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Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially

pathogenic and causes severe symptoms; in addition to respiratory syndromes,

patients might experience other severe conditions such as digestive

complications and liver complications injury. The abnormality in the liver is

manifested by hepatobiliary dysfunction and enzymatic elevation, which is

associated with morbidity and mortality. The direct cytopathic effect, immune

dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a

crucial role in the severity of liver injury. According to aging and immune system

alterations, cytokine patterns may also change in the elderly. Moreover,

hyperproduction of cytokines in the inflammatory response to SARS-CoV-2

can lead to multi-organ dysfunction. The mortality rate in elderly patients,

particularly those with other comorbidities, is also higher than in adults.

Although the pathogenic effect of SARS-CoV-2 on the liver has been widely

studied, the impact of age and immune-mediated responses at different ages

remain unclear. This review discusses the association between immune system

responses in coronavirus disease 2019 (COVID-19) patients of different ages and

liver injury, focusing on cytokine alterations.
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1 Introduction

The coronaviridae family comprises enveloped viruses infecting amphibians, birds, and

mammals. The family consists of the torovirinae and orthocoronavirinae; the subfamily

orthocoronavirinae includes alpha, beta, gamma, and deltacoronaviruses (1–4).

Coronaviruses have crown-like structures due to spike glycoproteins. These viruses have

an outer envelope and contain positive-stranded RNA as their genomic material (5).
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Some species of coronaviruses may not lead to severe disease

and are typically responsible for common colds. However, severe

acute respiratory syndrome coronavirus (SARS-CoV), Middle East

respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2

are potentially pathogenic to humans. These viruses can cause

severe respiratory complications, multiple organ failure, and even

death in severe stages (6, 7). SARS-CoV-2, the last known species of

the coronavirus family, is a beta-coronavirus and was identified in

Wuhan Hubei Province, China, in late 2019 (8). The COVID-19

clinical manifestations vary from sore throat, cough, fever, and loss

of smell or taste to acute respiratory distress syndrome (ARDS),

leading to patient hospitalization (9). Moreover, due to SARS-CoV-

2-induced thrombotic disorders, various organ-specific

complications have been observed, including heart injury, acute

kidney injury, liver dysfunction, central nervous system (CNS)

complications, and gastroenteritis (9, 10).

According to the lessons from patients with SARS-CoV-1,

various levels of hepatopathy and elevated liver enzymes suggest

that coronaviruses are responsible for inducing systemic

inflammation (11–13). In a similar behavior, SARS-CoV-2 can

also increase aminotransferase levels (14).

Several hepatotoxic medications, particularly those used to treat

COVID-19, have been related to drug-induced liver damage (15).

However, liver injury is defined as any damage to the liver that

occurs during disease or treatment (16). As a result, the proportion

of hospitalized COVID-19 patients with altered liver biomarkers

ranges from 14% to 53%. Evidence has revealed that the levels of

aminotransferase, bilirubin, alkaline phosphatase (ALP), and

gamma-glutamyl transferase (GGT) are remarkably increased in

patients with COVID-19 (17, 18). In contrast, serum albumin levels

decrease in SARS-CoV-2-induced liver injury (19).

Cytokine storm is characterized as an abnormal, excessive, and

uncontrolled systemic inflammatory response associated with the

hyperproduction of pro-inflammatory cytokines. This inflammatory

phenomenon is caused by infection, drugs, or an allogeneic

hypersensitivity to foreign tissue, resulting in multi-organ

functional impairment (20). Among the affected body organs, the

liver is more susceptible to disruptions in systemic homeostasis and is

influenced by various mechanisms, including vascular and immune-

mediated pathways (21). The pathophysiology of liver dysfunction

caused by the cytokine storm is characterized by increased vascular

permeability due to cytokine release, hypoperfusion, endothelial

dysfunction, reactive oxygen species (ROS) production, and nitric

oxide (NO) deficiency (22). Furthermore, dysregulated cytokine

release can cause an acute-phase response in hepatocytes (23).

Multiple studies have demonstrated that immune responses vary

with age, and this is also true for COVID-19 patients and their related

cytokine responses (24, 25). Additionally, aging can affect cytokine

patterns and exacerbate inflammation (26). Since the tissue damage

caused by the cytokine storm is critical, aging and increased

inflammation caused by SARS-CoV-2 infection may lead to more

severe liver damage in the elderly than in younger patients (27).

Therefore, this review summarizes the association of age-related

immune responses and cytokine patterns with liver injuries during

SARS-CoV-2 infection or following treatment and vaccination.
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2 Aging and immune system

Aging is an intricate biological process associated with numerous

alterations that can affect several organs’ functions and represents the

leading risk factor for geriatric diseases (28). Age-related changes occur

in every immune system component, called “immunosenescence,” and

affect innate and adaptive immune responses (29, 30). These alterations

in the immune system consist of persistent low-grade inflammation

(called inflammaging), impaired ability to respond to new antigens

effectively, and increased susceptibility to infections, autoimmunity, as

well as cancer (Figure 1) (31, 32).
2.1 Innate immune system

Innate immunity is the first line of defense against pathogens

and is vital for protecting against several infections (33). Previous

studies have shown that aging impairs epithelial barriers in the skin,

lung, and gastrointestinal tract, allowing pathogenic organisms to

accumulate in mucosal tissues and challenge the innate immune

system (34, 35). Immunosenescence affects innate immune cells

such as neutrophils, macrophages, dendritic cells, and NK cells (36).

Studies evaluating the neutrophil phagocytosis of opsonized

bacteria have revealed a considerable reduction in neutrophil

phagocytic ability among the elderly population (37). Furthermore,

macrophages exert their function by eliminating invasive pathogens

and cancer cells by releasing pro-inflammatory cytokines, which can

activate signals to other immune cells (38). Previous evidence has

confirmed the harmful impact of aging on macrophage activity. The

macrophage population expresses lower major histocompatibility

complex (MHC) II in the elderly, decreasing the CD4+ T cell-

mediated immune responses (39–41).

Moreover, it has been reported that macrophages could not

produce ROS in aged rats after the interferon-gamma (IFN-g)
treatment (42). Reduced superoxide anions in macrophages may

cause persistent infections in old people (42). In this way, studies on

the micropinocytosis capacity of dendritic cells (DCs) have shown

that aged DCs in the elderly are less able to uptake fluorescein

isothiocyanate–dextran than young adult Mo-DCs (43). Unlike the

other innate immune cells, the NK cell absolute count is elevated in

the aged population (44). However, NK cell cytotoxicity and

cytokine production can be reduced through aging (45). Aging

also affects phagocytic and NK cells, soluble components, cytokines,

and chemokines (46). Elevated serum concentrations of IL-1b, IL-6,
and TNFa have been observed among elderly populations, leading

to systemic inflammation via the continuous activation of various

immune cells. Therefore, pro-inflammatory cytokines can be a

prognostic indicator for functional impairment, weakness,

morbidity, and mortality among the aged population (47, 48).
2.2 Adaptive immune system

The adaptive immune system is based on generating a diverse

repertoire of T and B lymphocyte receptors (TCRs and BCRs),
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lymphocyte activation, and clonal expansion. The de novo

generation of T and B cells has declined due to age-related

alterations in the human hematopoietic system (29, 49).

