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Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
With the aging of the population and changes in lifestyle, the incidence of spine-

related diseases is increasing, which has become a major global public health

problem; this results in a huge economic burden on the family and society. Spinal

diseases and complications can lead to loss of motor, sensory, and autonomic

functions. Therefore, it is necessary to identify effective treatment strategies.

Currently, the treatment of spine-related diseases includes conservative,

surgical, and minimally invasive interventional therapies. However, these

treatment methods have several drawbacks such as drug tolerance and

dependence, adjacent spondylosis, secondary surgery, infection, nerve injury,

dural rupture, nonunion, and pseudoarthrosis. Further, it is more challenging to

promote the regeneration of the interstitial disc and restore its biomechanical

properties. Therefore, clinicians urgently need to identify methods that can limit

disease progression or cure diseases at the etiological level. Platelet-rich plasma

(PRP), a platelet-rich form of plasma extracted from venous blood, is a blood-

derived product. Alpha granules contain a large number of cytokines, such as

platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF),

epidermal growth factor, platelet factor 4 (PF-4), insulin-like growth factor-1

(IGF-1), and transforming growth factor-b (TGF-b). These growth factors allow

stem cell proliferation and angiogenesis, promote bone regeneration, improve

the local microenvironment, and enhance tissue regeneration capacity and

functional recovery. This review describes the application of PRP in the

treatment of spine-related diseases and discusses the clinical application of

PRP in spinal surgery.
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1 Introduction

Spine-related diseases place a heavy financial and psychological burden on the general

population (1). These diseases include discogenic low back pain (DLBP) (2), lumbar disc

herniation (3), lumbar disc degeneration (4), spinal cord injury (5), ligament injury (6), and

sacroiliac joint disease (7). The complexity of spine-related diseases depends on numerous
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factors such as age, sex, occupation, and lifestyle. Since 1990, there

has been a sharp increase in the prevalence of spine-related diseases,

which has become one of the main causes of disability in the world

(8). At present, treatment options for these diseases can be divided

into conservative, surgical, and minimally invasive interventional

treatments. However, these treatment methods have several

drawbacks such as adjacent segment disorder, pseudarthrosis,

postoperative recurrence, secondary operation, drug dependence

and tolerance, infection, dural rupture, nerve injury, and expensive

treatment, among others. Moreover, the above treatment schemes

are not satisfactory in promoting intervertebral disc regeneration

and restoring its biomechanical properties such as damping and

vibration reduction. Therefore, finding an effective and

fundamental treatment plan has become a new research direction

to resolve these issues, and can be beneficial for the development of

spine surgery. As a natural cytokine pool (Table 1), platelet-rich

plasma (PRP) promotes endogenous healing and may be an

effective treatment for spine-related diseases (Scheme 1).
2 Current understanding of PRP

2.1 Definition and origin of PRP

As a biological product, PRP is a platelet concentrate obtained

by centrifugation of autologous peripheral blood (16). PRP releases

high concentrations of bioactive molecules. Numerous growth

factors, cytokines, and chemokines are present in their alpha

granules, which play an integral role in regulating the

extracellular matrix (ECM), promoting angiogenesis and

accelerating cell recruitment, proliferation, and differentiation

(17). PRP has been used in maxillofacial surgery because of its

positive anti-inflammatory and cell proliferation properties (18).

Furthermore, with the advancement and development of

technology, the application of PRP appeared in the field of sports

injuries (19). Additionally, PRP has been used in the fields of

urology, gynecology, orthopedics, cardiology, and ophthalmology

(20–24). In recent years, in spine surgery, the application of PRP has

gradually become a new therapeutic tool for the treatment of spine-

related diseases.
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2.2 Preparation of PRP

PRP can be prepared in several ways, and different PRP can be

produced according to different parameters (centrifugal force,

centrifugation time, and temperature) (25). At present, PRP

preparation technology is generally divided into two types: one-

time and two-time centrifugation. The platelet concentration and

PRP activity obtained using different centrifugation times, number

of centrifugation cycles, and centrifugal force are different, and the

recommendations by various researchers are also different. At

present, most researchers believe that PRP obtained by secondary

centrifugation has a higher platelet recovery rate. Mazzucco et al.

compared the two PRP preparation methods and found that platelet

and growth factor concentrations were significantly higher in the

two-time centrifugation method than in the one-time

centrifugation method (26). Harrison et al. found that a single

centrifugation method, although capable of extracting PRP, was not

optimal because it resulted in decreased platelet production (27).

The IADVL Dermatology Association recommends the use of the

manual double-spin method for the preparation of PRP. The

recommended centrifuge parameters are 100–300 ×g for 5–10

min for the first centrifugation and 400–700 ×g for the second

centrifugation for 10–17 min. The PRP obtained using this method

is optimal for various dermatological indications (28). Similar

studies have also found that the double-spin method is more

helpful for treatment of female hair loss (29). Currently,

commercial equipment or kit extractions for PRP have become a

trend. Different brands have developed different separation

methods, and the content of the extracted PRP component is also

different. Therefore, the best kit can be selected for extraction

according to different therapeutic requirements (30).
2.3 Different types of PRP

Owing to the lack of uniform standards in the preparation

methods and quality control, the prepared PRP components are

different. This leads to the difficulty in comparative analysis of

clinical results, and is also part of the reason for the difference in

clinical efficacy. Therefore, it is urgently necessary to develop a
TABLE 1 Cytokines in platelet-rich plasma.

Cytokines Function

PDGF (9) Stimulating chemotaxis of macrophages and neutrophils; Regulate collagenase secretion and collagen synthesis; Stimulate mitosis of mesenchymal cells
and osteoblasts; Stimulate chemotaxis and mitosis of fibroblasts/glia/smooth muscle cells.

VEGF (10) Promote angiogenesis and increase vascular permeability; Promote endothelial cell migration and proliferation; Promote granulation tissue formation.

