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Associations between lower birth weight and higher polycystic ovary syndrome

(PCOS) risk have been reported in previous observational studies, however, the

causal relationship is still unknown. Based on decomposed fetal and maternal

genetic effects on birth weight (n = 406,063), we conducted a two-sample

Mendelian randomization (MR) analysis to assess potential causal relationships

between fetal genome predicted birth weight and PCOS risk using a large-scale

genome-wide association study (GWAS) including 4,138 PCOS cases and 20,129

controls. To further eliminate the maternally transmitted or non-transmitted

effects on fetal growth, we performed a secondary MR analysis by utilizing

genetic instruments after excluding maternally transmitted or non-transmitted

variants, which were identified in another birth weight GWAS (n = 63,365 parent-

offspring trios from Icelandic birth register). Linkage disequilibrium score

regression (LDSR) analysis was conducted to estimate the genetic correlation.

We found little evidence to support a causal effect of fetal genome determined

birth weight on the risk of developing PCOS (primary MR analysis, OR: 0.86, 95%

CI: 0.52 to 1.43; secondary MR analysis, OR: 0.86, 95% CI: 0.54 to 1.39). In

addition, a marginally significant genetic correlation (rg = -0.14, se = 0.07)

between birth weight and PCOS was revealed via LDSR analysis. Our findings

indicated that observed associations between birth weight and future PCOS risk

are more likely to be attributable to genetic pleiotropy driven by the fetal genome

rather than a causal mechanism.

KEYWORDS

Mendelian randomization, birth weight, polycystic ovary syndrome, fetal genome,
genetic pleiotropy
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Introduction

Polycystic ovary syndrome (PCOS), affecting 6% – 9% of

women of reproductive age, is the most common endocrine

condition (1). Based on previous studies, insulin resistance,

obesity, and androgen excess may contribute together and play

crucial roles in PCOS development (2, 3). In addition, an increasing

body of evidence suggests a strong genetic component in its

aetiology (4, 5). However, the aetiology of PCOS remains largely

unknown, and no efficient therapeutic treatments or prevention

measures for PCOS are available. According to the Developmental

Origins of Health and Disease (DOHaD) hypothesis, early life

abnormal growth and development were associated with the risk

of developing various chronic diseases in later life (6, 7). Birth

weight, a common indicator reflecting intrauterine fetal growth, has

been widely studied on its long-term impact on adulthood health

outcomes (8–11). Interestingly, observational associations between

birth weight and PCOS risk in later life have been reported in a

recent meta-analysis and multiple cohort studies (12–17). However,

these associations were not well replicated in other independent

large-scale cohort studies (18–20). Given that observational studies

are commonly prone to residual confounding or reverse causation

(21), the causal relationship between birth weight and the risk of

developing PCOS remains unknown.

Mendelian randomization (MR), which is a causal inference

technique using genetic variants randomly allocated during

conception as instrumental variables, is less prone to residual

confounding or reverse causation bias (22). In a previous study,

little evidence was found to support a causal effect of birth weight on

PCOS risk by using MR (P = 0.22) (23). However, this study used

offspring genetic variants associated with birth weight as

instrumental variables without adjusting for maternal genotypes,

which were correlated with fetal genotypes (r ≈ 0.5) (24, 25)

(Supplemental Figure 1). Thus, their effect estimates of birth

weight on PCOS risk might be biased by the maternal genetic

effects. In addition, recent studies suggested that composite or

complex traits can be explained by multiple components or

distinct biological pathways (26–28). Like other complex traits,

variation in birth weight can also be explained by different

components, such as fetal genetically regulated components and

maternal adverse intrauterine environment components (29–31).

Dissecting these components of birth weight is essential to

understand the underlying biological mechanism. Recently,

several studies investigated possible mechanisms between birth

weight and cardiometabolic risk by using different components of

birth weight. Based on structural equation model (SEM) and

weighted linear model (WLM) methods, Warrington et al. and

Moen et al. recently separated genetic effects on birth weight into

maternal and fetal components to investigate the causal

mechanisms between birth weight and future cardiometabolic risk

(29, 32). Their findings suggested that associations between birth

weight and adulthood cardiometabolic outcomes were attributable

to fetal genetic effects rather than intrauterine programming (29,

32). Moreover, from a genomic perspective, Juliusdottir et al.

discriminated the effects of transmitted and non-transmitted
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alleles on birth weight by using a long-range phasing (LRP)

method based on the Icelandic fetal growth samples to investigate

inheritance patterns affecting birth weight (30). This study indicated

that associations between birth weight and most cardiometabolic

risk factors were driven by the fetal genome (30), whereas it is still

unclear whether birth weight affects PCOS in the same manner.