Hematopoietic stem cells (HSCs) are responsible for the

continuous supply of myeloid and lymphoid progenitors;

however, studies have shown that bone marrow (BM) cellularity

and adaptive immune system functions decreased, whereas the

frequency of HSC changes through aging (50–52). According to

aging, the HSCs’ proliferative potency can decrease and shift toward

myeloid progenitors (53, 54).

2.2.1 B cell
In accordance with HSC diminished capacity, B lymphocyte

quantitation and qualification have changed through aging. These

age-related alterations include the decreased total number of B cells,

diminished diversity of B cell repertoire, especially IgVh CDR3

diversity (55), declined naïve B cells frequency, impaired response

capacity to new antigens (56), decreased memory B cells clonal

expansion and plasma cells production (31, 50, 57). Besides a
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decline in antibody production, antibody functionality is also

impaired by decreased affinities and opsonizing properties (31, 50,

57). As a result, the humoral immune response to extracellular

antigens and vaccination is impaired during aging (31, 58).

Immunosenescence is characterized by significant changes in

the naive/memory B cell compartment through a progressive shift

from naïve B cells to memory B cells (29, 31, 58). Furthermore,

several studies have introduced a subtype of B cells called age-

associated B cells (ABCs) that are enhanced with age and express T-

bet transcription factors and CD11c (59–61). The ABC subset does

not proliferate after BCR crosslinking but exhibits a robust

proliferation response after stimulation with toll-like receptor

(TLR)-7 and TLR-9 ligands (61–63). Furthermore, ABCs are a

pro-inflammatory subset that secretes significantly high amounts of

TNF-a, impairing young Pro-B cell generation (64).

2.2.2 T cell
Modifications in hematopoietic stem cells through aging play a

crucial role in developing the T cell repertoire similar to B cells (31).
FIGURE 1

Immune system fluctuations in aging. The components of the innate and adaptive immune systems change in aging, affecting immune responses.
These changes can also alter the cytokine pattern so that inflammatory conditions prevail in these people due to the increased expression of pro-
inflammatory cytokines such as IL-1b, IL-6, IL-17, and TNF-a.
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The overall number of T cells, remarkably naïve CD8+ and gdTCR+

T cells, proliferation capacity of naïve T cells, TCR signaling, and

diversity of TCRVb repertoire are decreased in aging (49, 50, 65). In

contrast, T memory/T naïve ratios, Th17/Treg ratios, and pro-

inflammatory cytokine production is increased (29, 58, 66).

Furthermore, thymo-suppressive cytokines such as IL-6,

oncostatin M, and leukemia inhibitory factor increased, and

thymo-stimulative cytokines such as IL-7 decreased, diminishing

naïve T-cell output and increasing the susceptibility to infection,

autoimmunity, and cancer (57, 58, 67).

Following the aging process, the co-stimulatory molecules such

as CD28 are down-regulated in naïve T cells, reducing the

differentiation of naïve T cells into central and effector memory T

cells (50, 68). Moreover, an age-related Erk-TCR phosphorylation

through the reduction in microRNA-181a of naive CD4+ T cells

attenuated signaling in these cells (31, 69, 70). Besides, CD40L and

inducible T-cell COStimulator (ICOS) expression decreased in

CD4+ memory T cells, reducing B cell differentiation and specific

antibody production (70).
2.3 The pattern of cytokines in aging

According to aging and the alterations of the immune system, it

seems that cytokine patterns also change with aging. Inflammaging

is a physiological process involving various organs and tissues, such

as adipose tissue, and the accumulation of senescent cells in tissues

(30, 57). It has been reported that inflammaging is a persistent low-

grade inflammation associated with several age-related disorders.

This phenomenon is characterized by increased levels of pro-

inflammatory mediators (31, 50, 58). Evidence has revealed that

adipose tissue could increase throughout the body in aging and act

as an endocrine source of mediators such as acute-phase proteins,

hormones, pro-inflammatory cytokines, and growth factors (58, 71,

72). In this regard, the levels of circulating pro-inflammatory

mediators such as IL-1b, IL-6, TNF-a, and IFN-g increase in both

homeostatic situations and in response to infections in the elderly

compared with adults (57, 73, 74). Although the cytokine pattern in

aging is variable, the results of clinical studies in this field are

contradictory. In contrast, experimental studies showed an age-

related shift from type 1 cytokines (IL-2, IL-12, IFN-g) to type 2

cytokines (IL-4, IL-6, IL-10) in animal models (75–77).

In a physiologic condition, the expression of IL-6 is

undetectable in the serum of young individuals. However, IL-6

levels can be increased by aging, which has been called “a cytokine

for gerontologists” (73, 78, 79). Another age-associated pro-

inflammatory cytokine is TNF-a, which can be increased in

elderly individuals compared with young people, leading to the

progression of age-related diseases (80–82). Increased TNF-a and

IL-6 are also associated with weakness, a significant decline in

muscle strength, an increased risk of cardiovascular and

cerebrovascular conditions, and cognitive disorders among the

elderly (73, 79, 83). Controversial findings have also been

reported on the role of IL-1 in the aging process. Some studies

have shown an age-associated increase in the IL-1R antagonist
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(IL-1Ra) and no significant age-associated changes in IL-1 (73, 79,

84). Additionally, IFN-g is essential in cell-mediated immune

response and defense against intracellular pathogens and viruses.

The expression of IFN-g in CD8+ naïve, effector, and memory T

cells increased in the elderly compared with the young population.

However, the expression of IFN-g in naïve, effector, and memory

CD4+ T cells decreased in old comparison with young individuals

(73, 79, 85). Generally, findings are contradictory about the role and

levels of IFN-g in aging (50, 75, 79). IL-2, the “T-cell growth factor

(TCGF),” is critical in different immunological responses. Most

studies reported an age-related decline in the production of IL-2 by

peripheral blood mononuclear cells (PBMC) in the elderly

compared to young people (50, 73, 75). In contrast, previous

studies indicated that IL-2 intracellular expression might be

upregulated in CD8+ T cells among elderly individuals (75, 85).

Additionally, it was reported that IL-2 serum levels were not

altered in the healthy-aged population compared to the young

controls (86).

As an anti-inflammatory cytokine, IL-10 can repress pro-

inflammatory cytokine production and cell proliferation (87).

