2 deficiency prevents age-related bone loss in rats by

inhibiting osteoclast production and that DLAT, a substrate of

SIRT2, may be involved in regulating the process of OP (112, 113).

In addition, component 1Q subcomponent-binding protein in the

mitochondria induces activation of the NLRP3 inflammasome

(114). It can regulate mitochondrial metabolism by binding to

DLAT and affecting the activity of PDH (115). Thus, DLAT may

affect OP mainly by influencing the conversion of pyruvate to

acetyl-CoA in PDC and mitochondrial metabolism.
3.6 The potential link between
FDX1 and OP

FDX1, also known as adrenodoxin or hepatoredoxin, is a

subunit of the augmin complex and is present in the

mitochondrial matrix (116, 117). It encodes a small iron-sulfur

protein with low redox potential and molecular weight and contains

an iron-sulfur cluster (118). FDX1 transfers electrons from NADPH

to mitochondrial cytochrome P450 through the ferredoxin

reductase and participates in the metabolism of steroids, vitamin

D, and bile acids (119, 120). In addition, FDX1 affects immune cells

(e.g., monocytes, M1/M2 macrophages, dendritic cells, neutrophils,

mast cells, B cells, regulatory T cells, CD4+ T cells, NK cells, Etc.)

and immune-related genes (e.g., CXCL16, CD40, TNFRSF15, 25,

CTLA4, CD274, PDCD1, NRP1, Etc.) (116, 117, 121–123). FDX1

was significantly associated with DNA and RNA methylation (e.g.,

m6A) (121). The FDX1 gene may promote ATP production, and in
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addition, it is closely associated with the metabolism of glucose,

fatty acids, and amino acids (124). FDX1 co-expressed genes are

mainly involved in various metabolic processes, such as

mitochondrial gene expression and mitochondrial respiratory

chain complex assembly, and are associated with the Notch

signaling pathway (117). Zhang Zhen et al. used LASSO Cox

regression models to construct a novel CRRS (cuproptosis-related

risk score) based on FDX1 and its related genes (125). They found

that patients in the high CRRS group exhibited cancer-related

pathways such as WNT signaling, Notch pathway, and Hedgehog

signaling, while many genes encoding glycolytic pathways (e.g.,

hexokinase 2) were significantly upregulated in hepatocellular

carcinoma patients with high CRRS (125). In addition, forkhead

box M1, a known transcription factor promoting glycolysis in some

cancers by binding to the promoters of glycolytic enzyme genes,

including glucose transporters (GLUTs), also increased in patients

in the high CRRS group (125). Hypoxia-inducible factor-1 (HIF-1)

determines glucose consumption through oxidation or glycolysis,

and HIF1A is also elevated in patients in the high-CRRS group

(125). In addition, the genes with the highest mutation frequencies

in the low CRRS and high CRRS groups included catenin beta one

and tumor protein P53 (125). CRRS also showed significant positive

correlations with IFNg markers (IFNG and STAT1), intercellular

adhesion molecule 1, and colony-stimulating factor 1 receptor

(125). Similar to some of the results of Zhang Zhen et al. is the

study by Zhang Chi et al., who found that FDX1 was associated with

immune-related pathways such as inflammatory response, IFNg
response, TNF-a/NF-KB signaling pathway (123).

All the genes, cells, or signaling pathways mentioned above are

osteoporosis-related. Therefore, FDX1 may be involved in OP

through metabolic, immune cells, immune-related genes, and

inflammatory pathways.
3.7 The potential link between CDKN2A
and OP

CDKN2A gene is adjacent to the 9P21.3 genomic region and is a

key cell cycle regulator (126). It encodes the P16 (INK4A) protein, a

typical marker of cellular senescence (127). The gerontology

community increasingly recognizes OP risk factors, including

aging (128, 129). Aging reduces the defense against oxidative

stress, aggravates the loss of sex steroids, and adversely affects

bones (130). Skeletal aging is accompanied by changes in the

tissue microenvironment with increased levels of pro-

inflammatory cytokines (130), a key factor contributing to OP.