Recently, two large-scale genome-wide association study

(GWAS) meta-analyses on PCOS released their summary

statistics (4, 33), which provided opportunities for assessing

potential causal relationships between birth weight and PCOS

risk. Thus, in this study, we aimed to investigate whether there is

a causal effect of fetal genome determined birth weight on PCOS

risk using two-sample MR analysis. Considering other potential

mechanisms that might underpin the association between birth

weight and PCOS, such as genetic pleiotropy, we also assessed the

genetic correlation between birth weight and PCOS risk by

conducting linkage disequilibrium score regression (LDSR)

analysis which is mainly used to identify shared genetic variation

between two traits across the whole genome (34, 35).
Materials and methods

Data sources and study populations

A schematic overview of the study design is presented in

Figure 1 and detailed data sources information can be found in

Supplemental Table 1. We used two sets of birth weight summary

statistics obtained from GWASs conducted by the Early Growth

Genetics (EGG) consortium (http://egg-consortium.org) and the

Icelandic birth register to construct two sets of instrumental

variables (IVs) for the primary and secondary MR analysis,

respectively. GWAS of birth weight conducted by the EGG

Consortium included 406,063 individuals of European ancestry

(29), where maternal and fetal genetic effects on birth weight

were separated by using SEM. In the primary MR analysis, we

used the summary statistics of fetal genetic effects on the offspring’s

birth weight after adjusting for correlated maternal genotypes. Of

note, the original birth weight GWAS categorized 305 genome-wide

significant (P < 5×10-8) single nucleotide polymorphisms (SNPs)

identified into 5 groups based on the effects of maternal and/or fetal

genotypes on offspring birth weight: 1) fetal effect only, 2) maternal

effect only, 3) fetal and maternal effects with the same direction, 4)

fetal and maternal effects with the opposite directions, and 5)

unclassified (29). Among these variants, 28 SNPs were identified

as having fetal genetic effects on birth weight (SEM classification:

“fetal only” or “fetal and maternal”).

The outcome data were obtained from a large-scale GWAS

meta-analysis of PCOS, including 4,138 cases and 20,129 controls of

European ancestry from six cohorts (Rotterdam, Oxford, EGCUT,

deCODE, Chicago, and Boston) (4). To further validate the results

of the MR analysis, we used summary statistics of PCOS GWAS

meta-analysis in the FinnGen and Estonian Biobank (EstBB) as

replication data, which included 3,609 cases and 229,788

controls (33).
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Genetic instruments selection

The genetic instruments selection procedure was conducted in

the following steps. First, in the primary MR analysis, statistically

significant (P < 5×10-8) genetic variants were selected from

summary statistics of birth weight GWAS conducted by the EGG

Consortium (29). To ensure that genetic variants are independent, a

stringent linkage disequilibrium (LD) threshold (r2 < 0.001 and

window size = 10,000 kb) was used for LD clumping, with the

European subsample of 1,000 Genome Project data as reference

panel (36). Moreover, we excluded genetic instruments located in

the range of imprinted genes to minimize the heterogeneous effect

of variants on phenotypes in the population. Considering potential

violations of the MR core assumptions, that is, maternal genetic

effects confounded fetal genetic variants which were used as IVs and

the outcome (i.e., PCOS), we identified and excluded SNPs that

exerted maternal genetic effects on birth weight from the set of IVs.

To further eliminate maternal genetic effects on birth weight from

IVs used in the primary analysis, we identified and excluded

maternally transmitted and non-transmitted alleles based on a

GWAS meta-analysis on birth weight by Juliusdottir et al. from

63,365 parent-offspring trios (30), to construct IVs for the

secondary MR analysis. The allele-specific effects of maternally
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transmitted or non-transmitted on birth weight were used to

represent the maternal and fetal genetic effects, respectively (37).

Finally, five maternally transmitted and three maternally non-

transmitted SNPs that reached a genome-wide significant level on

birth weight were identified from the GWAS by Juliusdottir

et al. (30)

Furthermore, we extracted SNP-POCS associations for each

genetic instrument from two independent PCOS GWASs

conducted by Day et al. and Tyrmi et al., respectively (4, 33). If a

certain instrument was not available in the summary data, a proxy

SNP in high LD in the European population was identified using

LDlink (https://ldlink.nci.nih.gov/?tab=ldproxy). After that, data

harmonization was performed to combine SNP-birth weight and

SNP-PCOS associations using the “harmonise_data” function in the

TwoSample MR package (36), in which ambiguous or palindromic

SNPs were excluded.

