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Diabetic nephropathy (DN) is the most common microvascular complication in

diabetes and one of the leading causes of end-stage renal disease. The standard

treatments for patients with classic DN focus on blood glucose and blood

pressure control, but these treatments can only slow the progression of DN

instead of stopping or reversing the disease. In recent years, new drugs targeting

the pathological mechanisms of DN (e.g., blocking oxidative stress or

inflammation) have emerged, and new therapeutic strategies targeting

pathological mechanisms are gaining increasing attention. A growing number

of epidemiological and clinical studies suggest that sex hormones play an

important role in the onset and progression of DN. Testosterone is the main

sex hormone in males and is thought to accelerate the occurrence and

progression of DN. Estrogen is the main sex hormone in females and is

thought to have renoprotective effects. However, the underlying molecular

mechanism by which sex hormones regulate DN has not been fully elucidated

and summarized. This review aims to summarize the correlation between sex

hormones and DN and evaluate the value of hormonotherapy in DN.
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Introduction

Diabetic nephropathy (DN) is one of the most common and serious complications of

diabetes mellitus and a major cause of chronic kidney disease and end-stage renal disease

(ESRD) (1–4). The occurrence and progression of DN are closely related to patient blood

glucose levels, blood pressure, genetic background and age (5, 6). Unlike other renal

diseases, once macroalbuminuria occurs, DN will remain throughout life, which makes DN

a major cause of death in patients with diabetes. DN patients at the end stage of renal failure

rely on dialysis and kidney transplantation. Therefore, preventing and treating DN has

become a pressing problem worldwide. Many studies have shown that the occurrence and

development of DN are closely correlated with sex (7). In addition to social roles,

psychological cognition and behavioral habits, the most important difference between

the sexes is sex hormones. Especially in women, sex hormones vary greatly throughout life,

from infancy to adolescence, sexual maturity, pregnancy, perimenopause and
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postmenopause. However, the underlying molecular mechanism by

which sex hormones regulate DN has not been fully elucidated.

Moreover, based on the impact of sex hormone imbalances on the

development of DN, hormone therapy in patients with diabetes may

alleviate diabetic kidney injury to a certain extent and is a

potentially valuable therapeutic strategy for DN patients.

In this article, we summarized the effects of sex hormone

changes on DN development by searching and reviewing

published articles. We hope our work will provide information on

the correlation between sex hormones and DN and provide new

clues for the treatment of DN.
Sex hormones

Sex hormones are steroidal hormones synthesized mainly by the

gonads, the placenta, and the reticular cortex of the adrenal gland in

animals. In female animals, the ovaries mainly secrete two types of

sex hormones: estrogen and progesterone. In male animals, the

testes secrete androgens, mainly testosterone.

The synthesis of sex hormones is based on cholesterol, which is

converted to pregnenolone by cytochrome P-11A (CYP11A).

Pregnenolone can be converted to progesterone by 3bHSDI and

transported from the outer mitochondrial membrane to the inner

mitochondrial membrane by transporters (8). There are two ways to

synthesize androstenedione. First, pregnenolone is converted to

dehydroepiandrosterone by CYP17 and then to androstenedione;

second, progesterone is converted to 17a-hydroxyprogesterone and
then to androstenedione (8). Androstenedione is converted to

testosterone by the enzyme 17HSD3, which is converted to

estradiol via aromatase (CYP19) (8, 9). Figure 1 shows the

synthesis of sex hormones.

Most sex hormones are metabolically inactivated in a similar

manner: by forming more water-soluble conjugates, such as
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glucuronides or sulfate esters, in metabolic organs, such as the

liver and kidneys. These conjugates are then excreted in urine or

secreted into the intestine with bile and excreted in feces (10, 11).
Testosterone

Testosterone is a steroid hormone. It is the main sex hormone

and anabolic hormone in the male body and is mainly synthesized

by the interstitial cells of the testicles. Other organs, such as the

adrenal glands and ovaries, also produce small amounts

of testosterone.