Cellular senescence is a basic aging mechanism that can lead to

various age-related diseases (131). Cellular senescence has become

one of the signs of aging and a major contributor to age-related

diseases, including OP (132). Cellular senescence is characterized by

growth inhibition, functional alterations, and the presence of so-

called senescence-associated secretory phenotypes (SASP),

including the expression of inflammatory and trophic factors and

tissue remodeling matrix metalloproteinases (MMP) (133). p16

controls the G1 phase of the cell cycle, a key regulator of cellular

senescence frequently inactivated in cancer; it is also thought to be
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associated with many age-related pathologies, including OP (134).

The cell cycle-dependent kinase inhibitor p16 is not only a

recognized indicator of cellular senescence, but it also acts as a

key effector of cellular senescence (127). The expression level of p16

gradually increases during the development of physiological aging

and aging-related diseases (135). Senescent cells in the bone

microenvironment increase with aging, producing a pro-

inflammatory secretion that leads to increased bone resorption

and reduced bone formation; methods that eliminate senescent

cells or impair their pro-inflammatory secretion production have

been shown to prevent age-related bone loss in mice (136). Targeted

removal of p16Ink4a-expressing cells in p16-INK-ATTAC

(p16Ink4a apoptosis through targeted activation of caspases) mice

have been successfully used to understand the effects of removal of

p16Ink4a-expressing senescent cells in a variety of age-related

diseases, including OP (137, 138). Early observations using the

INK-ATTAC model by Farr et al. showed that p16-overexpressing

cells in old mice increase the number of osteoclasts (138).

p16INK4a directly interacts with and activates the major

adipogenic regulator peroxisome proliferator-activated receptor

gamma (PPARg) (139). Eliminating p16-expressing cells in aged

INK-ATTAC mice reduces the number of bone marrow adipocytes

(138). Similarly, eliminating p16-expressing cells in aged p16-3MR

mice (an alternative to the INK-ATTAC model of p16-expressing

cell elimination) reduces the adipogenic potential of bone marrow

cells (140). The p16-3MR transgenic mouse eliminates senescent

osteoclast progenitors but does not eliminate senescent osteocytes

(140). However, Farr et al. showed that INK-ATTAC transgenic

mice effectively reduced the number of senescent osteocytes in old

mice (138). However, it is still unknown whether the elimination of

senescent osteocytes themselves is the cause of the increase in bone

mass seen in the INK-ATTAC model (140). Yang et al. recently

demonstrated that 1,25(OH)2D3 plays a role in the prevention of

age-related osteoporosis by up-regulating Ezh2 through vitamin D

receptor-mediated transcription, increasing H3K27me3 and

repressing p16 transcription, thus promoting the proliferation

and osteogenesis of BMMSCs and inhibiting their senescence,

while also stimulating bone formation in osteoblasts and

inhibiting osteocyte senescence, SASP, and osteoclastic bone

resorption (141). Bmi1 overexpression in MSCs can stimulate

MSC proliferation and differentiation into osteoblasts by

inactivating p16/p19 signaling and inhibiting oxidative stress,

thereby enhancing osteoblast bone formation and exerting anti-

osteoporosis effects (142). In addition, c-AbI(a non-receptor

tyrosine kinase) regulates BMP-Smad1/5/8 and BMP-Tak1-Mek1/

2-Erk1/2 pathways by phosphorylating BMP receptor IA

(BMPRIA) to control p16INK4a expression and after that

osteoblast expansion and bone formation (143). P16 is the direct

target of HIF-2 a in osteoclasts, which mediates the enhancement of

bone resorption activity of senescence-related osteoclasts (144). In

addition, p16INK4a can regulate the activation and polarization of

macrophages (i.e., BMDMs) via the JAK2-STAT1 pathway. Its

deletion regulates the phenotype of macrophages exhibiting a

phenotype similar to IL-4-induced macrophage polarization (i.e.,

M2 type), resulting in a significant decrease in the expression of

inflammatory genes (e.g., IL-6 and TNF) (145). The expression of
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p16Ink4a is also significantly higher with aging in B cells, T cells,

myeloid cells, and osteoblast progenitor cells, leading to bone loss

(130). CDKN2A has been linked to OP through the P16 protein it

encodes, primarily involved in cellular senescence.
3.8 The potential link between DLD and OP

DLD is a member of the redox family of Flavin proteins (146). It

can participate in catalysis because the protein consists of 474

amino acids, including an active disulfide bridge and a FAD

cofactor, which endow it with activity (147). The normal function

of PDC requires the participation of DLD (148). By regulating the

components of pyruvate, PDC converts it into acetyl-CoA and

guides acetyl-CoA into the Krebs cycle to produce CO2, NADH,

and H+; PDC plays an essential role in this process (147). The

primary function of DLD is to promote the oxidation of lipoyl

molecules by reducing NAD+ to NADH and to prepare for the

subsequent cyclic catalytic reaction of lipoyl molecules (147).