Furthermore, conflicting results have been observed for IL-10 in

the elderly population. Most studies have revealed that IL-10

production decreases or might be unchanged through aging (75,

88, 89). However, some studies have reported that serum IL-10

levels and its production is increased during aging due to the

attempt of the immune system to suppress the pro-inflammatory

response and return the immune homeostasis (73, 79, 90).

Transforming growth factor beta (TGF-b) is another anti-

inflammatory cytokine that can be elevated in the serum levels of

octogenarians and centenarians (73, 91, 92). However, it was

reported that there are no significant differences in TGF-b levels

between the elderly and young women (93). These findings indicate

that the cytokine pattern can be sex-dependent in the elderly.
3 Immunopathogenesis of SARS-CoV-
2 infection

Understanding the immunopathogenesis of infectious diseases

is essential because investigating its various aspects and monitoring

the immune system’s responses can lead to discovering diagnostic

biomarkers and therapeutic targets. This section discusses the

immunopathogenesis of SARS-CoV-2 infection and the

destructive role of pro-inflammatory cytokines.
3.1 Immunopathogenesis of
SARS-CoV-2 infection

Following the SARS-CoV-2 infection and virus entrance,

angiotensin-converting enzyme 2 (ACE2)-expressing type II

alveolar epithelial cells are the main target of the virus (94, 95).

However, a wide range of other cells in different organs, such as

cholangiocytes in the liver, can express ACE2 and become

infected (96).
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The pathogen-associated molecular pattern (PAMP) and

danger-associated molecular pattern (DAMP) are identified by

immune sensors such as TLR-3, TLR-7, retinoic acid-inducible

gene I (RIG-I)-like receptors such as RIG-I, and melanoma

differentiation-associated protein 5 (MDA5), initiating IFN-I

downstream signals (97, 98). The ligation of IFNs-I to their

receptors (IFNRs) activates Janus kinases (JAKs), signal

transducer and activator of transcription 1 (STAT1) and STAT2,

expressing interferon-stimulated genes (ISGs) and stimulating

antiviral immune responses (99).

After releasing IFNs and other pro-inflammatory cytokines and

chemokines, immune cells, including neutrophils and monocytes,

are recruited to the site of infection. Moreover, the epithelial and

fibroblast cells can release pro-inflammatory cytokines, including

TNF-a, IL-1b, IL-6, monocyte infiltration factor (MIF), IL-12,

TGF-b, IL-21, IL-23, and IL-27, contributing to cytokine storm as

well as neutrophil/monocyte migration and activation. The

infiltration of these immune cells is the cause of neutrophilia and

monocytosis in patients with COVID-19 (13, 100). Cytokine storm

is a hallmark of COVID-19 pathogenesis resulting from the

secretion of excessive proinflammatory cytokines and

chemokines, and it induces SARS-CoV-2-related complications,

particularly ARDS and multi-organ failures.

Considering the increase of neutrophils and the decrease of

lymphocytes in COVID-19 patients, the ratio of neutrophils to

lymphocytes (N/L ratio) is a suitable biomarker for predicting the

severity of the disease (101).

The first line of defense against SARS-CoV-2 is phagocytosis.

Neutrophils try to prevent the virus from spreading via neutrophil

extracellular trap (NET) formation and releasing neutrophilic

elastase and myeloperoxidase (MPO) into the extracellular space.

Accordingly, NETosis can damage the lung and other tissues.

Therefore, neutrophils act as a double-edged sword in SARS-

CoV-2 infection, and neutrophilia is usually associated with poor

prognosis, especially in hospitalized patients (102).

Monocytes and macrophages are other immune cells that

control viral infections. They sense and capture viral antigens and

present them to CD8+ T cells. These activated T cells highly express

IFN-g and IL-2 to eradicate viral pathogens and recruit other anti-

viral immune cells (103). However, in SARS-CoV-2 pathogenesis,

monocytes alter their phenotype from CD14++CD16– to CD14+

+CD16++ and their functionality from anti-inflammatory to

inflammatory (104). Studies have shown that T and B cells

cooperate in shifting monocyte phenotype. In this scenario, T

cells can activate monocytes via expressing colony-stimulating

factors 1 and 2 (CSF1 and CSF2) as ligands to their receptors on

the monocytes and thus cause hyperinflammation (105).

Additionally, B cells secrete a large amount of IL-6,

lymphotoxin beta (LTB), and lymphotoxin alpha (LTA), which

bind to monocytes’ receptors. High concentrations of IL-6 can

induce T cells to produce inflammatory chemokines and cytokines

such as IFN-g and IL-1b (106). Moreover, these interactions activate

monocytes to induce cytokine hyperproduction and promote

cytokine-induced tissue damage in patients infected with SARS-

CoV-2 (107). Therefore, similar to neutrophils, monocyte, and

macrophage inflammatory phenotype in SARS-CoV-2
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pathogenesis raises the question of whether monocytes are friend

or foe.

Lymphopenia as an immune abnormality is detected in 96.1%

of severe COVID-19 patients, and its degree correlates with clinical

outcomes (108). An investigation reported that recovered patients

exhibited a slow increase in CD4+ and CD8+ T cell frequency

compared to healthy individuals despite a decline in disease onset

(109). Several reasons have been speculated for COVID-19

lymphopenia. SARS-CoV-2 infects lymphocytes through the

ACE2 receptor and CD147 (ACE2-dependent and ACE2-

independent routes), reducing the number of lymphocytes (110).

Additionally, lymphoid organs such as the thymus and spleen are

involved in lymphopenia. Coronavirus animal models have

demonstrated alterations in the weight and cellularity of the

thymus and reduction of the CD4+/CD8+ thymocytes (111).

Moreover, considering the rapid clinical recovery of blood

lymphocytes in COVID-19 patients, lymphocyte sequestration in

the lungs and the gastrointestinal tract has been proposed as a

simple reason for lymphopenia (112). It has been suggested that T

cells from COVID-19 patients undergo apoptosis due to the

macrophage-derived TNF-a (113). Additionally, in COVID-19

patients, serum levels of IL-6, TNF-a, IL-8, and IL-10 were

negatively correlated with lymphocyte counts (114).

Collectively, neutrophilia, lymphopenia, dysregulated monocyte

and macrophages, cytokine storm, and coagulation disorders lead to

organ failure and other COVID-19-associated disorders, which may

be exacerbated in the elderly due to the inflammatory conditions of

these disorders following SARS-CoV-2 infection.
3.2 Role of pro-inflammatory cytokines

In accordance with the knowledge of coronaviruses, it appears

that cytokines and chemokines play a pivotal role in the

immunopathogenesis of SARS-CoV, MERS, and SARS-CoV-2. An

imbalanced production of these mediators causes hyperinflammation

and damage to various organs, including the lungs, liver, kidneys, and

heart (113). There is a possibility that some COVID-19-infected

patients develop severe symptoms, resulting in hyperinflammation

caused by cytokines/chemokines overexpression, a pathologic

condition known as cytokine release syndrome (CRS), which can

lead to pneumonia and ARDS (115). A series of immune responses

trigger a systemic CRS after the virus invades the respiratory mucosa

and infects various immune and non-immune cells, such as alveolar

type II (116). CRS usually manifests as a systemic inflammatory

immune response associated with the elevation of inflammatory

biomarkers and multiple organ failure due to an intensified release

of pro-inflammatory cytokines (117, 118). Tissue damage by SARS-

CoV-2 infection or an overactivated immune system can cause CRS.