TGF-b (11) Promote angiogenesis; Increased proliferation of fibroblasts and keratinocytes; Metalloproteinase inhibitors; Mediate extracellular matrix and collagen
production; Regulating mitosis of other growth factors; Inhibit macrophage and lymphocyte proliferation.

EGF (12) Increase the proliferation and migration of keratinocytes and fibroblasts; Stimulate endothelial cell mitosis; Promote granulation tissue formation.

FGF (13) Promote mitosis, growth and differentiation of mesenchymal cells, chondrocytes and osteoblasts; Promote fibroblast migration; Initial stimulation of
angiogenesis.

PF-4 (14) Calls leucocytes and regulates their activation. Microbiocidal activities.

IGF-1 (15) Increases chemotaxis of fibroblasts and stimulates protein synthesis; enhances bone formation through proliferation and differentiation of osteoblasts.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1138255
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1138255
method to unify the production standard of PRP. In 2009, Ehrenfest

et al. first proposed a classification method for platelet concentrates

that combines three main variables—platelet, leukocyte, and fibrin

content—and divided many PRP products into four categories: pure

PRP (P-PRP), leukocyte-rich PRP (L-PRP), pure platelet-rich fibrin

(PRF, P-PRF), and leukocyte-rich PRF (L-PRF) (31). In 2016,

Magalon et al. proposed a more comprehensive classification

method, the DEPA (Dose, Efficiency, Purity, Activation)

classification, which is based on four different parameters:

injection dose, production efficiency, purity, and activation

process. However, the DEPA classification method also has

shortcomings, such as a lack of clinical correlation (32). To

standardize PRP, the ISTH Science and Standardization

Committee established an expert working group to reach a series

of consensus recommendations and develop a new PRP

classification system (33). The above classification methods aim to

establish a common unified standard to achieve the standardization

of PRP and lay a foundation for the further clinical application

of PRP.
2.4 Mechanism of action and main
components of platelet-rich plasma

The secretion of growth factors in PRP must be initiated by

blood coagulation; therefore, anticoagulants should be used during

treatment to prevent coagulation and maintain a stable state to

ensure that they are not activated prior to use (34). This process

inhibits clotting by disabling calcium ions, which are required in the

coagulation cascade (35). This disabling step can be performed

using citrate ions, which can combine with calcium ions to form
Frontiers in Endocrinology 03
calcium citrate and deactivate it (36). This is an indispensable and

important condition for PRP preparation.

For downstream use, PRP must be reactivated. Exogenous

calcium activators can be added to PRP to promote the release of

biologically active proteins such as growth factors (37). This step

can be accomplished with calcium activators such as calcium

chloride, calcium gluconate, or thrombin (38). Calcium previously

bound to anticoagulants can be replenished in this manner.

PRP preparation contains a variety of cytokines, growth factors,

cell adhesion molecules, and chemokines. These factors participate

in the process of tissue healing and proliferation, as well as the

activation and synthesis of essential products through interaction

and mutual regulation (39). When PRP is activated, a large number

of growth factors, such as transforming growth factor-b (TGF-b),
platelet-derived growth factor (PDGF), fibroblast growth factor

(FGF), hepatocyte growth factor (HGF), and vascular endothelial

growth factor (VEGF), can be released. PDGF can stimulate

endothelial cell growth, promote capillary angiogenesis, and

stimulate mononuclear macrophage chemotaxis to increase

collagen synthesis. Both TGF-b and PDGF can increase the

proliferation of various cells involved in wound repair, stimulate

collagen synthesis, and activate the interaction between

macrophages and other cytokines. VEGF is a strong vascular

growth factor, which can bind to the corresponding receptors on

the surface of vascular endothelial cells, stimulate the proliferation

of endothelial cells, induce the formation of new blood vessels, and

increase the permeability of blood vessels, especially small blood

vessels. It provides nutrients for cell growth and the establishment

of new capillary networks, plays an important role in wound healing

and vascularization, and is a key promoter in the early stage of

angiogenesis (40). In addition to growth factors, PRP also contains
SCHEME 1

Schematic diagram of PRP in the treatment of spine-related diseases.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1138255
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1138255
fibrin, fibronectin, and hypolenin, which form a fiber network and

can perform the scaffold function of tissue-repairing cells,

promoting cell adhesion and preventing cell loss (39). Owing to

the coaction of bioactive factors in PRP, it plays a powerful role in

tissue regeneration and repair.
3 Application of PRP in spine surgery

3.1 PRP for treatment of discogenic
back pain

One of the most common diseases of the spine is low back pain,

which can be experienced at different degrees in different stages of

life. Lumbar muscle strain, intervertebral disc herniation, isthmus,

spinal deformity, and lumbar spondylolisthesis are all causes of low

back pain, and these factors can exist alone or in combination (41).

Discogenic back pain referred to in this article is chronic low back

pain caused by stimulation of the pain receptors in the

intervertebral disc due to intraductal disorders, such as

degeneration, intraductal fissure, and discitis, without root

symptoms, nerve root compression, or excessive displacement of

vertebral body segments (42). This can be described as chemically

mediated discogenic pain. Increased levels of leukotriene, nitric

oxide, lactic acid, and prostaglandin E in early intervertebral disc

degeneration (IVD) are considered strong chemical injurious

stimuli (43). The mechanism of pain is caused by the growth of

vascularized granulation tissue and pain nerve fibers into annulus

fibrosus or even nucleus pulposus along the annulus fibrosus of
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degenerative intervertebral disc. In addition, these granulation

tissues and nerves are easily affected by interstitial changes and

inflammatory mediators, thus causing pain (2). Mechanical

compression of nerve roots was previously considered the main

cause of low back pain. However, in actual clinical practice, for a

vast majority of patients, low back pain was caused by non-nerve

root compression, while DLBP was one of the main causes of non-

nerve root compression (44).