As a result, we retained a total of 22 SNPs as genetic instruments

in the primary MR analysis from birth weight GWAS conducted by

Warrington et al. (29) and 20 SNPs after excluding two maternally

transmitted or non-transmitted SNPs (i.e., rs560887 and

rs10872678 which were identified in the GWAS by Juliusdottir

et al. (30)) in the secondary MR analysis (Table 1). To minimize the

risk of violating the IV assumptions, we identified SNPs associated
FIGURE 1

Study design of MR analyses. (A) rs560887 and rs10872678 were identified as maternally transmitted and non-transmitted alleles respectively in the
birth weight GWAS by Juliusdottir et al. (30). (B) SNPs were genome-wide significantly associated with potential confounders of PCOS, including
BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism. BMI, body mass
index; BW, birth weight; EstBB, Estonian Biobank; GWAS, genome-wide association study; PCOS, polycystic ovary syndrome; SNP, single nucleotide
polymorphism; WHR, waist-to-hip ratio.
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with risk factors for PCOS, including body mass index (BMI), type 2

diabetes, waist/hip circumference, waist-to-hip ratio, metabolic

syndrome, glucose metabolism, and lipid metabolism, by

searching the GWAS Catalog database (https://www.ebi.ac.uk/

gwas/) and the PhenoScanner database (version 2; http://

phenoscanner.medschl.cam.ac.uk/). After excluding associated

SNPs, 12 and 11 SNPs were retained as genetic instruments in

each set of IVs, respectively (Figure 1, Supplemental Tables 2, 3).
Primary MR analysis

Main analysis
The multiplicative random-effects inverse-variance weighted

(IVW) method was used as the main analysis (38, 39). Wald ratio

estimate for each SNP was calculated by dividing the per allele effect

on PCOS by the per allele change in the standard deviation (SD) of

birth weight, followed by meta-analyzing the estimates via the
Frontiers in Endocrinology 04
multiplicative random-effects IVW method, which eventually

yielded the IVW estimates. The IVW estimates can be interpreted

as the odds ratio (OR) of PCOS risk for one SD change in

birth weight.
Sensitivity analyses

Assessment of the IV assumptions
To test the MR relevance assumption (i.e., whether the selected

IVs have strong associations with birth weight), the F statistic was

calculated for each genetic instrument in our study (40).

Furthermore, to ensure that the exclusion restriction assumption

holds, Cochran’s Q statistic in the IVW analysis (38, 39) was used to

assess the heterogeneity of the causal estimates between genetic

variants (41). The intercept term of MR-Egger regression was used

to test for directional pleiotropy. In addition, we conducted the

leave-one-out (LOO) (42) and the Mendelian Randomization
TABLE 1 Characteristics of instrumental variables for birth weight used in the primary MR analysis.