A sign of this overactive immune system is the infiltration of

macrophages and neutrophils in the affected tissues. These cells

migrate to the infected tissue to provide protection, but their

uncontrolled functions cause hyperinflammation and tissue damage

(119). Although numerous cytokines and chemokines are involved in

the pathogenesis of SARS-CoV-2, the most significant inflammatory

cytokines, including TNF-a, IL-1b, IL-6, IL-8, and IL-17 that cause
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tissue damage and multi-organ failure, have been briefly discussed

here (Table 1).

3.2.1 Tumor necrosis factor-a
It has been demonstrated that TNF-a is a crucial factor in the

pathophysiology of CRS in patients with SARS-CoV-2 infection.

Several types of cells in the airways are responsible for TNF-a
production, including epithelial cells, smooth muscle cells, alveolar

macrophages, T cells, and mast cells. The synthesis of this cytokine

is primarily triggered by PAMPs and IL-1b following NF-kB
activation. IL-17 also induces the expression and release of TNF-

a (140). Interestingly, TNF-a induces the expression of IL-1b and

IL-6 as well as T cell apoptosis (12). It has been reported that

inhaling TNF-a leads to neutrophil-mediated bronchial

hyperresponsiveness and airway inflammation in healthy

individuals (120). Recent studies have shown that serum levels of

TNF-a have increased significantly in patients with COVID-19, and

there is a positive and significant association between elevated

serum TNF-a levels and disease severity (10, 130). In contrast,

increasing TNF-a levels are negatively associated with the number
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of T cells because, as discussed, this cytokine can induce T-cell

apoptosis (131).

3.2.2 Interleukin-1b
IL-1b is a pro-inflammatory pleiotropic cytokine that plays a

pivotal role in inflammatory-based disorders. B cells, neutrophils,

DCs, monocytes, macrophages, and synovial fibroblasts can

produce IL-1b (122). Moreover, IL-1b induces the expression of

chemokines, adhesion molecules, IL-6, inducible nitric oxide

synthase (iNOS), phospholipase A (PLA), and type 2

cyclooxygenase (COX2). The release of the mentioned mediators

leads to vasodilation, hypotension, pain, fever, hyperinflammation,

and migration of immune cells into the site of infection, inducing

tissue damage (122–124). Recent studies have reported a significant

increase in the expression of IL-1b at the mRNA and protein levels

in patients with COVID-19 (10, 141).

Moreover, inflammasomes play a significant role in the

production of IL-1b. For example, the activation of NOD-, LRR-

and pyrin domain-containing protein 3 (NLRP3) activates

mechanisms related to pyroptosis, inflammatory-based
TABLE 1 Role of the most studied pro-inflammatory cytokines in the pathogenesis of COVID-19.

Cytokine Source Inducer Functions in COVID-19 Ref

TNF-a ➢ Epithelial cells
➢ Smooth
muscle cells
➢ Alveolar
macrophages
➢ T cells
➢ Mast cells

➢ IL-17
➢ IL-1b

➢ Participating in CRS
➢ Inducing the expression of IL-1b and IL-6
➢ Inducing T cell apoptosis
➢ Neutrophil-mediated bronchial hyperresponsiveness and airway inflammation
➢ Increasing disease severity
➢ Decreasing the number of T cells

(11)
(120)
(9, 121)
(122)

IL-1b ➢ B cells
➢ Neutrophils
➢ DCs
➢ Monocytes
➢ Macrophages

➢ Inflammasomes
➢ TNF-a

➢ Inducing the expression of chemokines, adhesion molecules, IL-6, iNOS, PLA, and COX2
➢ Inducing vasodilation, hypotension, pain, fever, hyperinflammation, and migration of
immune cells into the site of infection
➢ Inducing tissue damage
➢ Pyroptosis
➢ Stimulating the production of pro-inflammatory cytokines
➢ Vascular leakage

(123)
(124–
126)
(127)

IL-6 ➢ Lung
epithelium
➢ Monocytes
➢ Macrophages
➢ DCs
➢ Lymphocytes
➢ Fibroblasts

➢ IL-1b
➢ TNF-a

➢ Inducing hematopoiesis, B-cell differentiation, platelet generation, coagulation, and
inflammation
➢ Participating in CRS
➢ Stimulate hepatocytes to produce acute-phase proteins
➢ Decreasing the number and function of T cells
➢ Increasing the frequency of exhausted T cells

(128)
(129)
(111)
(117)

IL-8 ➢ Epithelial cells
➢ Endothelial
cells
➢ T cells

➢ IL-1b
➢ IL-9
➢ IL-12
➢ IL-17
➢ TNF-a

➢ Recruiting and activating neutrophils
➢ Inducing NETosis
➢ Participating in CRS
➢ Inducing angiogenesis
➢ Inducing ROS production
➢ Increasing disease severity
➢ Increasing Cit-H3, cfDNA, and MPO-DNA levels
➢ Inducing multi-organ damage

(118)
(130,
131)

(9, 132,
133)
(134)

IL-17 ➢ Th17 ➢ IL-1b
➢ IL-12
➢ IL-15
➢ IL-23

➢ Inducing the production of IL-6, IL-8
➢ Recruiting neutrophils
➢ Increasing inflammatory responses
➢ Inducing thrombosis
➢ Participating in CRS
➢ Supporting virus replication and persistence
➢ Preventing apoptosis of virus-infected cells
➢ Inducing lung lesions and ARDS
➢ Tissue damage

(135,
136)
(137)
(138)
(139)
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programmed cell death, resulting in IL-1b release by the pyroptotic

cell, which is a common phenomenon in cytopathic viral infections

(138). A crucial role of pyroptosis in SARS-CoV-2 infection is

stimulating the production of pro-inflammatory cytokines, which

lead to destructive inflammatory responses and tissue damage. It

has previously been observed in patients with SARS-CoV infection

that viral infection and replication could cause high levels of virus-

induced pyroptosis and vascular leakage (142). Therefore, IL-1b
should be considered a critical immune mediator in the

pathogenesis of COVID-19.

