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Integrating single-cell RNA-seq
and bulk RNA-seq to construct
prognostic signatures to explore
the role of glutamine metabolism
in breast cancer

Shengbin Pei1†, Pengpeng Zhang2†, Huilin Chen1†, Shuhan Zhao1†,
Yuhan Dai1, Lili Yang1, Yakun Kang1, Mingjie Zheng1,
Yiqin Xia1* and Hui Xie1*

1Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
Background: Although breast cancer (BC) treatment has entered the era of

precision therapy, the prognosis is good in the case of comprehensive

multimodal treatment such as neoadjuvant, endocrine, and targeted therapy.

However, due to its high heterogeneity, some patients still cannot benefit from

conventional treatment and have poor survival prognoses. Amino acids and their

metabolites affect tumor development, alter the tumor microenvironment, play an

increasingly obvious role in immune response and regulation of immune cell

function, and are involved in acquired and innate immune regulation; therefore,

amino acid metabolism is receiving increasing attention.

Methods: Based on public datasets, we carried out a comprehensive

transcriptome and single-cell sequencing investigation. Then we used 2.5

Weighted Co-Expression Network Analysis (WGCNA) and Cox to evaluate

glutamine metabolism-related genes (GRGs) in BC and constructed a prognostic

model for BC patients. Finally, the expression and function of the signature key

gene SNX3 were examined by in vitro experiments.

Results: In this study, we constituted a risk signature to predict overall survival (OS)

in BC patients by glutamine-related genes. According to our risk signature, BC

patients can obtain a Prognostic Risk Signature (PRS), and the response to

immunotherapy can be further stratified according to PRS. Compared with

traditional clinicopathological features, PRS demonstrated robust prognostic

power and accurate survival prediction. In addition, altered pathways and

mutational patterns were analyzed in PRS subgroups. Our study sheds some

light on the immune status of BC. In in vitro experiments, the knockdown of

SNX3, an essential gene in the signature, resulted in a dramatic reduction in

proliferation, invasion, and migration of MDA-MB-231 and MCF-7 cell lines.
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Conclusion: We established a brand-new PRS consisting of genes associated with

glutamine metabolism. It expands unique ideas for the diagnosis, treatment, and

prognosis of BC.
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SNX3, glutamine, metabolism, breast cancer, single-cell sequencing
1 Introduction

The incidence of BC among women worldwide is exceptionally

high, and it ranks first, according to recent reports (1). In the past few

decades, the treatment strategy of BC has changed from the

traditional radical mastectomy combined with radiotherapy and

chemotherapy to a comprehensive multimodal treatment such as

neoadjuvant chemotherapy, endocrine therapy, and targeted therapy

combined with surgery (2). However, due to the high heterogeneity of

BC, some patients still cannot benefit from endocrine therapy and

targeted molecular therapy (3). Currently, breakthroughs in immune

checkpoint antagonist therapy in other cancers have renewed interest

in treating and preventing BC in the same way (4). However, only two

drugs, palivizumab, and atezolizumab have received Food and Drug

Administration (FDA) approval for immunotherapy in BC (5).

Therefore, better prognostic tools and biomarkers that accurately

predict and treat BC are urgently needed.

Metabolic reprogramming is a major feature of tumor cells (6–8).

Glutamine and glutamate are non-essential amino acids, which are

the main sources of nitrogen and carbon for the synthesis of amino

acids, lipids, and nucleic acids, but are important for the metabolic

processes of tumor cells (9). The conversion of glutamine to

glutamate by glutaminase in the mitochondria is a key step (10).

The most prevalent amino acid in plasma, glutamine is crucial for

protein, nucleotide, and energy metabolism in mitochondria.

Glutamine catabolism can provide large NADPH requirements for

proliferating cells (11). Some tumor cells rely on glutamine for cell

growth and activation of signaling molecules, such as mTOR kinase

(12). Aggressive cancers such as triple-negative breast cancer (TNBC)

avidly metabolize glutamine as a feature of their malignant phenotype

(13). Targeting glutamine metabolism enhances responses to

platinum-based chemotherapy in TNBC (14). Therefore, the

development of glutamine-dependent cell growth or “glutamine

addiction” is considered as a new target for tumor therapy. The use

of genes related to glutamine metabolism to predict treatment efficacy

and clinical prognosis warrants further investigation.

Single-cell RNA-seq (scRNA-seq) is a novel tool that allows for

the genomic examination of individual cells in a population, allowing

for the identification of uncommon cells linked with cancer and

metastasis (15, 16). In the fields of lung cancer, breast cancer, liver

cancer, and gastric cancer research, scRNA-seq studies have

discovered different populations that may correlate with poor

prognosis and medication resistance (17–20). Furthermore, this

approach may be utilized to demonstrate the heterogeneity of the

tumor microenvironment, with these subpopulations potentially
02
serving as immunotherapeutic targets. Because of its capacity to

distinguish cell subsets and biomarkers with possible treatments,

scRNA-seq is also a promising technology that might assist in

tailored therapy. In common complex diseases such as autoimmune

diseases, neurodegenerative diseases, and respiratory diseases, single-

cell maps reveal the presence of disease genes at relevant sites of

specific cell subsets of the disease (21). In cancer research, risk

signatures are frequently utilized to forecast prognostic outcomes.