Currently, the treatment methods for DLBP include non-

surgical treatment (drug therapy, physical therapy), surgical

treatment (intervertebral fusion, disc replacement), and minimally

invasive interventional treatment (intervertebral disc injection

therapy and epidural injection) (45–50). However, many of these

treatments have disadvantages such as adjacent segment disorder

after fusion, secondary surgery, drug dependence and tolerance,

infection, dural rupture, and nerve injury. Therefore, safer PRP

injection therapy, which is dedicated to repair the intervertebral disc

itself, has been proposed.

With the development of experimental research, PRP has been

used in the treatment of DLBP and has achieved good results. In a

preliminary clinical trial to determine the efficacy and safety of

autologous PRP releasers in patients with DLBP, Akeda et al.

included 14 patients with certain inclusion criteria and evaluated

the results using a visual analog scale (VAS), Roland-Morris

Disability Questionnaire (RDQ), and X-ray and magnetic

resonance imaging (MRI) (T2-quantification) for data analysis.

During the 10-month follow-up period, the patient VAS and

RDQ scores decreased significantly in the first month and

continued throughout the observation period (Figures 1A, B).
B

C D

A

FIGURE 1

PRP for treatment of discogenic low back pain. Mean Visual Analogue Scale (VAS) score (A) and mean Roland-Morris Disability Questionnaire (RDQ)
score (B) of patients after intradiscal injection of PRP. (C) Sagittal MRI one year before the caudal epidural and intraductal PRP injection showed
increased T2 nuclear signal intensity and decreased type I Modic change in the L5-S1 disc compared to pre-injection. (D) Mean VAS scores were
significantly lower at 3 and 6 months in patients who received LR-PRP injection. Reproduced with permission from (51–53). *P < 0.05 and ^P < 0.01.
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However, MRI quantitative analysis did not observe that this

method had a significant effect on the repair of intervertebral

disc, but it did not have a negative effect on the height of

intervertebral disc. Furthermore, no adverse effects were observed

during follow-up (51). In a case report, MRI examination was

performed 1 year after PRP injection, and the results showed that

the nuclear T2 signal intensity increased (Figure 1C), notably, and

pain and function were also significantly improved (52). However,

only one patient was described in this report, and a clear correlation

between disc improvement and PRP injection could not be

determined. Therefore, it is necessary to expand the sample size

and carefully design future prospective studies. In order to prove the

efficacy of PRP, Zhang et al. showed that intradiscal injection of

PRP can significantly relieve pain and improve lumbar function in

patients with DLBP (54). In another randomized, double-blind

controlled trial, Ricardo et al. included 50 eligible patients with low

back pain. All patients were randomized 1:1 to corticosteroids and

leukocyte-rich PRP (LR-PRP) groups and were treated by tail

epidural injection. Pain levels and quality of life were evaluated

using the VAS and the Short Form 36-Item Health Survey (SF-36)

at 1, 3, and 6 months after treatment. The results showed that the

VAS scores of both groups were significantly lower than those

before treatment. The corticosteroid group had lower VAS scores at

1 month, whereas the LR-PRP group had lower scores at 3 and 6

months (Figure 1D). SF-36 at 6 months showed a significant

improvement in all domains in the LR-PRP group. Both groups

showed good therapeutic effects in pain relief, but LR-PRP was

superior to corticosteroids in improving the quality of life (53).

Tuakli-Wosornu et al. reported that in a randomized controlled

trial of 72 patients, compared to those of a control group that

received contrast media alone, the functional rating index, the

numeric rating scale (NRS), and the North American Spine

Society satisfaction scores of the PRP group were significantly

improved (55). But in a recent trial, Zielenskietal’s findings

confirmed that PRP did not work as well in DLBP, with only 17%

of patients showing significant improvement in clinical symptoms.

This may be due to patient demographic differences, sensitivity to

outcome measurements, or misalignment of statistical analysis (56).
3.2 PRP for treatment of lumbar
disc herniation

Lumbar disc herniation (LDH) is one of the most common

causes of low back pain (57). LDH is a disease caused by a

combination of genetic, aging, biomechanical, and environmental

factors (58). In terms of pathophysiology, LDH is usually due to

IVD degeneration, which tends to develop with age. Disc lesions can

develop in young adulthood. Subsequently, due to the gradual

decrease in water content in the annulus fibrosus (AF) and

nucleus pulposus (NP), the tension decreases, and the height of

the intervertebral disc decreases, resulting in narrowing of the

intervertebral space, loss of elasticity of the NP, and relaxation of

the structure of the intervertebral disc. Dehydration may further

aggravate cracks in AF. Subsequently, degenerated NP can highlight

fissures or weaknesses in AF due to injury or trauma. Prominent NP
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can become ischemic and cause nerve root symptoms through

mechanical compression, chemical stimulation, and activation of

the inflammatory cascade (59).

Clinical symptoms often determine treatment options for LDH,

including conservative and surgical treatment. However, the latter

treatment only temporarily relieves pain or removes the NP of nerve

root compression and prevents reherniation, which only partially

solves problems associated with low back pain, and does not

promote disc regeneration or restore its biomechanical properties

such as damping and vibration reduction. Therefore, PRP with

endogenous healing effects may be an effective treatment for LDH.

This treatment has been reported in clinical practice. Benjamin

described a case report of two patients with symptomatic disc

herniation who showed almost complete disc absorption on MRI

after two epidural injections of PRP (Figures 2A, B) (60).

Furthermore, the clinical symptoms and function of both patients

improved significantly. In another prospective, randomized,

controlled trial involving 60 patients, Jiang et al. randomized

patients to receive transforaminal endoscopic lumbar discectomy

combined with injection of PRP and without injection of PRP.