Therefore, DLD is vital in maintaining cell energy metabolism

and the tricarboxylic acid cycle (149). DLD has been proven to

have antioxidant properties in humans because it contains

important cofactors FAD and NADH (149). In addition, a-lipoic
acid is the substrate of DLD, which can treat various chronic

diseases, including OP (150, 151). Glucose plays a crucial role in

bone metabolism and plays a key role in maintaining the

homeostasis between bone formation and bone resorption (152).

The enzyme encoded by DLD is part of the PDH enzyme complex,

which directly promotes the energy metabolism of glucose (153).

Inhibiting the activity of the DLD enzyme decreased the glycolysis

catabolism of glucose (153). Glycolysis is an important energy-

driven pathway in the process of osteoclasts differentiation (154).

Therefore, increasing the process of glycolysis is essential for

osteoclasts formation (155), and inhibition of the DLD enzyme

may inhibit osteoclasts formation. In addition, it has been found

that DLDRGD can be prepared by attaching RGD molecules to the

N-terminal and C-terminal of DLD; This conjugate can be coupled

with TiO2 coated with the implant and promote the

osseointegration of osteoblasts and implants through coupling

with specific integrins on the surface of bone-forming cells (156–

158). Therefore, DLDRGD may be helpful in the treatment of a

variety of orthopedic diseases, including osteoporosis. To sum up,

DLD is associated with OP through antioxidation and affects energy

production in cell metabolism. In addition, DLD can also

participate in the treatment of OP by promoting osseointegration.
3.9 The potential link between
MTF1 and OP

MTF is a zinc finger protein that responds to and regulates

various metals, especially zinc, at the cellular level (159–161). As a

zinc sensor, MTF1 protects cells from oxidation and hypoxia by

inducing the expression of antioxidants and other proteins (162,

163). Therefore, a significant relationship exists between MTF1 and

redox metabolism (164). Zinc is needed in many biological
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processes, such as enzyme activity, gene expression, cell cycle,

apoptosis, and immunity (165–167). In addition, zinc can regulate

the expression of SOCS3 by activating MTF1 to prevent

inflammation (168). MTF1 is the only known transcription factor

that mediates zinc-induced gene transcription (169). The content of

available zinc in cells is directly related to the existence of

metallothioneins (160). Metallothionein is involved in

maintaining the balance of metal elements, such as copper, zinc,

and cadmium (164); it binds zinc ions and regulates the balance of

intracellular zinc ions, affecting many cellular processes, including

gene transcription, apoptosis, proliferation, and differentiation

(160); it also acts as a redox buffer (164). Metallothionein and

metal balance regulation by MTF1 is related to heavy metal

exposure (170). Zinc supplementation can activate the binding of

MTF1 to DNA and initiate metallothionein mRNA transcription

(171). The protein participates in the regular operation of

mitochondria by regulating the permeability of the mitochondrial

inner membrane (172). In addition, cadmium can be transformed

into a non-toxic form by directly binding metallothioneins;

metallothioneins can also inhibit cadmium toxicity by reducing

cells’ cadmium uptake and counteracting cadmium-induced ROS

(173, 174). The accumulation of heavy metals makes MTF1 transfer

from the cytosol to the nucleus (175, 176), and MTF1 can bind to

the target gene promoter and promote the expression of

metallothionein chelators, metal transporters and other metal-

induced proteins (177, 178). The content of copper in the cells

affects the binding of MTF1 to the target promoter (163). In

addition, MTF1 nuclear translocation leads to a decrease in the

level of consumable iron to prevent ferroptosis (179). Studies have

shown that MTF-1 is the direct target of miR-148-3p, which

regulates the transcriptional activity of MTF-1 (180).