Li W et al. developed an osteosarcoma lung metastasis prediction

model (22, 23), and these features were shown to be superior to

conventional methods in predicting clinical prognosis. In the field of

breast cancer research, the role of molecular regulation related to

glutamine metabolism has not been fully revealed. Therefore, we

included genes associated with glutamine metabolism in the

construction of risk profiles to estimate novel strategies for

predicting outcomes in BC patients.

In this study, we downloaded BC public data from the Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases. Single-cell sequencing analysis was performed to find

differential glutamine metabolism-related genes among individual

BC cells. Using the Cox risk model and LASSO regression, new risk

profiles were constructed based on the expression levels of genes

related to glutamine metabolism in the TCGA-BC dataset (24). In

addition, in breast cancer, glutamine metabolic profiles can be used to

identify changes in immune infiltration and immune checkpoints.

Our findings might offer fresh perspectives on the investigation of BC

diagnosis and therapy.
2 Materials and methods

2.1 Transcriptome data acquired
and processing

Breast cancer RNA expression profiles, gene mutation, and

corresponding clinical data were retrieved from the TCGA database

(n=1095) and divided into a training group and validation group by

6:4, in which the training group was used to construct the model, and

the validation group was used to check the stability and accuracy of

the model. Simultaneously, the GEO expression profiles of GSE20685

(n= 327) were downloaded for use as an external independent

validation cohort. All data were in TPM format and log2 was

transformed for subsequent analysis. Adjustments for the batch

effect between TCGA-BC and GSE20685 were made with the

“sva” package.
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2.2 Single-cell sequencing data and
glutamine-related genes acquired
and processing

From the GEO database, the single-cell data set GSE161529 of BC

was retrieved. There are ten samples in all in the dataset. We performed

the quality control of scRNA-seq data by the “seurat”Rpackage.We kept

cells with less than 10% mitochondrial genes, cells with more than 200

genes overall, and genes whose expression spanned from200 to 7000 and

were expressed in at least three cells to keep high-quality scRNA-seq

data. A total of 50,917 eligible cells were selected for further exploration.

The remaining cells were further scaled and normalized using a linear

regression model with the “Log-normalization” technique. After data

normalization, the top 3,000 hypervariable genes were distinguished

according to the “FindVariableFeatures” function. As these data were

obtained from several samples, we utilized the “FindlntegrationAnchors”

function of the canonical correlation analysis (CCA)method to eliminate

the batch effects disrupting downstream analysis. Subsequently, we used

the “IntegrateData” and “ScaleData” functions to properly integrate and

scale the data, respectively. Cell type was annotated and then manually

checked according to previous studies (25, 26). The GeneCards database

served as a source for GRGs, and a total of 141 GRGs with a relevance

score greater than 15.0 were selected for subsequent investigation.
2.3 AUCell

scRNA-seq datawere used to obtain themost relevant genes affecting

Glutamine metabolism (GM) activity. The “AUCell R” package, which

determines the active status of gene sets in scRNA-seq data, was

employed to assign GM activity scores to each cell lineage. The

percentage of highly expressed gene sets in each cell was estimated

using the gene expression rankings of each cell based on the area under

the curve (AUC) value of the selected GRGs. AUC values were larger for

cells that expressed more genes. Cells actively involved in GM gene sets

were determined using the “AUCell explore Thresholds” function. The

cells were then divided into high- and low-GM-AUC groups based on

the median AUC score and visualized using the “ggplot2” R package.
2.4 Single sample gene set
enrichment analysis

To calculate the precise score of a gene set enriched in a sample,

ssGSEA analysis is frequently utilized (27). This study used ssGSEA

analysis to determine the GM scores for each TCGA-BC patient.
2.5 Weighted co-expression
network analysis

The “WGCNA” package in R implements WGCNA, a systems

biology technique for creating the TCGA-BC gene co-expression

network. WGCNA can be used to locate highly covarying gene sets

and to pinpoint potential biomarker genes or therapeutic targets

based on the connectivity of each gene set and the link between the

gene set and the phenotype. In this work, WGCNA was used to
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identify the gene modules associated with GM score in BC and to

identify the associated genes. Finally, module genes with the most

remarkable correlation to glutamine score were selected for

further analysis.
2.6 Establishment of a risk signature
associated with glutamine

First, a univariate Cox analysis was used to extract the glutamine-

related genes having prognostic value. Lasso regression was used to

further screen prognostic GRGs and multivariate regression analysis

was performed to further identify the model genes and risk

coefficients. Each breast cancer can therefore be given a risk score

using the algorithm in this manner. Patients in the TCGA-BC cohort

can be split into high- and low-risk groups based on the median value.