3.2.3 Interleukin-6
Another pro-inflammatory and pleiotropic cytokine is IL-6,

expressed by several cells, including monocytes, macrophages, DCs,

lymphocytes, and fibroblasts (125). The circulatory levels of IL-6

increase in several inflammatory states, such as viral infections,

septic shock, burns, and trauma (125). IL-6 is an immune system

regulator involved in hematopoiesis, B-cell differentiation, platelet

generation, coagulation, and inflammation. This cytokine also

significantly participates in CRS (117). Another critical function

of IL-6 is stimulating hepatocytes to produce acute phase proteins

such as C-reactive protein (CRP). A significant increase in this

protein has been reported in COVID-19 patients (141). In patients

with moderate or severe COVID-19, serum levels of IL-6 are

significantly elevated. However, some studies reported that

circulatory concentrations of IL-6 were associated with disease

severity (143–145). Although the origin of this increase in serum

level is probably not circulating blood cells like peripheral blood

mononuclear cells (PBMCs) and is more related to the lung

epithelium. Studies have shown that IL-6 transcript levels in

COVID-19 patients did not change significantly compared to

controls that confirm this theory (146). Like TNF-a, an increased

level of IL-6 is associated with a decrease in the number and

function of T cells. Furthermore, in COVID-19 patients with

increased levels of IL-6, the frequency of exhausted T cells is

elevated (147).

3.2.4 Interleukin-8
IL-8, or CXCL8, is a chemoattractant and priming factor for

neutrophils and is also involved in inflammatory responses,

NETosis (neutrophil extracellular trap [NET]), and angiogenesis

(132). In addition, IL-8 activates neutrophils to produce

inflammatory mediators and clearance of bacterial infections by

inducing reactive oxygen species (ROS) production, as well as

NET formation (128, 129). IL-8 levels significantly increase in

patients with SARS-CoV-2 infection and are directly related to the

disease severity (10, 134, 148). Following the formation of

NETosis in patients with COVID-19, citrullinated histone H3

(Cit-H3), cell-free DNA (cfDNA), and myeloperoxidase (MPO)-

DNA levels are increased, inducing multi-organ damage and

death from severe SARS-CoV-2 infection (149). Since

neutrophils are one of the main factors in the pathogenesis of

COVID-19, IL-8, as a chemotactic factor of these cells, can play an

essential role in increasing neutrophil-mediated destructive

inflammatory responses.
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3.2.5 Interleukin-17
The IL-17 family comprises six members (A-F), which IL-17A

and IL-17F types are involved in inflammation (150). This cytokine

is secreted from Th17 cells and can induce the production of IL-6,

IL-8, and several chemokines in response to viral infections,

recruiting neutrophils and increasing inflammatory responses

(151, 152). The systemic effects of IL-17 can be explained by

inducing coagulation pathways and coagulopathy, as well as CRS

(153, 154). Evidence demonstrated that IL-17 and TNF-a could

create a synergistic effect in initiating these processes.

Microthrombosis can damage various organs during and after

SARS-CoV-2 infection (135).

Moreover, IL-17, along with IL-6, can support virus replication

and persistence, as well as prevent apoptosis of virus-infected cells

(136). IL-17 concentrations significantly increased in COVID-19

patients, possibly associated with lung lesions and ARDS (155). The

analysis of biopsy samples taken from the liver, lung, and heart

tissue of patients who died of severe SARS-CoV-2 infection has

shown that the infiltration of Th17 and CD8+ T cells in the lung

tissue of these people has increased significantly (156). These

findings indicate that the dysregulated increase in the activity of

Th17 and cytotoxic CD8+ T cells has led to severe tissue damage

and, finally, the death of patients.

The reviewed studies indicate that the excessive increase in pro-

inflammatory cytokines during SARS-CoV-2 infection can cause

tissue damage through different mechanisms. However, the patterns

of these cytokines at different ages are probably different. Therefore,

targeting these cytokines or their receptors can be a potential

treatment strategy. However, more studies are required because

inhibiting cytokines can act like a double-edged sword and increase

viral load or co-infections.
4 COVID-19-mediated liver injury

Although SARS-CoV mainly affects the respiratory system, it

can also lead to systemic and organ-specific disorders. During the

earlier SARS-CoV-2 outbreak, about 60% of patients experienced

varying degrees of liver impairment. According to evolutionary

similarities, it is conceivable that SARS-CoV-2 also damages the

liver with hepatobiliary manifestation and enzyme elevation.

Patients with COVID-19 may have pre-existing liver disease or

not (157, 158). A recent systematic review and meta-analysis

reported that 14-53% of COVID-19 patients suffer from varying

degrees (mild to severe conditions) of liver injury (159). However,

the mechanism of liver injury has not been fully discovered. It might

be due to several underlying mechanisms, including severe

inflammatory responses, direct cytopathic effects, aggravation of

the pre-existing liver disease, and cytokine storm. Moreover, drug-

induced liver injury can occur in undertreatment patients, as

explained in the next part (Figure 2) (137, 160).

SARS-CoV-2 can damage the liver directly through ACE2, an

entry receptor located on bile duct cells (cholangiocytes) (59.7%)

and less on hepatocytes (2.6%), leading to hepatocyte apoptosis

(161). However, recent data revealed that other causative factors,
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such as drug-induced injury, precede direct cytotoxicity (162). Liver

biopsies of COVID-19 patients showed lobular inflammation,

acidophilic bodies, mild activity of the portal vein, and moderate

microvascular steatosis. Moreover, autopsies from dead patients

revealed hepatomegaly, lobular necrosis, slight lymphocyte

infiltration, and sinusoidal dilation of the central lobule in at least

50% of patients. It is unknown if the viral infection or the

medications are responsible for these histopathological changes

(158, 163, 164).

The severity of COVID-19 elevated IL-6 or ferritin levels and

younger age are considered strong risk factors for liver injury during

hospitalization and are associated with mortality (160, 165). The

mitochondrial alterations and metabolic acidosis aggravation are

related to SARS-CoV-2 infection and result in ischemic/hypoxic

liver injury (166). Several studies revealed that patients had

abnormal liver function tests, including a moderate increase in

bilirubin, aspartate aminotransferase (AST), and alanine

aminotransferase (ALT), which are frequently observed in

patients with severe COVID-19 compared with non-severe

patients (167–169). The alteration of these biomarkers correlates

with liver function, and hepatocyte integrity is involved in acute

liver infection and disease severity. Besides, the transaminase

increase could be associated with morbidity and mortality (170).

However, hypoalbuminemia has been reported due to increased

capillary permeability and decreased hepatic synthesis in severe
Frontiers in Endocrinology 08
patients. Elevated alkaline phosphatase (ALP) and GGT levels are

observed in acute inflammatory oxidative stress and are less

common in COVID-19 (26, 171). Interestingly, skin darkening

and hyperpigmentation caused by increased estrogen and alteration

of tyrosine into melanin in patients after recovery are recognized

because of liver injury (172).