During the postoperative follow-up period, VAS for lower back and

leg pain and Oswestry disability index were lower in the PRP group

than in the control group. Furthermore, quantitative MRI analysis

showed that in the PRP group, values were 5% higher than those in

the control group after treatment (Figure 2D). Similarly, the spinal

cross-section of the PRP group was 9% higher than that of the

control group (Figure 2C) (61). Similar results were also confirmed

by Rohan et al. (62). Through clinical trials, Xu et al. found that

during the 1-year follow-up period after transforaminal injection of

PRP and steroids in the treatment of LDH, VAS, pressure pain

thresholds (PPTs), Oswestry disability index (ODI), and SF-36

scores improved significantly compared to those before treatment,

but there were no significant differences between the two groups.

This suggests that the two treatments achieved similar results, but

PRP may serve as a safer alternative treatment (63). No adverse

events were reported during treatment in these studies.
3.3 PRP for treatment of spinal cord injury

Spinal cord injury (SCI) is a devastating pathological condition

of the central nervous system that causes sensory, motor, and

autonomic nervous dysfunction in the limbs below the injured

segment (5). This intractable disease causes unavoidable physical,

psychological, and economic burden on patients and their families

(64). Due to the complex pathophysiological processes after SCI,

such as a series of cascades of ischemia, inflammation, oxidative

stress, and apoptosis, successful cure of SCI remains a great

challenge for clinical workers (65).

Currently, SCI treatment includes early drug and surgical

treatment. The former includes methylprednisolone (66),

gangliosides (67), calcium antagonists (68), and dehydrating

agents (69). Drugs play a key role in inhibiting lipid peroxidation,

maintaining ion balance, improving circulation, alleviating edema,

inhibiting the release of toxic substances, promoting axon growth,

and improving functional recovery of patients with SCI. However,
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only hormones and gangliosides have been confirmed in laboratory

and clinical trials of neurotherapy and rehabilitation. Further,

hormone therapy also has drawbacks and remains controversial

due to many systemic adverse reactions (70). Early surgical

treatment of SCI includes fracture reduction, orthopedics, spinal

canal decompression or dilation, fixation, and bone graft fusion.

The aims of surgical intervention include: (1) reconstruction of the

stability of the spine, enabling patients to move early, which is

conducive to more meticulous nursing, and reducing early

complications and mortality; (2) prevention of secondary injury

of the spinal cord caused by spinal instability; and (3) after

decompression, spinal cord compression is relieved to create a

relaxed internal environment for spinal nerve recovery (71–73).

These methods have played a certain role in alleviating secondary

nerve injury and reducing the mortality of patients after SCI, but

their role in promoting functional recovery is limited because the

nonregenerative nature of neurons renders SCI treatment more

challenging. Preclinical trials on SCI repair are being continuously

developed and some therapeutic results have been achieved.

Examples include cell therapy (74) and neural tissue engineering

(75). The treatment of SCI with PRP is also being investigated.

In an in vitro trial, Michiko et al. co-cultured human PRP with

the cortex and spinal cord of 3-day-old Sprague-Dawley rats and

added neutralizing antibodies against different growth factors. They

found that PRP promotes spinal cord axon growth through
Frontiers in Endocrinology 06
mechanisms related to IGF-1 and VEGF, while inhibition of

TGF-b1 had a negative effect on axon growth (76). In another

trial, PRP was combined with BDNF-overexpressing BMSCs in a rat

model of spinal cord hemisection. In the treatment group, the

neuronal gene markers NF-200, GFAP, and MAP2 were highly

expressed in the presence of PRP, thus promoting axonal myelin

sheath regeneration (Figures 3E–G) (77). Baklaushev et al. designed

a novel two-component matrix (SPRPix) that contained spider silk

proteins and PRP. This complex promoted the proliferation of

directly reprogrammed human neural precursor cells (drNPC) in

neurons, astrocytes, and other neural support cells, and allowed

these b III-tubulin- and MAP2-positive nerve cells to grow oriented

along the spider protein microfibers (Figures 3A–C). In contrast,

there was almost no directional growth in the hydrogels when PRP

was removed (Figure 3D). Quantitative analysis of cells using the

NIS Elements software (Nikon) showed that the absolute number of

neuronal progenitor cells in the PRP group was five times higher

than that of the blank group in the same volume. In in vivo

experiments, drNPCs and the complex were implanted in the

brain and spinal cord of rhesus monkeys, which showed good

biocompatibility and successful differentiation into MAP2 positive

neurons (78). Injury to the dorsal spinal cord can lead to a loss of

transmission of proprioceptive information and affect motor

behavior. Baklaushev et al. conducted research on dorsal spinal

cord repair. The research team injected human PRP into the
B

C D

A

FIGURE 2

PRP treatment of lumbar disc herniation. (A, B) Sagittal and axial slices showed significant disc resorption before and after epidural injection of PRP
in two patients. Sagittal (a1, b1) and axial (a2, b2) MRI images showed lumbar disc herniation in two patients before treatment; Sagittal (a3, b3) and
axial (a4, b4) images showed significant disc resorption after treatment. (C, D) Comparison of spinal cord cross-sectional area (SCSA) and disc height
(DH) on MRI at 3 and 1 years after treatment. Reproduced with permission from (60, 61).
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unilateral spinal cord dorsal root injury model and evaluated the

recovery of reflex arc by electronic von Frey weekly. The arc

recovered and the paw withdrawal reflex was partially restored as

the treatment progressed. Intermediate filaments (nerve filaments)

were observed throughout the reimplantation area (Figure 4A),

indicating nerve regeneration. Furthermore, this treatment has

immunomodulatory properties that can effectively improve

regeneration and reduce inflammatory responses (79). In another

study, researchers injected PRP directly into the injured spinal cord

of rats and examined the effects of PRP on spinal cord repair. The

results showed that PRP could protect white matter, improve motor

recovery, promote neuronal regeneration and angiogenesis, and

regulate its size (81). These experiments indicated that PRP could be

used as a promising therapeutic agent for SCI.
Frontiers in Endocrinology 07
3.4 Treatment of spinal fusion

As a mature surgical technique in spinal surgery, spinal fusion

aims at achieving mid- and long-term stability of the spine, which is

crucial for maintaining normal spinal function. This can be

achieved using different surgical methods, implants, and grafts

(82). Spinal fusion has been widely used in the treatment of

various spinal malformations and diseases, including

spondylolisthesis, fractures, lateral curvature, and lumbar disc

diseases (83–88).