Then, we investigated how the two groups’ prognoses varied from one

another and evaluated the model’s precision.
2.7 Independence and validity assessment of
the prognostic model

To calculate the probabilities of OS at 1, 3, and 5 years, we developed

a nomogram combining the risk score, age, gender, pathological stage,

and other clinical parameters as independent prognostic factors. In the

meantime, survival curves were plotted using the Kaplan-Meier method

for prognostic reasons, and log-rank tests were run to assess the statistical

significance. The receiver operating characteristic (ROC) curves,

calibration curves, and concordance index curves were also used to

assess the nomogram’s prediction accuracy.
2.8 Tumor immunity and immunotherapy

We next determined the degree of immune infiltration for BC

patients in the TCGA database from the TIMER 2.0 database, which

contains the results of 7 evaluation methods. These data were applied

to quantify the relative fractions of immune cell infiltration in the

TME in the form of heatmaps. We were able to deduce tumor purity

and the presence of stromal and immune cells in malignant tumor

tissues from the expression profiles. The “estimate” R package allows

users to determine the relative abundance of stromal cells, immune

cells, and tumor cells (28) and then compare these values across

different risk categories. A higher score indicates a larger proportion

of components in the TME. Additionally, immune checkpoints are

comprised of various molecules that are expressed on immune cells

and can regulate the level of immune activation. They play a crucial

function in preventing excessive immunological activation. We

compared the levels of expression in both groups of well-known

immune checkpoint genes (ICGs) that were extracted from the

literature. Correlations between ICGs expression and model genes

and risk scores were further explored. The Cancer Immunome Atlas

(TCIA) database was used to retrieve the Immunophenoscores (IPS)

for BC. The online Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm was used to assess the potential responsiveness to

ICI treatment (http://tide.dfci.harvard.edu/) (29, 30).
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2.9 Tissue sample collection and cell
lines culture

The tissue samples collected from the First Affiliated Hospital of

Nanjing Medical University were approved by the Medical Ethics

Committee of the hospital (2010-SR-091) and were kept at -80°C. The

clinical sample information of 20 pairs of patient tissues were

presented in Supplementary Table S1. All samples were taken with

the patient’s consent. A total of ten pairs of samples were collected

from BC patients undergoing tumor resection between February 2021

and March 2021 (tumor tissue (T) and precancerous tissue (N)).

Human BC cell lines (MDA-MB-231, MCF-7) were purchased from

the Cell Resource Center of Shanghai Life Sciences Institute, and these

cells were cultured in DMEM (Gibco BRL, USA). Cells were cultured

in a 10% fetal bovine serum (Gibco BRL, USA), 100U/mL penicillin,

and 100mg/mL streptomycin in 95% humidity and 5% CO2 at 37°C.
2.10 RT-qPCR

Total RNA was extracted from tissues or cell lines using TRIzol as

directed by the manufacturer (15596018, Thermo). cDNA was then

synthesized using the PrimeScript™RT kit (R232-01, Vazyme). The

Real-time polymerase chain reaction (RT-PCR) was performed by

SYBR Green Master Mix (Q111-02, Vazyme), and the expression

levels were counted with the 2−DDCt method. The expression of each

mRNA was standardized by the expression level of mRNA GAPDH.

All primers were supplied by Tsingke Biotech (Beijing, China), and

detailed primer sequences were in Supplementary Table 2.
2.11 RNA interference

A small interfering RNA (siRNA) probe against SNX3was developed

and synthesized by Ribobio (Guangzhou, China). All transfections were

carried out with Lipofectamine 3000 (Invitrogen, USA). The siRNA

sequences for SNX3 are provided in Supplementary Table 2.
2.12 EdU

5-Ethynyl-2’-deoxyuridine (EdU) assay was then performed

under the manufacturer’s instruction (Ribobio, China). After

incubating in a cell incubator for 2 hours, we rinsed the cells with

PBS and then immersed them in 4% paraformaldehyde at room

temperature for 10 min with 0.5% Triton-X-100. Apollo® fluorescent

dye was used for staining. The number of proliferating cells was

analyzed under an inverted microscope.
2.13 Healing assay

Transfected cells were seeded into 6-well plates and incubated in a

cell incubator until 95% confluent. After serum starvation, one

straight line was scraped with a sterile 20 ml plastic pipette tip and

gently washed away unattached cells and debris twice with PBS in
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each cultured well. Eventually, we took photographs of the scratch

wounds after 0h and 48h, and the ImageJ software measured the

width of the scratches.
2.14 Colony formation

In a 6-well plate, we transfected 2×103 cells per well. All cells were

maintained for 2 weeks until the formation of visible colonies. The

cells were rinsed twice with PBS and fixed for 15 minutes in 4%

paraformaldehyde before Crystal violet (Solarbio, China) staining.