SNP CHR Position Gene EA OA EAF Beta SE P F*

rs80278614 1 119412317 TBX15 A G 0.05 0.05 0.009 4.03×10-8 30.1

rs2551347 2 23912401 KLHL29 T C 0.75 0.03 0.005 2.20×10-9 35.8

rs17034876 2 46484310 EPAS1 T C 0.70 0.04 0.005 5.47×10-17 70.2

rs560887 a,b 2 169763148 G6PC2 C T 0.70 -0.02 0.004 2.78×10-8 30.9

rs11708067 b 3 123065778 ADCY5 G A 0.25 0.06 0.005 6.26×10-32 138.3

rs1482852 b 3 156798294 LOC339894 A G 0.60 0.05 0.004 7.56×10-39 170.0

rs4144829 b 4 17903654 LCORL C T 0.26 0.03 0.005 1.12×10-11 46.1

rs35261542 b 6 20675792 CDKAL1 C A 0.74 0.05 0.005 3.23×10-26 112.2

rs10872678 a 6 152039964 ESR1 T C 0.72 0.03 0.005 8.23×10-10 37.7

rs138715366 7 44246271 YKT6/GCK C T 0.99 0.24 0.022 1.43×10-25 109.3

rs112139215 7 73034559 MLXIPL A C 0.07 0.06 0.008 1.20×10-11 46.0

rs13266210 8 41533514 ANK1 A G 0.78 0.03 0.005 3.05×10-9 35.2

rs28457693 9 98217348 PTCH1 G A 0.11 0.04 0.007 1.70×10-9 36.3

rs1112718 b 10 94479107 HHEX/IDE G A 0.41 0.04 0.004 1.51×10-17 72.7

rs7076938 b 10 115789375 ADRB1 T C 0.73 0.03 0.005 2.91×10-10 39.7

rs4444073 11 10331664 ADM A C 0.51 0.02 0.004 2.20×10-8 31.3

rs7968682 b 12 66371880 HMGA2 G T 0.49 0.04 0.004 4.87×10-20 84.0

rs75844534 15 38667117 SPRED1 A C 0.12 0.04 0.006 1.54×10-8 32.0

rs7402983 b 15 99193276 IGF1R A C 0.41 0.03 0.004 4.61×10-10 38.8

rs222857 17 7164563 CLDN7 T C 0.57 0.03 0.004 5.77×10-10 38.4

rs11698914 20 31327144 COMMD7 C G 0.23 0.03 0.005 2.75×10-9 35.3

rs1012167 b 20 39159119 MAFB C T 0.41 0.02 0.004 1.86×10-8 31.6
frontier
* The selected instruments explain 0.3% of the variation in birth weight in the primary MR analysis. The F statistic of individual SNPs ranged from 30.1 to 170.0 with an average F statistic of 58.2.
a. Maternally transmitted or non-transmitted alleles were excluded from the secondary MR analysis.
b. SNPs were genome-wide significantly associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose
metabolism, and lipid metabolism.
BMI, body mass index; CHR: chromosome; EA: effect allele; EAF: effect allele frequency; OA: other allele; P, N, and F indicate p-value, sample size, and F statistic, respectively; SE: standard error;
SNP: single-nucleotide polymorphism.
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Pleiotropy RESidual Sum and Outlier (MR-PRESSO) (43) analyses

to detect strong influential SNPs or outliers.
Robust MR methods

Given that the IVW method provides a biased estimate in the

presence of unbalanced horizontal pleiotropy (i.e., directional

pleiotropy), we carried out sensitivity analyses by using several

pleiotropic-robust methods, including MR-Egger (44), weighted

median (45), weighted mode (46), and MR-PRESSO (43)

methods, to enhance the robustness of causal inference. When the

assumption of the Instrument Strength Independent on Direct

Effect (InSIDE) holds, the MR-Egger regression will generate

consistent estimates even in the presence of directional pleiotropy

(47). The assumption of InSIDE allows for the pleiotropy effects of

IVs but requires that the SNP-exposure effects are independent of

the pleiotropic effects of SNPs on the outcome, which is a weaker

assumption than the IVW assumption. However, the MR-Egger

estimate is less precise than the IVW estimate, particularly when the

SNP-exposure effect estimates of each genetic variant are relatively

homogeneous. Furthermore, we conducted the weighted median

analysis which provides reliable estimates when up to 50% of the

weight comes from valid IVs. We also carried out the weighted

mode analysis which assumes that the most common effect estimate

is a consistent estimate of the true effect and allows the majority of

variants to be invalid (46). Finally, MR-PRESSO analysis was

conducted to estimate the causal effect after correcting for

horizontal pleiotropy by removing outliers (43).
Secondary and replication MR analysis

A secondary MR analysis was conducted using the fetal genetic

associations extracted from the birth weight GWAS by Warrington

et al. (29), after excluding maternally transmitted or non-

transmitted alleles that were identified in the GWAS by

Juliusdottir et al. (30) In addition, to validate the causal estimates

in the primary MR analysis, a replication MR analysis was

performed using data from an independent PCOS GWAS meta-

analysis in the FinnGen and EstBB (33). To increase the statistical

power and precision of causal estimates, a fixed-effect meta-analysis

was conducted to pool the IVW estimates from the primary/

secondary and replication analyses.
LDSR analysis

LDSR analysis was conducted to assess the genetic correlation

between offspring birth weight and PCOS risk by using the fetal

genetic associations with birth weight after adjusting for maternal

genotypes. First, we conducted LDSR analysis based on summary

statistics from birth weight GWAS conducted by Warrington et al.

(29) and PCOS GWAS conducted by Day et al. (4) For replication,

LDSR analysis was performed based on the summary statistic from
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The heritability of a single trait or the genetic correlation between

two traits can be estimated using LDSR analysis based on the LD

structure of a reference panel. Unlike MR, LDSR analysis assesses

the genetic correlation between two traits by using genetic variants

from the whole genome rather than the causal effect between

two traits.