However, surgical complications, especially failure of

postoperative bone formation, connection, or reshaping, results in

the formation of a nonunion or pseudoarthrosis. This condition is

significantly more frequent in multisegmental and osteoporotic
FIGURE 3

PRP treatment of spinal cord injury. (A-C) drNPC cultured on the two component SPRPix matrix (PRP hydrogel embedded into the rSS-PCL scaffold)
demonstrated a high level of adhesion and neuronal differentiation: drNPC completely covered the entire SPRPix matrix surface and formed long
bIII-tubulin- and MAP2- positive processes oriented along the spidroin microfibrils. (D) No directional growth was observed in scaffolds without PRP.
(E–G) The expression of BDNF, NF-200 and GFAP genes was significantly increased after PRP and BMSCs were used together. Reproduced with
permission from (77, 78). $ or $$ or $$$ P< 0.05 or P< 0.01 or P< 0.001 (PRP/BDNF-BMSCs vs. BDNF-BMSCs), # or ## or ### P< 0.05 or P< 0.01 or
P< 0.001 (PRP/BDNF-BMSCs vs. PRP/BMSCs), +++ P < 0.001 (PRP/BDNF-BMSCs vs. BMSCs alone),& or && or &&&P < 0.05 or P < 0.01 or P < 0.001
(PRP/ BMSCs vs. BMSCs alone).
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cases (89). Currently, various materials have been used in clinical

practice to improve the rate of bone fusion. The most used products

include autologous, allograft, and bone graft replacement materials.

Autografts have long been considered the gold standard bone graft

material and have significantly improved bone fusion rate (90).

However, autologous bone grafting presents associated safety issues

such as donor site-related complications (especially at the iliac

crest), limited bone harvesting, increased blood loss, and increased

operative time (91). In other studies, allografts have proven to be

promising materials that can promote bone formation. However,

allografts have also been questioned as therapeutic options and are

considered less successful than autografts (92). In recent years, the

application of various alternative bone grafting materials combined

with mesenchymal stem cells and osteogenic induction factors, such

as bone transplantation, has a bright prospect. These biomaterials

exhibit good biocompatibility and are beneficial for cell attachment,

migration, and osteogenic matrix deposition. Good porosity is

suitable for the development of the vascular network and the
Frontiers in Endocrinology 08
diffusion of nutrients (93). PRP, a natural growth factor library,

has also been used for spinal fusion.

Related studies have shown that TGF- b and PDGF contained

in PRP can attract osteoblast progenitor cells to the desired site for

value-added differentiation and promote bone formation.

Simultaneously, VEGF in PRP can induce angiogenesis and

provide sufficient nutrients for the osteogenic process to promote

bone fusion (94, 95). The application of PRP, alone or in

combination with composite materials, has been reported in

animal models and clinical trials. In a rat lumbar posterolateral

fusion model, PRP derived from rat peripheral blood was combined

with collagen-mineral scaffolds for treatment. After 12 weeks,

micro-computed tomography (CT) and manual palpation showed

a more efficient fusion rate than the control group (Figure 4B), and

Masson’s trichrome staining showed mature bone fusion blocks and

more new bone formation between the transverse processes in the

PRP group (Figure 4C) (80). However, no further studies have been

conducted on the mechanisms promoting integration. This has
B

C

A

FIGURE 4

(A) Immunofluorescence analysis of neurofilament in the spinal cord dorsal horn and roots 8 weeks following dorsal rhizotomy and repair. (a1-a3)
The Rhizotomy Only group showed obvious dorsal root degeneration. (a4-a6) Rhizotomy + PRP group showed obvious dorsal root repair.
Degenerated dorsal roots are indicated by (*), and repaired dorsal roots are indicated by (**). (B) Microscopic CT scans of each group. PRP group
had better fusion quality between transverse processes. (C) Masson’s trichrome staining showed more new bone formation in the PRP group with
mature fusion masses between transverse processes. TP transverse process, BM bone marrow, G granules of mineral carrier. Reproduced with
permission from (79, 80).
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been explained in a previous study. Jeffrey et al. constructed

composite scaffolds based on a combination of hydroxyapatite/

type I collagen (MHA/Coll) and PRP. In vivo, the composite group

produced more trabecular and cortical bone than did the stent

group alone, and the fusion rate was better than that of the control

group. Quantitative analysis of the expression of key osteogenic

genes showed that RUNX2, SPARC, and SPP1 were significantly

up-regulated compared to the control group (Figures 5B–D) (96).

This appears to be the key to the promotion of bone fusion. With

the advent of the aging society, the spinal fusion rate of elderly

patients with degenerative spinal diseases due to osteoporosis is not

satisfactory (99). To this end, researchers have combined collagen-

binding bone morphogenetic protein-2 (CBD-BMP-2), which has

good biological activity and slow-release function, with PRP to treat

osteopenia in an elderly rat model. Through comparative analysis,

the fusion rate, area, volume, and number of bone trabeculae were

significantly better than those of the control group; however, PRP

alone did not show satisfactory fusion efficiency (100). This finding

is similar to that of a meta-analysis of clinical cases (101). The study
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concluded that additional use of PRP did not lead to further