The colonies were counted per well.
2.15 Transwell assay

Transwell experiments included cell migration and invasion

experiments. In the upper chamber, 2×104 cells per well were

incubated in a serum-free medium. The lower chamber maintains

600ml of complete medium. The upper portion of the plate was either

pre-coated or uncoated with Matrigel solution (BD Biosciences, USA)

to evaluate the invasive and migratory capabilities of the cells. Cells

were fixed with 4% PFA, stained with 0.1% crystal violet (Solarbio,

China), and counted under a light microscope.
2.16 Statistical analysis

Software called GraphPad Prism (version 8.0) was used to analyze

experimental data. Three independent experiments recorded the data as

mean ± standard deviation (SD). We tested the comparisons among the

groups with Student’s t-tests (*P<0.05, **P<0.01, ***P<0.001).
3 Results

3.1 Single-cell sequencing data of
BC analysis

The flow chart of this study was shown in Figure 1. On the single-

cell data set, we conducted quality control. To confirm the validity of

the cell samples, as seen in Supplementary Figure S1A, we removed

some cells and restricted the percentage of mitochondrial genes,

ribosomal genes, and red blood cell genes. Sequencing depth and

total intracellular sequences exhibit significantly substantial positive

associations (R=0.92, Supplementary Figure S1B). Supplementary

Figure S1C shows that TCGA and GEO cohorts independently,

with significant batch effect. After removing the batch effect, better

results were obtained (Supplementary Figure S1D). The study

contained 10 samples, and each sample’s cell distribution was

largely constant. This suggests that there was no noticeable batch

impact on the samples, which might be used for further analysis

(Figure 2A). Subsequently, all cells were classified by the

dimensionality reduction algorithms, namely, t-SNE into 18 clusters

(Figure 2B). The expression of cell-type marker genes is shown in

Figure 2C. Figure 2D illustrated the distribution of each cell
frontiersin.org

https://doi.org/10.3389/fendo.2023.1135297
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pei et al. 10.3389/fendo.2023.1135297
population with a t-SNE plot. A total of eight cell types can be found,

such as Endothelial cells, Mast cells, Fibroblasts, and Tumor cells.

Using the “AUCell” R package, the GRGs activity of each cell line was

discovered to explore the GRGs expression characteristics

(Figure 2E). Higher AUC values were seen in cells that expressed

more genes, and these cells were primarily orange-colored

Macrophage cells (Figure 2F). All cells were assigned an AUC score

for the corresponding GRGs and divided into two groups (high-and

low-Glutamine-AUC groups) by AUC score median values.
Frontiers in Endocrinology 05
3.2 Weighted co-expression network
analysis and construction

WGCNA was used to look for gene sets that were covarying with

glutamine in more detail. As seen in Figure 3A, the data is more

consistent with the power-law distribution and the mean connectivity

tends to be stable when the soft domain value is 6; this makes the data

suitable for further study. As seen in Figure 3B, 12 non-gray modules

were generated after merging the modules with a similarity lower than
FIGURE 1

The flowchart of this study.
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0.25 and setting the minimum number of modules to 100 and deepSplit

to 2. According to Figure 3C, a total of 12 non-gray modules were

obtained.We discovered that the green and purple modules, which each

contained 2,783 genes, were most closely related to GM (COR = 0.61, P

<0.001). To further explore how GRGs relate to the prognosis of BC

patients, we intersected the most relevant genes affecting glutamine

metabolic activity obtained in single-cell and Bulk-RNA analysis and

finally, 219 geneswere used for subsequent analysis (Figure 3D).Weused

the training set in TCGA-BC for model construction, and prognostic

genes were obtained by univariate analysis (P<0.01). Next, LASSO Cox

regression and multivariate regression analysis were employed to

develop the prognostic model (Figure 3E). A total of twenty-one

model genes (EI24, MMADHC, SNX3, KDELR2, UQCRFS1,
Frontiers in Endocrinology 06
NDUFB9, LIMCH1, MMP7, IGKC, RBP1, KPTCAP3, FABP7, GLUL,

PKIB, CYSTM1, ERRFI1, BTG1, STK17A, JAK1, TMEM14B) were

finally screened out under optimal regularization parameters. The

prognostic model was calculated as follows:

risk   score =o
k

n=i
(Coefi exp i)