Androgen receptor (AR) is encoded by the AR gene on the X

chromosome and is widely distributed in various tissues and organs,

including the endothelium and kidney (12). AR plays an important

role in the development and maintenance of the reproductive,

musculoskeletal, cardiovascular, immune, neurological and

hematopoietic systems (12, 13). When not bound to testosterone,

AR is bound in the cytoplasm by heat shock protein (HSP) and

chaperone proteins. When interacting with testosterone or

dihydrotestosterone, AR is released from HSP and chaperone

proteins and translocates to the nucleus to produce the

corresponding biological effects (14). Sankar et al. reported that

AR was a key determinant of the response to testosterone, and

circulating levels of testosterone can influence spatial cognition in

adult males (15).
Estrogen

Estrogens are produced by the placenta and ovaries of female

animals and promote the development of secondary sexual

characteristics and the maturation of sexual organs in females.

There are three main types of estrogens in females, estrone (E1),

estradiol (E2) and estriol (E3). These estrogens play important roles

in regulating many physiological functions, such as cell

proliferation and differentiation, development, body homeostasis

and metabo l i sm (16–20) . Unde r phys io log i ca l and

pathophysiological conditions, the effects of estrogen are mediated

by estrogen receptors a/b and G protein-coupled estrogen receptors

(GPER). These receptors are involved in the development of many

diseases, including DN, cancer, neurodegenerative diseases, and

cardiovascular, metabolic and autoimmune diseases (21–24).
Alterations in sex hormones
in diabetes

Alterations in sex hormones between
the sexes

Under physiological conditions, sex hormone levels and their

functions in men and women alter with increasing age. Both

testosterone and estrogen have been found to decline with age in

men and women (25–28). Gambineri et al. summarized the reasons

for the difference in circulating sex hormone levels between the
FIGURE 1

Synthesis of sex hormones.
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sexes, and they believed that it is due to the difference in the

synthesis site of sex hormones, the conversion rate of sex hormones

to each other, and the binding degree of sex hormones to sex

hormone binding globulin (SHBG) in the two sexes (29).
Alterations in sex hormones in diabetes

Diabetes can cause an imbalance in sex hormones in patients

(30). Studies have shown that compared with men without diabetes,

men with diabetes have decreased levels of testosterone and

increased levels of E2. However, testosterone levels are higher and

E2 levels are lower in women with diabetes than in those without

diabetes, suggesting that diabetes is associated with an imbalance in

sex hormones (30–37). In females with diabetes (compared with

females without diabetes), the decreased level of E2 may reduce

creatinine clearance and increase urine albumin excretion and

tubular fibrosis in the kidney, which may increase the risk of

developing renal complications (38).

Insulin levels have a significant impact on the functional

regulation of the hypothalamic-pituitary-gonadal axis (HPGA) (39).

Normally, insulin is secreted by pancreatic b cells. Then, it binds to

insulin receptors and activates intracellular protein tyrosine kinase

(PTK). Activated PTK can phosphorylate and activate insulin

receptor substrates (IRS) to activate phosphoinositide 3-kinase

(PI3K). The activated PI3K signaling cascade enhances

gonadotropin-releasing hormone (GnRH) secretion in the

hypothalamus, which stimulates the pituitary secretion of

luteotropic hormone (LH) and follicle-stimulating hormone (FSH)

and eventually induces the release of sex hormones by the gonads

(40). Approximately 5% of sex steroids are present in the blood and

enter cells through specific receptors on the plasmalemma (41).

During diabetes, altered levels of SHBG, increased levels of

oxidative stress and increased levels of CYP19 activity are present

in adipose tissue. This results in the conversion of testosterone and

androstenedione to estradiol and estrone, respectively, which

contribute to reducing serum testosterone concentrations in men

with diabetes (42–47). In addition, the disruption of glucolipid

metabolism, the reduced bioavailability of insulin during diabetes

and the reduced activity of CYP19 in the ovaries of diabetic rats, as

determined by Bozkurt et al., might be responsible for the reduced

levels of estradiol in females with diabetes (48–50).

The level of insulin can be affected by leptin. Leptin is a type of

adipokine that is secreted by adipose tissue. It can regulate energy

metabolism and may regulate reproductive function by regulating the

release of GnRH in the hypothalamus (39, 51, 52). The level of insulin

can also affect the generation of leptin (53, 54). Under normal

circumstances, leptin phosphorylates IRS-2 on hypothalamic leptin

receptors, activating PI3K and stimulating the release of GnRH (55,

56). Under diabetic circumstances, the feedback between insulin and

leptin is disordered, thus impairing the release of GnRH and

ultimately reducing sex hormone secretion.