significant improvement in patients compared to traditional graft

techniques and that PRP may have a limited role in enhancing

spinal fusion. However, several other retrospective and meta-

analyses have confirmed the role of PRP in promoting new bone

formation and bone fusion (102, 103). In a prospective randomized

controlled trial to evaluate PRP efficacy after posterolateral lumbar

fusion surgery, Kubota et al. randomly divided 62 patients into PRP

and control groups; the final bone union rate, fusion area, and mean

union time in the PRP group were significantly better than those of

the control group at the end of follow-up period (104). In another

retrospective analysis, 20 patients underwent single-level

transforaminal lumbar interbody fusion (TLIF) surgery for L4

spondylolisthesis, among which, 11 patients received PRP

combination therapy. Postoperative CT analysis showed that the

bone fusion effect was significantly better in the PRP group than in

the control group (Figure 5E); however, there was no significant

difference in healing time (97). The differences in the above

experiments may be related to the preparation method,
B C D

E

A

FIGURE 5

(A) Immunohistochemical expression of type II collagen in intervertebral disc tissues at different time points after injection. (B-D) Analysis of
osteogenic gene expression. (E) CT evaluation of spinal fusion in different groups. Reproduced with permission from (96–98). **P = 0.0034, ***p =
0.0002, ****p < 0.0001. e1: Control group. e2: PRP group.
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composition, concentration, and injection dosage of PRP, which

should be further studied.
3.5 Promotion of degenerative
disc regeneration

IVD degeneration (IVDD) is a serious global health concern. In

2019 alone, the global prevalence rate exceeded 60%, with a higher

prevalence among men and the elderly, resulting in high healthcare

costs for families and societies (4). The pathophysiological process

of IVDD involves dehydration of the NP, tearing of the AF, rupture

of the cartilage endplate, and inflammatory factors (105). These

cascade reactions are often the root of discogenic pain and LDH,

which can affect the extension and flexion of the spine and, in severe

cases, lead to disability or even loss of work force (106). Due to the

avascular tissue structure of the IVD, its self-healing ability is

extremely poor and common drug therapy is generally ineffective.

Currently, IVDD treatment methods include mainly bed rest,

epidural injection, physical therapy, surgical decompression, disc

fusion, and disc replacement (107).

However, clinical treatment (including conservative and

surgical methods) is still aimed at alleviating symptoms rather

than limiting disease progression or preventing disease according

to etiology. Therefore, it is necessary to develop new treatment

strategies. In recent years, regenerative biotherapy targeting IVD

regeneration, including gene therapy, stem cell injection, and

growth factor tissue engineering, has become the focus of recent

research (108). PRP is also being investigated for this purpose.

Related studies have shown that growth factors (TGF- b 1, VEGF,

PDGF, and EGF) and adhesive proteins (fibrin, fibronectin,

and vitronectin) in PRP can stimulate NP cell proliferation and

extracellular matrix regeneration. This is helpful for intervertebral

disc repair and symptom relief in early IDD patients (4).

Gelalis et al. injected autologous PRP into a rabbit IVDD model

and found that the degree of degeneration of AF and NP

was significantly lower in the PRP group than in the control

group during the 6-week follow-up period. Notably, the

histological analysis of hematoxylin-eosin staining in the treated

group showed a significant increase in type II collagen

expression (Figure 5A), which resulted in significant reversal and

regeneration of the affected disc (98). In the artificial simulation of

NP, alginate, a highly customizable biocompatible polymer whose

properties can be adjusted, is used. Growney et al. combined PRP

with alginate chemistry using carbondiimine chemistry, and the

obtained a hydrogel that had good biocompatibility and mechanical

properties. After 14 days of co-culture with human nucleus

pulposus cells (hNPC), quantitative analysis of glycoaminoglycan

showed that the complex allowed ECM expression, suggesting that

PRP-modified alginate could stimulate matrix synthesis and repair

(109). PRP also restored glycosaminoglycan levels in another study

(110). In a cell therapy trial, the researchers combined PRP with

adipose tissue-derived stromal cells (ADSC) to treat a New Zealand

rabbit model of early disc degeneration. After 4 weeks, the signal
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strength and disc height on T2-weighted MRI were assessed. The

disc signal in the ADSC combined with PRP group showed higher

intensity than that in the other groups (Figure 6A) and was

statistically significant in reversing disc degeneration (Figure 6B)

(111). Similar therapies based on the combination of PRP and stem

cells have been reported in many studies (113–116), and the

biological efficacy of PRP has been confirmed in the experimental

results. With the addition of PRP, many types of stem cells can

differentiate into NP cell phenotype, and the diseased intervertebral

disc can be reversed and regenerated to a certain extent, which

provides a potential feasible scheme for future clinical treatment.
3.6 Promotion of ligament injury repair

The spine ligaments carry most of the tension load on the spine

and their carrying capacity is the strongest when the load direction is

in line with the direction of the fibers. When the spinal segment is in

motion, the corresponding ligaments are stretched and stabilize the

spine (6). The spinal ligaments have many functions. First, spinal

ligaments provide sufficient physical activity between the two

vertebral bodies to maintain a certain posture. Second, they protect

the spinal cord by limiting movement, maintaining it within the

proper physiological range, and absorbing energy. Third, by limiting

displacement, they absorb high load and highspeed energy to protect

the spinal cord from injury (117, 118). Therefore, the treatment of

ligament injuries plays a vital role in maintaining spinal stability.