It has been revealed that patients with pre-existing liver disease

and systematic inflammation are more susceptible to COVID-19-

mediated liver injury (173). Comorbidities such as metabolic-

associated fatty liver disease (MAFLD), alcohol-related liver

disease, autoimmune hepatitis (AIH), and chronic liver disease

(CLD) aggravate COVID-19 severity (171). In patients with fatty

liver disease, alcohol use disorder (AUD), and non-alcoholic fatty

liver disease (NAFLD), GGT levels were elevated compared with

those without pre-existing liver disease, indicating that these

patients are more prone to severe disease phenotype (162, 170).
4.1 Impacts of aging

Several studies have investigated the association between age

and severity of liver injury in COVID-19 patients. A retrospective

study comprising 900 patients classified for ages 18-39, 40-69, and

more than 70 years old demonstrated that comorbidity and C-

reactive peptide (CRP) are positively associated with aging.
FIGURE 2

COVID-19-induced liver injury. SARS-CoV-2 infection can cause liver failure in different ways. This virus can directly infect liver cells expressing ACE2
and exert cytopathic effects. Additionally, the increase in the production of pro-inflammatory cytokines from virus-infected cells has led to the
recruiting of immune cells into the liver, which can cause a cytokine storm and tissue injury. Moreover, thrombosis causing hypoxia and ischemia
induces ROS overproduction, which harms liver tissue. On the other hand, vaccinations and drugs prescribed for COVID-19 can also increase liver
enzymes, bilirubin, GGT, and various degrees of liver damage.
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Moreover, abnormalities in liver function tests and liver-related

mortality were observed, especially in 40-69 years old patients.

Additionally, they had higher ALT levels than the other

groups (174).

Another study reported that hepatic symptoms are more frequent

in young and obese patients with pre-existing liver diseases like

MAFLD. These symptoms are aggressive in adult patients having

severe COVID-19 (175). With advanced age and increased

comorbidities, such as arterial hypertension, diabetes mellitus,

chronic liver, cardiovascular disease, and malignancy, the risk of

liver injury and mortality increases in elderly patients (176). A

retrospective cohort study revealed that COVID-19-associated liver

injury is more common in patients aged ≥ 65 years, especially with

other comorbidities. Elevated levels of AST and total bilirubin were

indicators of increased risk of mortality (177).

Some studies agree that COVID-19 patients under 18 suffer less

from liver injury than adults (17, 178). A retrospective case series study

reported that two COVID-19 patients under one year without previous

liver disease presented with acute liver failure, and three patients aged 2,

8, and 13 exhibited hepatitis with cholestasis in liver biopsies (179).

Indeed, liver injury in children with COVID-19 is mild, with low

changes in laboratory and radiological evidence (180). Taken together,

there seems to be a positive association between aging and liver injuries,

particularly regarding pre-existing liver involvement.
4.2 Role of cytokines

Systemic homeostasis disruptions in both vascular and

immune-mediated pathways affect multiple mechanisms in the

liver. Some studies have demonstrated that COVID-19 patients

have minor early symptoms but might develop quickly into the final

stage of multiple organ dysfunction (22). This trend is associated

with a viral infection-driven rapid onset of inflammatory cytokines.

As discussed, dysregulated activation of inflammatory pathways

leads to the hyperproduction of cytokines and, eventually, the

formation of a cytokine storm (181). The overexpression of CRP,

ferritin, LDH, TNF-a, IL-1b, IL-6, IL-2, IFN-g, and vascular

endothelial growth factor (VEGF) can be associated with COVID-

19 severity (160, 166, 182). It has been reported that there is no

difference between cytokine profiles in mild or severe COVID-19,

ARDS, and sepsis. However, the therapeutic regime in various

cytokine storm-induced disorders differs (183). Several studies

suggested that pro-inflammatory cytokines contribute to

hepatologic abnormalities in the early and late phases (171, 184,

185). A large cohort study demonstrated a correlation between

systematic inflammation and the acute phase of liver injury in

which IL-6 is accompanied by CRP or ferritin-caused elevation in

AST levels (186). The increase in ALP and GGT levels is related to

the advanced phase of liver injury, which is mediated by cytokines

and causes hepatocellular cholestasis (187). Moreover, SARS-CoV-

2, by activating twenty family member 2 and C-type lectins on

myeloid cells, strengthened pro-inflammatory cytokine responses

(170). In inflammatory states, peripheral blood evaluation revealed

hyperactivation of CD4+ T cells, particularly CCR6+ Th17 cells, and

CD8+ cytotoxic T cells, inducing hepatocellular dysfunction (188).
Frontiers in Endocrinology 09
The pathogenic effect of cytokines on liver injury caused by

COVID-19 is not well known. However, according to the evidence,

some pathophysiological prosses can be suggested that are

associated with hepatocellular damage. Cytokine can induce

hypoperfusion, vascular dysfunction, and oxidative stress.

Moreover, these mediators can cause vascular permeability by

increasing the adherence of immune cells to the endothelial (22).

Both vascular permeability and ROS propagation result from

cytokine activation (22, 189). For instance, TNF-a can impair

NO-mediated vasodilation, and capillary leak syndrome and

hypoxia occur dramatically with the continuation of this process.

Capillary leakage causes edema in some organs, such as the liver,

brain, heart, and kidneys. Upregulation of IFN-related JAK-STAT

signalling in liver autopsies exhibited vascular damage, endothelial

injury, and recruiting immune cells, leading to clot formation (190).

Hepatocellular injury can activate Kupffer cells to produce ROS,

NO, and proinflammatory cytokines. These products induce liver

sinusoidal endothelial cells (LSECs) to respond to the cytokines that

cause more liver damage (191). Under the influence of TNF,

hepatocytes secrete IL-6, which activates caspase 3 and

hepatocellular apoptosis. Moreover, the generated NO causes

mitochondrial damage and hepatocellular necrosis (192).

SARS-CoV-2, through ACE2 and upregulation of angiotensin II

(Ang II), plays a crucial role in RAS signalling, promoting

inflammation, tissue injury, and migration of endothelial cells

(193). hypercytokinemia is involved in the renin-angiotensin-

aldosterone system. Therefore, the imbalance of this system by

inducing the accumulation of bradykinin and plasminogen

activator inhibitor-I leads to thrombosis (22). The consequence of

this circumstance is inflammation in the liver and hepatocyte

injury (194).
5 Effects of COVID-19 therapeutic
regimen and vaccination on
liver injury

The COVID-19 pandemic has caused widespread morbidity and

mortality. This virus can affect numerous organs such as the lung,

kidney, heart, CNS, and liver causing multiorgan failures. As a result,

there is an urgent need for an effective method to limit the spread of

the COVID-19 virus, and vaccine development may be a promising

option (195). Although adverse effects from vaccination have been

minor, there are also reports of liver damage following vaccination

with different platforms of the COVID-19 vaccine (Table 2) (217).
5.1 Effect of vaccination

Several COVID-19 vaccine platforms have been effective in

preventing SARS-CoV-2 infection. Despite mild side effects, no

evidence of acute liver injury (ALI) has been reported among

vaccine recipients, possibly due to the small sample size or other

involved factors. Since the extensive implementation of COVID-19

immunization programs worldwide, reports of adverse events have

been reported, including rare hepatic adverse effects with various
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TABLE 2 Impacts of drugs/vaccines on liver injury in patients with COVID-19.