In contrast, altered levels of sex hormones may be a

predisposing factor for diabetes. CYP19 is the limiting enzyme for

estradiol synthesis. Jones et al. found that in aromatase-knockout

(ArKO) female mice, glucose oxidation was decreased and obesity
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and insulin levels were increased (57). A study showed that

decreased CYP19 activity combined with low concentrations of

dihydrotestosterone (DHT) downregulates the expression of

transforming growth factor-b (TGF-b) and type IV collagen and

inhibits the level of glomerulosclerosis and tubular interstitial

fibrosis, thus attenuating the progression of renal complications

in male diabetic rats (35). Takeda et al. showed that a short-term E2

treatment could reverse the development of glucose intolerance and

insulin resistance by enhancing lipid metabolism in male ArKO

mice (58).
Role of sex hormones in the
development of DN

Sex differences in the development of DN

The occurrence and development of DN are affected by sex to a

great extent (59–61). Observations in humans and animals showed

that the level of sex steroids in males and females are altered by DN.

Plasma testosterone levels in men were decreased to levels similar to

those in women, while plasma estradiol levels in women were

decreased to levels similar to those in men. In many DN models,

male animals tend to progress more quickly than female animals. In

type 1 and type 2 diabetes, the prevalence of microproteinuria and

macroproteinuria is higher in males than in females, and the risk of

microproteinuria and progression to macroproteinuria is also

higher (7, 62–65). This phenomenon is also seen in nondiabetic

renal diseases. Neugarten et al. found that men with chronic renal

disease show a more rapid decline in renal function than women

with chronic renal disease (66).

However, other studies showed an opposite result, as they

reported that women with diabetes have a higher risk of

progressing to ESRD than men with diabetes (67). When the

women with diabetes included in the statistics were older

(postmenopausal), they had a higher rate of progression to ESRD

(68). In the Irbesartan DN trial and the angiotensin II (AngII)

receptor antagonist Losartan study, postmenopausal women with

diabetes developed end-stage renal disease at a faster rate than men

with diabetes (69, 70). In addition, age at diagnosis of type 1

diabetes also has an impact on the timing of the onset of ESRD

in both sexes. Men diagnosed with type 1 diabetes before puberty

had a delayed onset of ESRD, while women diagnosed at puberty

face a higher risk of ESRD (71, 72).
Role of testosterone in DN

The risk of renal complications in men with diabetes is higher

than that in premenopausal women with diabetes. Testosterone is

considered to be more conducive to the genesis of DN in males.

Kang et al. reported that men have a higher risk of renal

complications (73). Sharon et al. reported that the decrease in

testosterone may partly attenuate kidney injury in males (74). Jan

et al. reported that men with type 1 diabetes have a higher risk of

ESRD and mortality (75). In contrast, the effect of testosterone on
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the progression of DN in females with diabetes is rarely mentioned,

and females are considered to be less influenced by

testosterone (73).
Role of estrogen in DN

Changes in estrogen levels affect the occurrence of DN, and

estrogen may have different effects in males and females with

diabetes (76, 77). As mentioned above, the level of circulating

testosterone in men with diabetes is decreased, while the level of

E2 is increased (33, 36, 37). The increased level of E2 may increase

the risk of renal complications in men (38, 60, 78). In male STZ-

induced diabetic rats, inhibition of testosterone transformation to

estradiol attenuates inflammation and the expression of type IV

collagen and TGF-b; hence, the progression of DN is reduced (78).

As the most important sex hormone in women, estrogen has

been shown to prevent podocyte apoptosis. Estrogen can also

inhibit type I/IV collagen synthesis in mesangial cells and

promote the degradation of the extracellular matrix, which are

critical factors that induce tubular fibrosis (79–81). The effect of

estrogen on the female kidney may vary at the postmenopause

stage. William et al. reported that women at the postmenopause

stage have a higher risk of renal complications (70). Lewis et al.

found that kidney function was reduced in women with diabetes

with an average age of 58 (69). Studies have shown that women who

undergo ovariectomy (OVX) have a higher risk of diabetes and

other complications (82–84). Mankhey et al. reported that in STZ-

induced diabetic female rats, OVX could enhance DN, whereas 17-

b-estradiol replacement therapy could attenuate DN (38).