Coefi and Expi represented the coefficient and expression of each

model gene, respectively, and the risk score for each sample was

calculated by the above formula. By using the aforementioned

formula, the risk score for each sample was determined. Based on

median values, patients were split into high-risk and low-risk
A B

D

E F

C

FIGURE 2

Annotation of cell subsets from single-cell sequencing data and identification of differentially expressed genes. (A) The cell distribution of the samples
showed no significant batch effect. (B) The dimension reduction cluster analysis results are shown in the tSNE diagram. (C) The expression of cell type
marker genes. (D) The tSNE map indicates that BC samples can be annotated as 8 cell types in the TME (different colors represent different cell types).
(E, F) All cells were scored according to glutamine-associated genes (GRG) and were divided into high and low groups.
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categories. Of the twenty-one genes used to construct the model, eight

were risk factors and thirteen were protective factors (Figure 3F).
3.3 Validation of glutamine-related
prognostic model and construction of
a nomogram

To testify to the credibility of the glutamine-related prognostic

model, we performed a survival analysis. For patients in the training,

testing, and all cohort, the overall survival rate of high-risk group

patients decreased more dramatically compared with the low-risk

group (Figures 4A–C). We also obtained the same result in the
Frontiers in Endocrinology 07
external validation GEO cohort (Figure 4D). We performed ROC

curve analysis in both the training cohort and the test cohort to

further investigate the precision of glutamine in the assessment of the

prognosis of BC patients. The areas under the 1, 3, and 5-year ROC

curve (AUC) were: training cohort 0.868, 0.848, and 0.798, testing

cohort 0.612, 0.705, 0.725, and all cohort 0.799, 0.800, 0.770

respectively (Figures 4E–G). The AUC of the external validation

GEO cohort was 0.668, 0.716, and 0.704 in 1, 3, and 5 years, which

further confirmed our PRS’s predictive ability (Figure 4H).

Using clinical information and a risk score, a nomogram was created

to more accurately quantify the risk of BC patients (Figure 4I). The

nomogram can help determine patient risk more accurately and direct

future treatment decisions. The calibration plot is used to testify that the
A B

D

E F

C

FIGURE 3

Weighted Co-Expression Network Analysis and construction Glutamine-Related Prognostic Model. (A–C) Weighted Co-Expression Network Analysis. The
green and purple modules were most associated with glutamine, of which 2,783 genes were extracted. (D) The intersection of genes obtained in single-
cell analysis and bulk-RNA analysis. (E) LASSO Cox regression analysis to develop the prognostic model. (F) The role of twenty-one model genes.
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nomogram is consistent with our prediction, which showed good

agreement with the actual outcome (Figure 4J). We also carried out

the decision curve and concordance index study, which determines the

area of each clinical feature and None’s horizontal axis to assess the

clinical decision value. Results indicated that this nomogram’s efficacy

was superior to that of other clinical indicators, indicating that it is

effective in forecasting patients’ prognoses and can serve as a clinical

decision-making tool (Figure 4K, L). Prognostic ROC analysis was

carried out to thoroughly assess the accuracy of this nomogram.

According to the findings, the area under the curve (AUC) was 0.797,

0.803, and 0.771 in 1, 2, and 3 years, respectively (Figures 5A–C).
Frontiers in Endocrinology 08
3.4 Mutation landscape analysis

We examined representative gene variants in the groups at high-

and low risk (Figure 5D). Genes such as TP53, KMT2C, HMCN1,

USH2A, and DMD had the top five mutation frequencies in the high-

risk group. The top five genes with the highest mutation frequencies

in the low-risk group were PIK3CA, CDH1, MAP3K1, PTEN, and

GATA3 respectively. Tumor mutation load (TMB) was significantly

different between the two groups, and the mutation load in the high-

risk group was higher than that in the low-risk group (Figure 5E).

Further analysis showed that with the increase of risk score, tumor
A B D

E F G

I

H

J K L

C

FIGURE 4

Validation of Glutamine-Related Prognostic Model. (A–C) Survival analysis in the TCGA train, test, and entire cohort (P <0.001). (D) Survival analysis in the
GEO test cohort. (E–G)The area under the curve (AUC) values for the TCGA train, test, and full cohort. (H) the areas under the curve at 1, 3, and 5 years
for the GEO test group. (I) Nomogram to assess the risk of BC patients. (J) Calibration curves for the nomogram. (K) Decision curve. (L) Concordance
index study. The *** represents P<0.001.
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mutation load also increased correspondingly, and the two showed a

positive correlation (Figure 5F). High TMB is closely associated with

poor survival outcomes. After dividing patients into subgroups, the

high-risk/high-TMB group showed a poorer survival outcome

(Figures 5G, H).
3.5 Biological function and
pathway analyses

To explore the underlying mechanism that could lead BC patients in

the high-risk group to a poor prognosis. Analysis of hallmark pathway

gene signatures highlighted that the high-and low-risk groups showed

some differences. A direct comparison of Risk-High versus Risk-Low
Frontiers in Endocrinology 09
revealed the enriched signatures in the high-risk group included

Glycolysis, Myc Targets V1, G2M checkpoint, and E2F targets.