Generic name Function/
Dose Outcomes Type of study Ref/NCT

Drug

Remdesivir

Antiviral
(RdRp inhibitor)
(viral replication

inhibitor)

↑ ALT and AST
↑ ALT and AST and bilirubin
↑ ALT and AST
Hyper transaminasemia and ↑
bilirubin
↑ ALT and AST
↑ ALT, AST and bilirubin
↑ ALT and AST
↑ ALT
↑ ALT and AST
↑ ALT and AST
↑ ALT, AST and bilirubin

Clinical trial
Randomized Controlled
Trial
Clinical Trial
Clinical Trial
Case Report
Clinical Trial
Case Reports
Case Reports
Case Series
Clinical Trial
Case Series

(196), NCT04280705
(197), NCT04257656
(198), NCT04292730

(199)
(200)

(201), NCT04292899
(202)

(203, 204)
(205)
(206)
(207)

Lopinavir/ritonavir

Antiviral
(Protease inhibitor)
(Viral replication

inhibitor)

↑ ALT and AST
↑ ALT
↑ ALT, AST, GGT and
bilirubin
↑ ALT, AST and bilirubin
↑ ALT, AST, ALP and
bilirubin

Randomized Controlled
Trial
Randomized Controlled
Trial
Retrospective Single-
Center Study
Retrospective Analysis
Retrospective Analysis

(208),
ChiCTR2000029308
(209), NCT04252885

(210)
(211)
(212)

Favipiravir
Antiviral

(RdRp inhibitor)

↑ AST
↑ ALT, AST, ALP, GGT and
bilirubin

Randomized Controlled
Trial
Case Reports

(213),
ChiCTR2000030254

(214)

Hydroxychloroquine Antiparasitic Agents
↑ AST
↑ ALT and AST
↑ Liver function test

Randomized controlled
trial
Case Report
Retrospective Analysis

(215), NCT04356937
(216)
(217)

Tocilizumab IL-6R antagonist
↑ ALT and AST
↑ ALT and AST
↑ ALT, AST and GGT

Randomized Controlled
Trial
Case Reports
Case Reports

(218), NCT04356937
(210)
(219)

Vaccine

Pfizer BioNTech

1st dose
2nd

2nd

1st

1st and 2nd

2nd

1st

-

↑ ALT, AST, ALP and
Bilirubin
ANA and Anti ds-DNA
positive
↑ ALT, AST, ALP, GGT and
Bilirubin
ANA positive
↑ ALT, ALP and Bilirubin
↑ ALT, ALP and Bilirubin
Anti-ds-DNA positive
↑ ALT and AST
ANA positive
↑ ALT and AST
ANA and ASMA positive
↑ ALT, AST and Bilirubin
↑ ALT, AST, GGT and
Bilirubin

Case Reports
Case Reports
Case Reports
Case Series
Case Series
Case Reports
Case Reports
Case Reports

(190)
(191)
(220)
(215)
(221)
(222)
(223)
(224)

ChAdOx1 nCoV-19 vaccine (Oxford
AstraZeneca)

1st

1st

1st

↑ ALT, AST, ALP, GGT and
Bilirubin
ANA positive
↑ ALT and AST
↑ ALT, AST and bilirubin
ANA and ASMA positive

Case Reports
Case Reports
Case Reports

(225)
(226)
(227)

SARS-CoV-2 Moderna vaccine (mRNA-
1273)

2nd

1st

1st

1st

1st

1st

1st

↑ ALT, AST, ALP, GGT and
Bilirubin
ANA, ASMA, ASLA positive
↑ ALT, ALP and Bilirubin
ASMA positive
↑ ALT, AST and ALP
ANA and ASMA positive

Case Reports
Case Series
Case Reports
Case Reports
Case Reports
Case Reports
Case Reports

(228)
(229)
(230)
(222)
(231)
(232)
(233)

(Continued)
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characteristics in the form of ALI resembling autoimmune hepatitis

(AIH). Since the widespread implementation of COVID-19

immunization programs worldwide, reports of adverse events have

been made, including rare hepatic adverse effects with various

characteristics in the form of ALI resembling autoimmune hepatitis

(AIH) (206, 230, 236). The exact mechanism of liver injury caused by

the COVID-19 vaccine is unknown. Therefore, there are no data to

prove the existence of a relationship between vaccination and the

incidence of AIH (237).

Vaccine-induced AIH was reported in both mRNA and non‐

mRNA vaccines, suggesting that these adverse effects could be

independent of the vaccine mechanisms (208). Some patients had

a liver or autoimmune disease history, whereas others had neither

liver nor autoimmune disease history (211).

The pattern of liver injury reported was predominantly

hepatocellular, and some patients showed features of immune-

mediated hepatitis (214). In some patients, liver injury was

observed after the first vaccination dose, whereas in others, it

occurred after the second dose (214). Elevated bilirubin levels and

liver enzymes, which clinically manifest as jaundice due to

hepatotoxicity, are examples of abnormal liver function tests (230,

236). The most frequently reported symptom was jaundice (211).

[249] The seropositivity rate for anti-smooth muscle antibody

(ASMA), anti-nuclear antibody (ANA), and anti-mitochondrial

antibody (AMA) varied between studies, and the IgG level was

high in most of the ¬patients (214). Liver biopsies exhibited a varied

pattern, including histological features consistent with AIH, such as

interface hepatitis, portal inflammation, and non-specific

centrilobular necrosis (228). Additionally, after vaccination, severe

thrombosis in the portal and splenic veins and immune

thrombocytopenic purpura were linked with ALI (218, 220).

A case series described two patients with hepatocellular liver injury

without autoimmune features on serology and histology following

COVID-19 vaccination (215). However, another case series analysis

showed no evidence of ALI after COVID-19 vaccination (217).
5.2 Effect of therapeutic regimen

Drug-induced liver injury (DILI) is a rare and potentially life-

threatening adverse effect seen with different chemicals or drugs
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(224). Some liver abnormalities observed in COVID-19 are

associated with DILI manifested by high liver enzyme levels and,

less commonly, high bilirubin levels. Patients’ histology showed

moderate microvascular steatosis and minor hepatic inflammation,

possibly due to DILI from treating the virus or its symptoms. DILI

in patients with COVID-19 is a mild hepatic inflammation that

occurs following antiviral treatments or the disease itself.