Therefore, estrogen is considered to have a renal protective

function in women with diabetes.
Sex hormones affect the genesis of DN and
its underlying mechanisms

Patients with diabetes who progress to nephropathy have

significantly higher initial mean blood pressure, cholesterol,

HbA1c, low-density lipoprotein (LDL) cholesterol and triglyceride

levels (85). The development of DN includes renal hemodynamic

changes, sugar/lipid metabolic disorders, and the effects of oxidative

stress and inflammation. These changes cause glomerular basement

membrane thickening, mesangial matrix accumulation, glomerular

sclerosis and tubular epithelial cell injury, which eventually lead to

renal tubular fibrosis, proteinuria and the leakage of large molecules

(86–88).

●Oxidative stress and inflammation
In the diabetic state, NADPH oxidases (Nox proteins) are

activated to produce excess reactive oxygen species (ROS)

through the electron transport chain (89). When too many ROS

accumulate, they attack organs, including the kidney, and this is

accompanied by the depletion of antioxidants. Additionally, the

oxidative/antioxidant system balance is disrupted, resulting in

oxidative stress (89, 90). The kidney contains a high density of
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mitochondria. Excess ROS lead to oxidative damage to

mitochondrial proteins and mitochondrial DNA (mtDNA). Then,

the kidney fails to filter and reabsorb Na+, glucose and other

metabolites from the urine, and vascular permeability is increased

(91, 92). Testosterone may reduce the activation of STAT3 to

increase the production of ROS (93). Mustafa and Mehmet found

that estradiol had positive effects on the antioxidant defense system

and tissue lipid peroxidation in OVX diabetic rats, possibly by

enhancing the antioxidant activities in the kidney, thus protecting

against diabetes (94). Hong et al. found that estrogen can inactivate

Nox, inhibit the production of superoxide anions, and reduce

oxidative stress in the kidney, thus reducing kidney injury (95, 96).

The high glucose environment of diabetes also leads to

increased production of advanced glycation end products (AGEs),

which interact with their receptor RAGE to activate NF-kB. Then,
inflammatory r e sponse s occur , p roduc ing mul t ip l e

proinflammatory and profibrotic molecules (97–100). T and B

lymphocytes are subsequently activated (101). Activated T

lymphocytes can produce proinflammatory cytokines (e.g., IL-17,

IL-6, TNF-a and IFN-g) or recruit and activate macrophages (102–

108). Activated B lymphocytes can induce the formation of

inflammatory immune complexes and produce proinflammatory

cytokines (e.g., IL-6, IL-10 and TNF) (106, 109–111). After

proinflammatory cytokines are released, the cascade amplifies the

NF-kB signal, produces more proinflammatory cytokines and

recruits adjacent macrophages to the inflammatory site in tubules,

which leads to kidney infiltration, increases the expression of

proinflammatory and profibrotic molecules (e.g. type I/IV

collagen and TGF-b), and exacerbates renal tubular fibrosis

(101, 111).

In the diabetic state, testosterone can phosphorylate and

activate C-jun (a molecule that functions in renal inflammation)

(112–114). Activated C-jun may upregulate monocyte

chemoattractant protein-1 (MCP-1) expression. This promotes

tubular epithelial cells to attract macrophages to the injury site of

tubules, causing local inflammation and tubular cell apoptosis. The

activation of C-jun can also upregulate the expression kidney injury

molecule-1 and directly induce tubular fibrosis (114, 115). In SD

male rats, once inflammation occurs in the kidney, testosterone can

upregulate the expression of the proinflammatory cytokine TNF-a
to exacerbate the inflammatory response and increase the

expression of profibrotic substances to promote tubule epithelial-

mesenchymal transition (EMT) and promote renal fibrosis (116).

Tubular fibrosis is the outcome of the inflammatory response in

the kidney and is led by TGF-b (a key molecule that can stimulate

the production of several extracellular matrix proteins that

accumulate in the diabetic kidney, including type IV collagen,

fibronectin and laminin). EMT of the renal tubular epithelium

leads to tubular fibrosis (117, 118). In the state of diabetes, DHT

upregulates the expression of TGF-b in diabetic male rats and

accelerates the production of the early fibrosis marker connective

tissue growth factor (CTGF). Additionally, epithelial cells acquire a

fibroblast phenotype, leading to the genesis of tubular fibrosis (60).