Characteristics of enrichment in the low-risk group included Tnfa

signaling Via NF-kB, inflammatory response, IL6 jak stat3 signaling,

and interferon-gamma response (Figure 6A). Glycolysis is an essential

condition for the occurrence and development of tumors (7, 31). High-

risk samples may present a worse prognosis for BC patients by

upregulating the glycolytic pathway. High MYC targets v1 and v2

scores were related to both increased pro- and anti-cancerous immune

cell infiltration in ER-positive BC (32). Extremely crucial nuclear

transcription factors involved in controlling the cell cycle are encoded

by the E2F family (33, 34). Triple-negative breast cancer tumorigenicity is

aided by transcriptional regulation of CCNA2 expression by E2F1 (35).

To control cell proliferation, the G2M checkpoint also functions as a cell
A B

D

E F

G H

C

FIGURE 5

Clinical correlation analysis and gene mutation analysis. (A–C)Prognostic ROC analysis in 1, 3, and 5 years, respectively. (D) The representative gene
variants in the groups at high and low-risk groups. (E) The two risk groups have differences in tumor mutation burden (TMB) levels. (F) The correlation
between TMB and risk score. (G, H) Correlation analysis between TMB and prognosis.
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cycle regulatory route. As a result, these pathways, which were more

prevalent in the high-risk group, may play a crucial role in controlling

tumor development in BC. To explore the TME of high-and low-risk

group samples, we used ssGSEA to evaluate the composition of immune

cells between two risk groups. Figures 6B, C show that in the tumor

microenvironment of patients in the high-risk group, immune cell

infiltration is generally lower than that in the low-risk group.
3.6 Immune landscape and immunotherapy

To further understand the distribution and correlation of the relative

content of 22 tumor-infiltrating immune cells (TICs) in the TCGA-BC

cohort, we measured the level of immune cell infiltration in each sample

using the CIBERSORT method. We found that immune cell infiltration
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was overall higher in the low-risk group than in the high-risk group. NK

cells and T cell CD4+ infiltrated more in the high-risk group.

(Figure 7A). The low-risk group then had higher stromal scores,

immunological scores, and ESTIMATE scores (P<0.001), indicating a

higher overall immune level and immunogenicity of the TME in that

group.We also looked at tumor purity, and the results showed a positive

correlation between the two (Figures 7B, C).
3.7 Immune checkpoint analysis and
immunotherapy response assessment

We also examined the differences in immune checkpoint

expression between the two groups because immunological

checkpoints are crucial for the efficacy of immunotherapy in
A

B C

FIGURE 6

Enrichment analysis and functional annotation. (A) GSVA shows the enrichment of hallmark gene sets in different risk subgroups. (B, C) The ssGSEA algorithm
was used to evaluate the differences in immune cells and immune-related functions between high- and low-risk subgroups. The *** represents P<0.001.
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malignancies. The bubble map revealed the correlation between the

model genes and 46 immune checkpoint genes (Figure 8A). IGKC,

STK17A, FABP7, MMP7, JAK1, BTG1, and SNX3 were significantly

correlated with immune checkpoint genes. 37 immune checkpoint

genes were significantly upregulated in low-risk people. The

expression of only one immune checkpoint gene ICOSLG was

observed in the high-risk group and was called high in the low-risk

group (Figure 8B). Patients with this subtype of tumor might benefit

from targeted therapy against immunological checkpoints that have

increased expression. Furthermore, IPS can contribute to screening

patients who are susceptible to immunotherapy. In our research, the

low-risk subtype has higher IPS and blocker scores than the high-risk

subtype, highlighting that low-risk patients may be more susceptible

to immune checkpoint inhibitors (ICIs) treatment and derive more
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significant benefits (Figure 8C). Regarding how TMB and

immunotherapy interact, to determine if patients with various risk

patterns respond to immunotherapy differently, a tumor immune

dysfunction and exclusion (TIDE) analysis was performed. According

to the findings, the high-risk group responded to immunotherapy

better since they had a lower TIDE score and risk score was negatively

correlated with TIDE (Figure 8D).
3.8 Expression of SNX3 in BC samples

Analysis of the survival prognosis of SNX3 in the TCGA showed that

BC patients with high expression of SNX3 had a poor prognosis

(Figure 9A). At the same time, we found that compared with normal
A B

C

FIGURE 7

Analysis of immune microenvironment. (A) The distribution and association of the 22 tumor-infiltrating immune cells (TICs) in the TCGA-BC cohort.
(B, C) Correlation analysis of immune score and risk score, ESTIMATE score and risk score, Stromal score and risk score, tumor purity and risk score.
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tissues, SNX3 has a higher expression level in BC tissues (Figure 9B). As is

shown in the bar plot of theGOenrichment analysis of SNX3 (Figure 9C).