In short, metal ions are necessary for the growth and

metabolism of bone-related cells. MTF1 has a direct or indirect

relationship with osteoporosis by controlling the balance of metal

ions and redox, regulating the expression of related genes, and

protecting against metal toxicity.
3.10 The potential link between
LIPT1 and OP

LIPT1 encodes fatty acyltransferase 1 and participates in the

lipoic acid metabolic pathway that regulates mitochondrial energy

metabolism (181, 182). Among them, it can regulate the transport

of LA, an essential substance in mitochondria (181). LA is involved

in the TCA cycle, cellular energy metabolism, and glycine

decomposition (183). Fatty acyltransferase 1 encoded by LIPT1

can transfer LA to the subunit of the 2-ketoacid dehydrogenase

complex (183). If the homolog of LIPT1 disappears, it may lead to

the decrease of lipoid of the E2 subunit of the 2-ketoacid

dehydrogenase complex (183), and the lack of LIPT1 will inhibit

the metabolism of the TCA cycle (184, 185). In addition, LIPT1

supports fat production and balances oxidizing and reducing

glutamine metabolism (186).
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In short, LIPT1 may be involved in osteoporosis by

participating in the tricarboxylic acid cycle and affecting

mitochondrial energy metabolism.
4 Conclusions and future perspectives

The essential micronutrient copper catalyzes various biological

processes. Therefore, almost all cell types require copper for various

physiological processes. Tsvetkov et al. recently proposed a new

concept of “cuproptosis” and emphasized that it is a regulated form

of cell death. Targeted copper toxicity has always been an effective

method for treating tumor diseases, and the discovery of

cuproptosis will undoubtedly attract more attention. The link

between cuproptosis and osteoporosis may include the following.

First, cuproptosis may be inhibited in several cells, and this

inhibition promotes cell proliferation. Secondly, some critical

genes regulating cuproptosis are associated with the

developmental process of OP: PDHA1 regulates glycolysis and

inflammation; PDHB can inhibit ERK signaling and regulate

mitochondrial homeostasis, possibly affecting osteoclast

differentiation; GLS mainly affects glutamine metabolism and

antioxidant function; LIAS is essential in mitochondrial energy

metabolism, mainly related to oxidative stress and inflammation;

DLAT may affect OP mainly by influencing the conversion of

pyruvate to acetyl-CoA in PDC and mitochondrial metabolism;

FDX1 may be involved in osteoporosis through metabolism,

immune cells, immune-related genes, and inflammation;

CDKN2A is associated with cellular senescence; DLD is

associated with osteoporosis through antioxidation, affecting

energy production in cell metabolism and promoting bone

integration; MTF1 has a direct or indirect relationship with

osteoporosis by controlling the balance of metal ions and redox,

regulating the expression of related genes, and protecting against

metal toxicity; LIPT1 may participate in osteoporosis by

participating in the tricarboxylic acid cycle and affecting

mitochondrial energy metabolism.

Cuproptosis a recently discovered programmed cell death.

Although studies on Cuproptosis have been published one after

another, our team has collected and summarized the possible link

between cuproptosis and osteoporosis for the first time. However,

because the exact mechanism of cuproptosis is unclear, there are no

direct reports of cuproptosis and osteoporosis in the clinic. However,

there are direct reports of cuproptosis and osteosarcoma (187–189);

cuproptosis-related genes and orthopedic-related diseases have been

reported, such as rheumatoid arthritis and osteosarcoma (33, 190,

191). Copper levels are up-regulated in various cell types, including

bone-related senescent cells and fibroblasts (192). It is one of the

characteristics of cellular senescence (192–194); copper sulfate-

induced premature senescence (CuSO4-SIPS) always mimics the

molecular mechanism of replicative senescence, especially at the

endoplasmic reticulum protein homeostasis level (195). Therefore,

there is a need for more research to explore the mechanisms

underlying cuproptosis that will likely provide new opportunities
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for clinical application. Regarding therapeutic methods, the

development of nanotechnology is exploiting nano-formulations

with the cuproptosis mechanism to achieve functional regulation of

cells by regulating the intracellular copper content through its

delivery capacity. Combining cuproptosis and materials science

may inspire a new class of highly effective anti-osteoporosis strategies.

Our team has been committed to studying exosomes,

nanovesicles, and nanoparticles ’ targeted treatment of

osteoporosis. Next, we plan to design a cuproptosis-targeting

therapy for osteoporosis. Specific activators or inhibitors of

cuproptosis depend on the selected cuproptosis -related genes and

cell types. In short, we aim to provide a scientific basis for the

clinical development of new strategies for treating osteoporosis; of

course, this must be a hopeful and challenging exploration process.
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