Estrogen can interfere with the expression of TGF-b and its

downstream signaling pathway via members of the small mother

against decapentaplegic (Smad) protein family (Smad2/Smad3/
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Smad6/Smad7) (80, 119). Studies have shown that in STZ-induced

diabetic female rats, E2 regulates the activity of TGF-b by

downregulating profibrotic signaling molecules (Smad2, Smad3)

and upregulating antifibrotic signaling molecules (Smad6, Smad7)

(80). Thus, E2 can reduce proteinuria and ECM protein expression

associated with diabetic glomerulosclerosis and renal tubular

fibrosis and play a renoprotective role in females with diabetes

(80). Regulation of casein kinase II (CK2) is another mechanism by

which E2 may regulate TGF-b activity. CK2 is a serine/threonine

protein kinase that, when activated, phosphorylates early growth

reactivity 1 (EGR-1). EGR-1 typically binds to specific protein 1

(Sp1), preventing Sp1 from binding to target sequences. Ck2

induces EGR-1 phosphorylation in response to TGF-b to prevent

the formation of the EGR-1/Sp1 complex, and the level of free Sp1

increases. Sp1, in turn, binds to target sequences in the promoters of

type IV collagen and increases its synthesis. In murine mesangial

cells, E2 treatment prevented the TGF-b-induced increase in CK2

expression and activity, thereby inhibiting TGF-b signaling and

type IV collagen upregulation (120).

In addition to regulating TGF-b expression and activity in renal

cells, E2 can also indirectly regulate TGF-b in the kidney by regulating

macrophage infiltration. Macrophages are a key source of TGF-b in

diabetic kidneys. In a spontaneously hypertensive rat model of kidney

disease, the level of macrophage infiltration in the kidney was higher in

males than in females, and OVX in females increased the number of

macrophages. Similarly, OVX in diabetic female rats increased

macrophage infiltration, and this effect could be normalized by E2

treatment (80, 121). These data suggest that E2 inhibits macrophage

infiltration, thereby preventing the production of TGF-b by a major

source and potentially protecting the kidney from injury.

●Hemodynamic changes
Increases in ROS are generated by persistent hyperglycemia and

can lead to dilatation of the afferent glomerular arteriole,

hyperfiltration, hypertransfusion and high internal pressure in the

kidney in the early stages of diabetes (122). A prolonged high

filtration load due to high glucose increases sodium-glucose

cotransporter protein 2 levels in the proximal tubules, and the

resorption of glucose and sodium chloride increases. This leads to

dysfunctional tubuloglomerular feedback and results in the

disruption of the afferent/efferent arteriole balance and increased

glomerular unit plasma flow (123). This abnormal status ultimately

increases the renal glomerular filtration rate (GFR) and

causes glomerulosclerosis.

Before adolescence, sex does not play a significant role in the

incidence of DN (124). With aging and the occurrence of chronic

complications associated with diabetes mellitus, DN tends to begin

earlier in men than in women because testosterone can activate the

renin-angiotensin-aldosterone system (RAAS) (73). The RAAS is

one of the primary control systems that regulates the balance of

blood pressure and fluids, and the kidney is the organ that activates

the RAAS. The major bioactive hormone in the RAAS is AngII,

which is cleaved from angiotensinogen and can promote

vasoconstriction, fibrosis, inflammation and apoptosis (125–128).

AngII receptors can be divided into two types according to their

length: ATR1 (40 kDa) and ATR2 (41 kDa). ATR1 is considered to
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be associated with increased blood pressure and vasoconstriction,

while AT2R is considered to be associated with reduced blood

pressure and inflammation inhibition (127, 128). DHT upregulates

ATR1 expression in sexually mature SD male rats (73). The activity

of AngII might be modulated by angiotensin-converting enzyme 2

(ACE2) or 3b-HSD4 in males. ACE2 is a zinc metalloproteinase

that may degrade AngII to Ang-(1-7) (128–130). Oudit et al. found

that the loss of ACE2 exacerbated the degree of glomerulosclerosis

in male mice (131). 3b-HSD4 is a ketone reductase whose activity is

regulated by angiotensin; it can reduce testosterone and

progesterone to inactive metabolites. Under normal conditions,

3b-HSD4 protects the kidney from the potential negative effects

of testosterone; in patients with diabetes with increased AngII levels,

the loss of 3b-HSD4 activity may increase the susceptibility of the

kidney to testosterone-induced damage (132).