We did the same validation with ten pairs of BC tissue samples from our

hospital. In clinical samples, we observed similar expression trends

(Figure 9D). Figure 9E indicated that the expression of SNX3 was

significantly decreased in transfected MDA-MB-231 and MCF-7 cells.
3.9 Experimental validation of SNX3

After the knockdown of SNX3, MDA-MB-231 and MCF-7 cell

lines significantly reduced their ability to form colonies (Figure 10A).

In the 5-ethynyl-2 deoxyuridine (EdU) assay, after the knockdown of
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SNX3, the proliferation of MDA-MB-231 and MCF-7 cell lines were

greatly reduced, suggesting that the SNX3 may progress proliferation

(Figure 10B). Healing and transwell assay in Figures 10C, D showed

that after SNX3 knockdown, cells migrate and invade more slowly

than disordered siRNA, indicating that SNX3 knockdown may

weaken the migration and invasion of MDA-MB-231 and MCF-7

cell lines. The difference was statistically significant.
4 Discussion

Breast cancer has become cancer with the highest incidence in the

world, and its heterogeneity makes the classification and treatment of
A

B

D

C

FIGURE 8

Correlation analysis of immune-checkpoint and treatment response. (A) Correlation between model gene and immune checkpoint. (B) Differences in the
abundance of immune-checkpoint-related genes between high and low-risk groups. (C) Differences in IPS reactivity between high and low-risk groups.
(D)The difference in TIDE scores between high and low-risk groups. (*P<0.05, **P<0.01, ***P<0.001). The ns indicates No significance.
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BC enter the era of precision treatment (1). With the success of

immunotherapy, BC, which was previously considered “weakly

immunogenic”, has also entered the stage of immunotherapy.

Immunotherapy of BC has proved to be a challenge in the era of

personalized treatment. The interaction between cancer cells and the

immune system is a complex, dynamic, and constantly changing

process (36). Unlike targeted therapy and endocrine therapy, which

effectively guide attacks by identifying targets with biological markers,

there are no therapeutic markers for immunotherapy. Up to now,

predictors of BC immunotherapy response have included PD-L1

status, TMB, immunogenomic features, and TILs; however, none of

them has sufficient evidence to be used as a stratification factor (37).

Therefore, further exploration of biological mechanisms and

prognostic biomarkers for BC may provide an opportunity to
Frontiers in Endocrinology 13
identify BC subtypes and thus improve precision-focused treatment

of BC in the future.

The metabolism of amino acids plays a significant role in

controlling the immune response in the tumor microenvironment

(38). Unlike conventional cancer treatment modalities,

immunotherapy reverses the immune balance in the tumor

microenvironment by restoring the proliferation and effector

functions of immune cells and ultimately assists the autoimmune

system in killing tumor cells (39). Clinical studies have demonstrated

that the complexity of etiology, individual variances, and the variety

of tumors are all strongly correlated with the success of

immunotherapy. Therefore, it is important to further investigate the

role of metabolic reprogramming in TME formation and

maintenance to improve tumor immunotherapy. Metabolic
A

B

D E

C

FIGURE 9

Expression analysis and experimental validation of SNX3. (A) Expression of SNX3 in normal and tumor tissues of BC. (B) The overall survival (OS) analysis
of SNX3 in the TCGA cohort. (C) GO enrichment analysis of SNX3. (D) PCR assay of clinical samples. SNX3 was highly expressed in BC. (E) SNX3 was
knocked down in MCF-7 and MDA-MB-231. (*P<0.05, **P<0.01, ***P<0.001).
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phenotypes evolve with cancer and new dependencies emerge in the

context of treatment resistance and metastasis, and drugs that target

the reprogramming of amino acid metabolism within the tumor

microenvironment in concert with cancer immunotherapy have far-

reaching implications in clinical treatment (40). Initially, the goal of

tumor immunotherapy was to increase the signaling pathways that T

cells activate. Immune checkpoint blockade therapy also improves

tumor infiltration and T cell effector functions by reprogramming

amino acid metabolism in addition to tumor immunotherapy’s

targeting of glucose and lipid metabolism (41). For example,

increased uptake of glutamine during T-cell activation and PD-1
Frontiers in Endocrinology 14
signaling resulted in reduced expression of the corresponding

transporter proteins SLC38A1 and SLC38A2 by T cells and

concomitantly reduced catabolism of branched-chain amino acids

(including valine and leucine) (42). Therefore, inhibiting the immune

checkpoint receptor releases the restriction on T cell differentiation by

reprogramming glutamine metabolism, and tissues from patients who

received immune checkpoint blocker showed increased T cell

infiltration as well as upregulation of interferon regulatory gene

expression (ICB) (43). Interferon IFN-y can down-regulate the

expression of transporter proteins SLC7A11 and SLC3A2 in tumor

cells, inhibit the input of cysteine required for glutathione synthesis,
A

B

D

C

FIGURE 10

In vitro experiment after SNX3 knockdown. (A) After SNX3 knockdown, the cloning ability of MDA-MB-231 and MCF-7 cell lines decreased significantly.
(B) EdU test. After SNX3 knockdown, the proliferation ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (C) Healing test. After SNX3
knockdown, the migration ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (D) Transwell assay. After SNX3 knockdown, the migration
and invasion abilities of MDA-MB-231 and MCF-7 cell lines were significantly decreased. (*P < 0.05, **P < 0.01, ***P < 0.001).
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cause intracellular glutathione depletion, and thus indirectly lead to