Autologous PRP was administered to a rabbit model mimicking

spinal ligament injury and compared with a saline-injected control

group. Better healing was observed in the morphology and histology

of the treated ligaments, which was determined to be achieved

through activation of inflammatory pathways (IL-17 and TNF)

(119), by pathway analysis. This idea was partly supported by

another animal study. Hudgens et al. analyzed the effect of PRP on

gene expression changes in tendon fibroblasts by microarray and

analyzed multiple changes in gene expression using the Ingenuity

Pathway Analysis software. They concluded that PRP induced a large

number of inflammatory responses and oxidative stress in fibroblasts

through activation of the TNF-a and NFkB signaling pathways,

leading to tissue regeneration responses (Figures 6C–E) (112). The

supraspinal ligament (SSL) and interspinous ligament (ISL), as part of

the posterior ligament complex, play an indispensable role in spinal

stability. A case report described two cases of SSL and ISL injury, in

which, ultrasound-guided ligament-targeted injection of LR-PRP

leukocyte-rich plasma was successful, with almost 100% pain

improvement 6 and 9 months after treatment, respectively (120).
3.7 PRP for treatment of sacroiliac
joint disease

Another common cause of lower back pain is sacroiliac joint

(SIJ) disease, which is considered the most likely source of lower
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back pain in patients after lumbosacral or lumbar fusion surgery

(121). Initial treatment of SIJ disease is usually conservative and

includes physical therapy, massage therapy, and drug therapy.

However, these treatments are often aimed at pain relief, rather

than eradication. Other treatment options, such as periarticular

injection, intraarticular injection, or nerve block, are generally

administered if there is no improvement in symptoms after 6

weeks of conservative treatment. Surgery is considered when all

treatments fail (7). PRP can be used as a new treatment modality for

the treatment of SIJ disease.

This concept has been tested in several clinical trials. In a

prospective randomized trial, Singla et al. found that PRP efficacy

was maintained over a 3-month follow-up period, with VAS scores

reduced to 90%, while efficacy in the steroid group was reduced to

only 25% over the same time period. The results of Modified

Oswestry Disability Questionnaire (MODQ) and SF-12 also

confirmed the efficacy of PRP (122). Patrick et al. reported similar

results (123). This may be due to the abundance of growth factors in

PRP, which enhances the biological environment and contributes to
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tissue homeostasis. Notably, in one case report, the efficacy of PRP

maintained improvement in joint stability and low back pain after 4

years of treatment (124). Therefore, according to clinical trials, it

can be concluded that ultrasound-guided PRP injection is a safe and

effective treatment for SIJ disease and can reduce dysfunction and

low back pain.
3.8 PRP for treatment of
related complications

Related complications of spinal disease also plague healthcare

professionals and pose a significant risk to patient outcomes,

including shoulder pain, deep surgical site infections, pressure

ulcers, and epidural fibrosis . Therefore, treatment of

complications is of great importance for the good prognosis of

patients with spinal diseases.

Shoulder pain is one of the most common complaints in patients

with spinal cord injuries in wheelchairs. The common causes include
B C

D E

A

FIGURE 6

(A) The disc signals in magnetic resonance T2-weighted image in the group of ADSC-combined PRP showed higher signal strength than the other
groups. (B) PRP combination with ADSCs has the best effect in reversing degeneration. (C) Gene expression of growth factor and cytokine
transcripts from PPP or PRP treated tendon fibroblasts. (D) Immunoblots for phospho NFkB activation from tendon fibroblasts treated with PRP or
PPP. (E) Band densitometry analysis for phospho NFkB blots. Reproduced with permission from (111, 112). * P< 0.05, *** P<0.001.
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shoulder tendinopathy and other musculoskeletal disorders. In a

prospective trial of six patients with chronic shoulder pain due to

rotator cuff disease, Dyson-Hudson et al. treated the lesion with

ultrasound-guided injection of PRP. During the 24-week follow-up

period, the wheelchair user shoulder pain index, pain NRS, and the

physical examination scores showed a downward trend. The overall

condition of the patient improved and no adverse events were

reported (125). The efficacy of PRP has also been demonstrated in

shoulder pain caused by biceps tendinopathy (126).

Deep surgical site infections (dSSI) undoubtedly pose

significant therapeutic challenges for spinal surgeons, with post-

infection treatment typically focused on surgical debridement,

wound drainage, and long-term antibiotic therapy. Vasilikos

added PRF to 12 patients at the time of the second surgical

revision. All patients achieved complete wound healing between

14 and 21 days, and no recurrence of dSSI or complications were

observed during follow-up (127).

Pressure ulcers (PrU) is one of the main complications of SCI.

PrU may be more difficult to heal in patients with SCI because such

patients often require intensive care around the clock. This is

certainly a daunting challenge for patients and caregivers. PrU

often does not heal and leads to progressive chronic inflammation,

which is the root cause of death in SCI patients (128). PrU healing is

a dynamic and complex process, and many growth factors in

platelets can regulate this complex event and improve the quality

of life and prognosis of patients. In a pilot study of 15 patients with

SCI and chronic PrU who developed fistulas, the authors observed a

decrease in fistula secretion levels after 1 week of PRP treatment, no

fistulas at 2 weeks, and complete disappearance offistulas at 3 weeks

on MRI (129). Gurpreet et al. demonstrated in comparative tests

that PRP significantly improved ulcer area, volume, and pressure

ulcer healing scale scores compared to hydrogel dressings
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(Figures 7A–C), and had significant advantages in granulation,

epithelial formation, and vascular formation (130). Similar

experiments have also demonstrated the feasibility of PRP in the

treatment of PrU (128, 132, 133). PRP may be a better alternative to

traditional dressings for the treatment of PrU.

Lower back pain after laminectomy is a recurrent clinical

condition that has attracted the attention of spinal surgeons. This

is caused by epidural fibrosis, which occurs naturally after

laminectomy. Excessive scarring produces adhesion between

tissues or stress on surrounding anatomical structures, leading to

clinically significant sequelae. Therefore, effective prevention of

epidural fibrosis is conducive to patient prognosis. In an animal

study, Guler et al. performed laminectomy in male rats and covered

the exposed dura with fat pads, collagenous dura matrix, and PRP.