Estrogen has a regulatory effect on the RAAS. It can attenuate

AngII-induced hypertension and reduce renal insufficiency (73,

130, 133–135). Nitric oxide (NO) can dilate blood vessels, and

endothelial cells produce NO through endothelial nitric oxide

synthase (eNOS) to regulate vascular tone (136). NO can

counteract the vasoconstrictive effects of AngII (137). Acute

hyperglycemia induces a state of oxidative stress in the

endothelium, which reduces NO production and leads to

endothelial dysfunction (137). Estrogen can upregulate eNOS

expression to accelerate NO release or increase NO bioavailability

to relax blood vessels and lower blood pressure, thereby reducing

glomerular sclerosis (138–141). Estrogen can also stimulate NO

release and attenuate glomerular sclerosis and renal fibrosis by

upregulating ATR2 expression in the renal medulla (142).

●Metabolic disorders
There are two aspects of abnormal glucose metabolism in

patients with diabetes. AGEs bind to their receptors to activate

the NF-kB pathway and stimulate the production of vascular

endothelial growth factor (VEGF), TGF-b and MCP, leading to

glomerular podocyte loss, expansion of the glomerular extracellular

matrix and progressive glomerulosclerosis (143). Second, protein

kinase C is activated by high glucose levels. This results in decreased

production of eNOS and increased production of VEGF, which

destabilize the endothelial microenvironment and activate the NF-

kB pathway. The NF-kB-mediated inflammatory response leads to

tubular fibrosis (99).

Persistent hyperglycemia in patients with diabetes can promote

fatty acid synthesis and triglyceride accumulation. Excessive lipid

accumulation in the glomerulus and renal tubules leads to podocyte

dysfunction and damage to proximal tubular epithelial cells and

tubular interstitial tissue (144). In addition, proteinuria in patients

with diabetes may also serve as a carrier of fatty acids in urine. This

leads to the accumulation of fatty acids in the kidney, thus

exacerbating renal tubular injury in patients with diabetes (145).

In OVX diabetic female rats, due to the lack of estrogen, lipid

metabolism disorders occur, and fasting blood glucose levels and

the insulin resistance value (HOMA-IR) were significantly

increased compared with those in the control group (146).

Generally, glucose/lipid metabolic disorders may induce DN

through oxidative stress, inflammation and hemodynamic changes.
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Therefore, the role of sex hormones in the modulation of these

processes is the same as stated above.

The effects of sex hormones that may function in the

occurrence of DN are illustrated in Figure 2, and the molecules

affected by sex hormones in the progression of DN are listed

in Table 1.
Effects of sex hormone replacement
therapies for DN

Effects of sex hormone replacement
therapies in females with DN

Using E2 supplementation therapy for DN obtains good

results in reducing kidney injury in women; for example,

Szekacs et al. reported that in postmenopausal women with DN,

estradiol supplementation reduces albuminuria (147). Raloxifene

is a type of selective estrogen receptor modulator. It may attenuate

glomerulosclerosis and albuminuria in women with DN and slow

the progression of nephropathy (148–151). In addition, Bahaa

et al. also found that progesterone treatment can attenuate DN in

females (152). However, the risk or side effects of sex hormone

therapies are nonnegligible. Eliassen et al. reported that E2

supplementation in premenopausal women increases their risk

of breast cancer, but Dixon et al. found that raloxifene does not

have side effects similar to those of E2 (149, 153). Moreover, the

side effects of progesterone in the treatment of DN have been less

frequently reported (152).
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Effects of sex hormone replacement
therapies in males with DN

Using sex hormone therapy for males with DN has been less

commonly reported. Qin Xu et al. found that DHT has a dose-

dependent effect in DN male rats. DHT at low concentrations (0.75

mg) can partly ease the progression of nephropathy, while DHT at

high concentrations (2.0 mg) has the opposite effects in the

kidney (154).

Icariin is a recently discovered GPER agonist. Qi et al. reported

that icariin has antioxidative stress and antifibrotic effects in DN

male rats, but whether it has side effects is unclear and not

reported (155).

Table 2 summarizes the existing preclinical/clinical/animal

experiments using sex hormone replacement therapies and their

roles in the treatment of DN models.
Conclusions

In summary, many studies have shown that the occurrence and

progression of DN are closely related to sex hormones. Testosterone

can exacerbate DN by activating the RAAS or phosphorylating C-

jun to induce tubular fibrosis, so DN usually progresses faster in

male patients than in female patients. Estradiol can upregulate the

expression of eNOS and increase the level of NO to alleviate the

vasoconstriction effect of AngII to reduce tubular fibrosis. In

addition, estradiol can alter the level of Smad family members

and reduce macrophage infiltration and CK2 activation to alleviate
FIGURE 2

Differential roles of estrogen/testosterone in the pathogenesis of DN. During diabetes, testosterone can increase the renal blood pressure and
inflammatory response, accelerate the epithelial mesenchymal transition, and lead to renal tubular fibrosis in males. In females, estradiol can reduce
renal tubular fibrosis by reducing blood pressure, downregulating the inflammatory response and epithelial mesenchymal transition, and playing a
renoprotective role.
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TABLE 1 Sex hormones affect the pathogenesis of DN and related molecules.