glutathione peroxidase-4 (GPX4) inactivation and ultimately induce

iron death in tumor cells (44). Thus, the close link between amino

acid metabolism and T-cell immunity has led to the progressive

emergence of amino acid metabolic reprogramming as an important

target for cancer immunotherapy.

We constructed a novel survival risk signature by Glutamine

metabolism-related genes, which performed well in both TCGA

internal and GEO external validation cohorts. The AUC values

exceeded 0.8 at 1, 3, and 10 years, while a maximum AUC value of

0.868 was detected at 1 year. In addition, a nomogram combining

prognostic models and clinicopathological factors was established.

Compared with other traditional features such as TNM, the PRS

showed the best accuracy and discriminative power in predicting OS.

T cells and macrophages are the main representatives of the

lymphoid and myeloid lineages of the immune system, respectively.

While glutamine stimulates the polarization of M2 macrophages via

the Gln-UDP-GlcNAc pathway and a-ketoglutarate generated by

glutamine degradation, amino acid metabolism can also drive the

activation and proliferation of T cells (45). The data confirm that M2

macrophages have tumor-promoting effects in vitro, and our study

found more M1 macrophage infiltration in the bottom-risk group and

more M2 macrophages in the high-risk group, suggesting a rationale

for developing cancer therapies that target TAMs (46). Tumor cells

must upregulate extracellular absorption in addition to glutathione

synthesis to preserve tumor cell viability because they can regulate

ROS levels through glutathione and NADPH created by glutamine

metabolism to prevent chromosomal instability brought on by high

levels of ROS (11). Our results suggest that low PRS patients respond

better to immunotherapy. Therefore, glutamine metabolism and

immunotherapy may have an exceedingly close relationship. Studies

have shown that patients with high TMB have significantly higher

rates of both progression-free survival and overall survival. Regardless

of tumor type and detection modality, TMB is a reliable biomarker for

predicting the effect of immunotherapy (47). In our study, we found

that TMB levels were positively correlated with risk scores, suggesting

that patients in the high-risk group may be more suitable for

immunotherapy. TIDE stands for tumor immune dysfunction and

rejection. It is a computational framework for assessing the likelihood

of tumor immune escape in the gene expression profile of tumor

samples (48). A higher TIDE score implies a higher likelihood of

immunosurveillance escape and a lower success rate of

immunotherapy. In our study, the TIDE score was found to be

negatively correlated with the risk score, again suggesting that

patients in the high-risk group may be more suitable for

immunotherapy. Next, we evaluated the correlation between the

genes used to construct the models and immune checkpoints. We

found that IGKC, STK17A, FABP7, MMP7, JAK1, BTG1, and SNX3

have a strong correlation with immune checkpoints, and these model

genes may become the targets of immunotherapy for BC patients.

Immune Checkpoint is a class of immunosuppressive molecules

that are expressed on immune cells and can regulate the degree of

immune activation. Tumor cells express substances that activate

immune checkpoints, which, once activated, prevent antigen

presentation to T cells, blocking antigen presentation in tumor

immunity and inhibiting T cell immune function. Sorting linker

protein 3 (SNX3) is a high-risk gene with a strong correlation with
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immune checkpoints in our construct signature. Therefore, we

decided to perform in vitro experiments on this gene to explore its

effect on BC. We found that SNX3 was highly expressed in BC tissues

through TCGA database analysis; meanwhile, BC patients with high

SNX3 expression had poorer survival. Our in vitro experiments

showed that the knockdown of SNX3 expression significantly

reduced the activity, invasion, and migration ability of BC cells.

This adds to the evidence that SNX3 plays a role in BC. Many

previous studies have shown that SNX3 has a function in malignant

tumors. Through the miR-520a-3p/SNX3 axis, LINC01614

accelerates the progression of osteosarcoma (49). Through the b-
linked protein pathway, SNX3 prevents the migration and invasion of

colorectal cancer cells by reversing the epithelial-to-mesenchymal

transition (50). In our study, SNX3 was also found to be a potential

target for BC.
5 Conclusions

In conclusion, our results suggest that the model constructed with

GRGs can well predict the prognosis of BC patients. In addition, we

have validated the function of SNX3 in BC through cellular

experiments and screened candidate Immune checkpoint inhibitors

for BC. These findings may provide insights for the development of

new treatment strategies for BC.
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