Histological examination shows moderate microvascular steatosis,

manifested by elevated liver enzymes and rarely bilirubin (158, 205).

Antiviral (remdesivir, favipiravir, lopinavir/ritonavir, and

umifenovir), antibiotics (azithromycin), immunomodulators

(dexamethasone and tocilizumab), antimalarial (hydroxychloroquine),

and antipyretic medications (acetaminophen) have been administred to

patients with COVID-19 (225, 227). Several of the mentioned

medications have previously been linked to various degrees of

hepatotoxicity when used to treat other disorders, such as viral

infections. The administration of many of these drugs in similar viral

infections is associated with any grade of hepatotoxicity.

Almost all medications used to treat COVID-19 are

metabolized in the liver, but some degree of liver damage is

unavoidable (229). However, it is unknown what causes the

elevated liver enzymes in this population (the disease or DILI).

Additionally, due to drug combinations, it is challenging to imagine

a relationship between each drug and liver damage (232).

Remdesivir is a nucleoside analog currently approved by the

United States food and drug administration (FDA) and

recommended for some hospitalized patients with COVID-19

(233). This antiviral drug shortens recovery time in hospitalized

patients with lower respiratory tract SARS-CoV-2 infection. Despite

its efficacy in reducing recovery times, its healing properties are yet

to be proven (238). Increasing ALT/AST, hyperbilirubinemia, and

hypoalbuminemia are considered the most common adverse effects

in patients under treatment with remdesivir (197, 234, 239).

The efficacy of Umifenovir in COVID-19 patients was assessed

in a randomized clinical trial and showed significantly improved

clinical and laboratory parameters and decreased hospitalization

duration; however, the most common liver-associated disorder in

patients using umifenovir was abnormal liver function tests (235).

LPV/r is a co-formulation of ritonavir and lopinavir structurally

related protease inhibitors (203). Conflicting published data results

have sparked debate about using LPV/r in COVID-19 patients. Two
TABLE 2 Continued

Generic name Function/
Dose Outcomes Type of study Ref/NCT

1st

1st
↑ ALT, AST and Bilirubin
ANA and Anti ds-DNA
positive
↑ ALT, AST and Bilirubin
↑ ALT, AST and Bilirubin
ANA, ASMA positive
↑ ALT and Bilirubin
↑ ALT, AST and Bilirubin
↑ ALT, AST and Bilirubin
ANA positive

Case Reports
Case Reports

(234)
(235)

Sinopharm 2nd ↑ ALT, AST and Bilirubin Case Reports (203)
↑ means "increase".
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clinical trials showed that a combination of LPV and ritonavir made

no difference to the standard of care. However, some studies have

reported that LPV/r could decrease the SARS-CoV-2 shedding and

the median time of clinical improvement (240–242). Abnormal

liver function has been reported in patients under treatment with

lopinavir/ritonavir, and the most prevalent increase in test findings

was seen in GGT and total bilirubin (205, 243).

As an RNA polymerase inhibitor, favipiravir reduces viral

clearance time and improves chest imaging. However, its

administration could be associated with adverse effects, such as

increased liver enzymes (244, 245).

The liver is the primary site of azithromycin metabolism, and

prior studies found that azithromycin had a modest risk of acute,

temporary, and asymptomatic increases in serum aminotransferases,

occurring in up to 2% of individuals with incomplete treatment.

Thus, when given to COVID-19 patients, especially in small doses

and for a brief time, this medication can be excluded from further

evaluation associated with liver injury (231, 246).

Patients with severe COVID-19 have a high level of circulating

IL-2, IL-6, IL-7, IL-10, and IFN-g (10). Therefore, immunomodulator

drugs could help regulate inflammatory responses, enhancing

COVID-19 prognosis (224). Dexamethasone is the first drug

shown to reduce mortality in patients with severe COVID-19

(247). This drug is metabolized in the liver and has little effect on

hepatic dysfunction in COVID-19 patients because of the low

prescribed dosage and short treatment duration (248). Additionally,

tocilizumab is a recombinant humanized monoclonal antibody that

inhibits the IL-6 receptor and has been used to reduce IL-6-mediated

inflammatory responses in patients with severe COVID-19. Patients

receiving tocilizumab had a better median overall survival than

hospitalization time. A retrospective study of patients treated with

tocilizumab showed no evidence of adverse liver effects (249). Other

studies reported DILI after using tocilizumab and mild to moderate

elevations in liver enzyme levels (219, 221).

SARS-CoV-2 infects ACE2-expressing cells, and chloroquine may

inhibit the ligation of the virus to the ACE2 by inhibiting terminal

glycosylation (250). The effectiveness of hydroxychloroquine/

chloroquine is controversial in patients with COVID-19 (251, 252).

It has been reported that hydroxychloroquine could be a probable but

uncommon cause of DILI (246). A clinical study demonstrated that

patients taking hydroxychloroquine alone or along with azithromycin

had higher liver enzymes (213). Furthermore, a case study

showed hepatotoxicity and transaminase elevation after using

hydroxychloroquine (253). Acetaminophen has been the medication

for treating fever and myalgia associated with COVID-19 (254), and

using acetaminophen in supratherapeutic amounts for several days

might lead to hepatitis, cholestasis, or other nonspecific elevations of

liver enzymes (255).

JAK inhibitors, such as baricitinib, imatinib, and tofacitinib,

help reduce mortality and intubation rates. These inhibitors have

been approved in several countries to treat COVID-19. However,

administering JAK inhibitors could be associated with increased

liver enzymes and bilirubin in less than 1% of patients with

COVID-19. Furthermore, no severe DILI cases have been

reported following treatment with JAK inhibitors (256).
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6 Conclusion

According to the available studies on COVID-19, liver

dysfunction generally develops in male, obese, and elderly

patients. Several mechanisms are involved in liver injury,

including severe inflammatory response, a direct cytopathic effect,

and the idiosyncratic effect of therapeutic regimens and cytokine

storm. Mild to severe liver injury is frequent and occurs in

approximately 50% of patients with COVID-19 and is associated

with the development of the disease, particularly in the elderly with

pre-existing liver disease and other comorbidities. The patients

hospitalized due to the worsening of the disease have a significant

elevation in serum levels of AST, ALT, and ALP and reduced

albumin levels. Elevations in liver enzymes are transient and

decrease after recovery. Therefore, due to the changed conditions

of the immune system and chronic inflammation caused by aging,

the elderly should be under more care for managing tissue damage,

especially the lung, liver and heart, because the increased levels of

pro-inflammatory cytokines or the prescribed drugs worsen the

condition of these patients. Furthermore, post-vaccination liver

complications should be monitored in the elderly.
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