Sex
hormones

Changes in the molecules involved in DN pathogenesis Outcomes Reference

Oxidative stress Inflammation Renal
haemodynamics

Testosterone STAT3↓
ROS↑

C-jun↑
MCP-1↑
TNF-a↑
CTGF↑
Type IV
collagen↑
TGF-b↑

ATR1↑
3b-HSD4↓
AngII↑

Fibrosis↑
Kidney
injury↑

(60, 73, 93, 112–116, 131, 132)

Estrogen Antioxidants (e. g. GSH-Px, GSH and
SOD) ↑
Nox↓
ROS↓

Smad 2/3↓
Smad 6/7↑
CK2↓
Type IV
collagen↓
TGF-b↓

eNOS↑
NO↑
ATR2↑
AngII↓

Fibrosis↓
Kidney
injury↓

(73, 80, 94–96, 119–121, 130, 133–135,
138–142)
F
rontiers in Endo
crinology 07
Annotation: STAT3, signal transducer and activator of transcription-3; ROS, reactive oxygen species; Nox, NADPH oxidases; GSH-Px, glutathione peroxidase; GSH, glutathione; SOD,
superoxide dismutase; MCP-1, monocyte chemoattractant proteins-1; TNF-a, tumor necrosis factor-a; CTGF, connective tissue growth factor; TGF-b, transforming growth factor-b; CK2, casein
kinase II; ATR1, angiotensin II receptors-1; AngII, angiotensin II; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; ATR2, angiotensin II receptors-2.
The symbol "↑" means upregulation.
The symbol "↓" means downregulation.
TABLE 2 Sex hormone replacement therapies in DN.

Drug Research
category

Object Method Outcome Reference

Estradiol Clinical research Postmenopausal
women with DN

Oral estradiol (2mg/day) combined
with norgestrel (0.5mg/day)

Albuminuria↓
CrCl↑

(147)

Preclinical
research/animal
experiment

Female rats with
DN

Estradiol pellets implanting after
OVX (10mg/day)

Albuminuria↓
GSI↓
TIFI↓
Blood glucose level↓

(38)

Preclinical
research/animal
experiment

db/db female
mouse

Subcutaneous implantation of
estradiol pellets after OVX(8.3mg/
day)

UAE↓
Mesangial expansion↓
Fibronectin↓
Blood glucose level↓

(156)

Raloxifene Clinical research Postmenopausal
women with DN

Oral (60mg/day) Albuminuria↓
Risk of vertebral fracture↓
No effect on fasting blood glucose with short-
term raloxifene treatment

(148, 150,
151)

Preclinical
research/animal
experiment

Female rats with
DN

Administering in the phytoestrogen-
free chow (10mg/kg/day)

UAE↓
GSI↓
TITF↓
Type I/IV collagen↓
TGF-b↓
IL-6↓

(149)

Preclinical
research/animal
experiment

db/db female
mouse

Subcutaneous treatment (10mg/kg/
day)

Mesangial area↓
TGF-b↓
Fibronectin↓

(156)

Progesterone Preclinical
research/animal
experiment

Female rats with
DN

Progesterone treatment after OVX
(10mg/kg)

UACR↓
GSI↓
Fibronectin↓
ATR1↓
TGF-b↓

(152)

Dihydrotestosterone Preclinical
research/animal
experiment

Male rats with
DN

Dihydrotestosterone in low
concentrations subcutaneous
implantation (0.75mg/day)

UAE↓
Glomerular sclerosis↓
TITF↓
Type IV collagen↓
TGF-b↓
IL-6↓

(154)

(Continued)
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tubular fibrosis. Thus, estradiol is thought to play a protective role

in DN. Along with that for new targets for treatment, understanding

the effect of sex hormones will provide a new combined therapeutic

strategy for DN. Particular challenges are presented and placed

within the context of future treatments against DN.
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