At the end of the week 4, the three groups of rats were sacrificed and

the samples were histologically analyzed. Epidural fibrosis (grade 3,

43%) was more common and presented the largest area of fibrotic

scar tissue in the collagen-dural matrix group, while no fibroblast

activity was detected in PRP group (grade 1, 71%; grade 0, grade 2,

14%). The PRP group prevented epidural fibrosis more efficiently

than the fat pad group (grade 1, 71%; grade 2, 28%) and also showed

better results (Figure 7D) (131). Another study investigated the

barrier functions of hyaluronic acid (HAS), activated polyethylene

glycol, polyethylene imine (PEG), and PRP. Histopathological

results showed that PRP could improve tissue integrity and

reduce scar tissue level, histopathological grade, Masson’s

trichrome staining (MTS) grade, and fibroblast numbers. Real-

time polymerase chain reaction showed that PRP reduced the

levels of type I collagen, type III collagen, TGF-1b, and TNF-a
compared to the control group. These results indicated that PRP

could significantly reduce the level of peridural fibrosis in a rat

model (134).
B C
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FIGURE 7

(A-C) Ulcer area, ulcer volume, and PUSH score over time. (D) Scar and fibrotic tissue staining in different groups. Reproduced with permission from
(130, 131).
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4 Safety study of PRP therapy

The safety of biological agents is very important for patients,

and only when safety is guaranteed can better efficacy be achieved.

In a systematic review of PRP for the treatment of skin aging, PRP

accelerated skin healing and reduced signs of skin aging after laser

surgery with no reported serious adverse events (135). In the field of

dermatology, Shen et al. applied PRP to the treatment of skin ulcers

and concluded that PRP was superior to traditional treatments

owing to its high healing rate, high percentage of area loss, and

smaller vascular ulcers. However, while PRP showed fewer adverse

events in the short term, it showed a higher rate of adverse events in

the long term (136). In a study by Nassar et al., the PRP group

showed greater side effects and no significant improvement in the

treatment of atrophic scars compared with patients receiving

carboxyl therapy (137). In burn departments, PRP has played an

important role in the repair of severe burn wounds and its safety has

also been affirmed (138). In the orthopedic field, Taisuke et al.

applied PRP for the treatment of ankle osteoarthritis. During the 24

weeks of treatment and follow-up, PRP did not cause any serious

adverse reactions and significantly reduced pain, demonstrating the

safety and efficacy of the treatment with PRP (139). PRP has also

been shown to be safe and effective in similar studies on knee

osteoarthritis (140).

Based on the above studies, overall PRP presents good efficacy in

different fields, and most studies have shown that its safety can be

guaranteed. However, some studies have also found side effects that

cannot be ignored. Few in-depth studies and reports on the safety of

PRP in spine surgery have been published. If PRP is to be used in spinal

surgery, a large number of studies are needed to confirm its safety.
5 Conclusions and prospects

As an indispensable part of the skeletal system controlling

body movements, the spine plays an important role in uploading

and distribution. On being affected by a serious disease, it results

in immeasurable serious consequences. Spine-related diseases are

of great concern owing to their increasing annual incidence.

Although the medical community has developed a variety of

treatment methods, including surgical, conservative, and

interventional treatment, there is no specific treatment for

common diseases in spinal surgery. At present, several problems

need to be addressed. For example, (1) bone nonunion and

pseudarthrosis after spinal fusion, (2) accelerated degeneration

of intervertebral disc, (3) how to promote intervertebral disc

regeneration and restore its biomechanical properties after

minimally invasive surgery, (4) how to promote nerve growth

and reconnection after spinal cord injury, (5) how to avoid

recurrent attacks of low back pain, (6) how to treat various

complications caused by spinal column-related diseases and

improve patients’ prognosis and survival rate. All these are the

key problems that need to be solved in this field.
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This article reviewed the applications of PRP in the treatment of

spinal diseases. PRP is an autologous product with platelet

concentrations much higher than baseline. The therapeutic

principle of PRP is that injection of PRP at the site of injury or

surgery can initiate tissue repair by releasing a variety of bioactive

factors (PDGF, TGF-b, VEGF, and IGF-1) and adhesive proteins in

a particles, promoting revascularization and the generation of new

connective tissue. This accelerates the healing of chronic injuries

and repair of acute injuries. This process is attributed to the

synergistic activity of various growth factors, cytokines, and local

regulators via paracrine, endocrine, and autocrine mechanisms.

PRP preparations are becoming increasingly popular due to their

widespread use in different medical fields. The main advantages of

PRP include its safety and the superior technology of commercial

equipment for the preparation of PRP biologics that can be widely

used. Most importantly, PRP is an autologous product with no

known side effects and shows promising therapeutic efficacy in a

wide range of medical fields.

However, there is still considerable work to be done to achieve

widespread application in the field of spine-related diseases. For

example, (1) standard procedures for PRP production are lacking.

Currently, there are many formulations and techniques to produce

PRP, but there is no standard for these parameters, including initial

whole blood volume, platelet concentration, and PRP composition.

(2) Individual differences. For example, age differences can lead to

differences in growth factors and the overall composition of PRP.

Osteoporosis can lead to differences in treatment effects. (3)

Insufficient number of experiments. In both clinical trials and

animal experiments, there is a low level of evidence, insufficient

sample size, confusion in nomenclature, lack of standardization of

preparation methods, and lack of in-depth research on basic

science. (4) There is no clear consensus on indications, and (5)

the cost of treatment remains controversial. Some researchers

believe that short-term use of PRP is more expensive than steroid

injection, while long-term treatment may be economical. Finally,

the (6) lack of safety studies. Moreover, there is no uniform

standard for safety assessment. Faced with these issues, spinal

surgeons should conduct more clinical, randomized, controlled,

and unbiased trials and a large number of animal trials with more

in-depth investigation to reach a consensus on the standardized

classification of PRP. Formulation of a more systematic and

authoritative production and treatment standards is required. The

treatment of spine-related diseases still in its early stages; however,

with further understanding of PRP and the advancement of

manufacturing technology, it is possible to achieve a standardized

treatment plan for spine surgery in the future.
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