All statistical analyses were conducted using the R packages

“TwoSampleMR”, “MRPRESSO” and “meta” in R software, version

4.0.0 (R Foundation for Statistical Computing, Vienna, Austria).

LDSR analysis was performed using the LDSC software, version

4.0.0 (https://github.com/bulik/ldsc) (34, 35).
Results

Main analysis

The main analysis by IVW suggested little evidence to support a

causal relationship between fetal genome determined birth weight

and PCOS risk. Causal effect estimates of fetal genome determined

birth weight on PCOS risk in the primary MR analysis equated to an

OR of PCOS of 0.86 (95% CI: 0.52 to 1.43) for one SD increase in

birth weight (Figure 2). Replication analysis using another

independent data source from PCOS GWAS meta-analysis

generated a consistent causal association of fetal genome

determined birth weight with offspring PCOS risk (OR: 0.87, 95%

CI: 0.60 to 1.24). Further, consistent estimates (regarding both effect

directions and magnitudes) were obtained after meta-analyzing the

IVW estimates (OR: 0.87, 95% CI: 0.65 to 1.16) in the primary and

replication analyses (Figure 2). After excluding the maternally

transmitted and non-transmitted effects, the MR analysis results

suggested a null causal effect of fetal genetically predicted birth

weight on PCOS risk in both secondary and replication MR analyses

(secondary IVW OR: 0.86, 95% CI: 0.54 to 1.39; replication IVW

OR: 0.86, 95% CI: 0.58 to 1.26) (Figure 3). A similar pooled IVW

estimate was observed (OR: 0.86, 95% CI: 0.64 to 1.16).
Sensitivity analyses

Assessment of the IV assumptions
Genetic instruments for fetal genome determined birth weight,

including 22 SNPs, ranged from 30.1 to 170.0 with an average F

statistic of 58.2, indicating the absence of weak instruments

(Table 1). No evidence for heterogeneity between SNP specific

causal effect estimates was found for the primary IVs set (P for

Cochran Q heterogeneity test = 0.10, replication: P = 0.21) and the

secondary IVs set (P = 0.26, replication: P = 0.15), respectively. The

proximity of the intercept to the origin in the scatter plot

(Supplemental Figure 2) and no significant difference of the

intercept from zero in MR-Egger regression suggested little

evidence for directional pleiotropy (primary IVs set: P = 0.85,

replication: P = 0.08; secondary IVs set: P = 0.70, replication: P =

0.07) (Supplemental Table 4). Meanwhile, the LOO analysis did not
frontiersin.org
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detect influential genetic instruments for birth weight in the MR

analysis (Supplemental Figure 3). The MR-PRESSO global test did

not detect any outliers (primary IVs set: P = 0.13, replication: P =

0.23; secondary IVs set: P = 0.30, replication: P = 0.15)

(Supplemental Table 5). For sensitivity analyses by using IVs after

excluding potential confounder-related SNPs, we found little

evidence for heterogeneity between the causal effect estimates for

each SNP, directional pleiotropy, and any outliers.
Frontiers in Endocrinology 06
Results from robust MR methods

The results from robust MR methods are presented in Figures 2

and 3 which were broadly consistent with the IVW analysis results.

For the primary IVs set consisting of 22 SNPs, non-significant

causal effects of fetal genome determined birth weight on PCOS risk

were observed by using MR-PRESSO, weighted median, weighted

mode, and MR-Egger methods, respectively (Figure 2). Consistent
FIGURE 3

Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the secondary MR analysis. Squares represent ORs of PCOS
per SD increase in birth weight. Error bars represent 95% confidence intervals. (A) rs560887 and rs10872678were identified as maternally transmitted
and non-transmitted alleles respectively in the birth weight GWAS by Juliusdottir et al. (30). (B) 9 SNPs that were genome-wide significantly
associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome,
glucose metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental
variables; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and
Outlier; OR, odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.
FIGURE 2

Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the primary MR analysis. Squares represent ORs of PCOS
per SD increase in birth weight. Error bars represent 95% confidence intervals. A. 10 SNPs that were genome-wide significantly associated with
potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose
metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental variables;
IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; OR,
odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.
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causal effect estimates derived from robust MR analysis were

revealed for the secondary IVs set consisting of 20 SNPs

(Figure 3). The results of sensitivity analysis after excluding

potential risk factor related SNPs were consistent with the results

of the primary and secondary analyses (Figures 2, 3).
LDSR analyses

There was a marginally significant genetic correlation (rg =

-0.14, se = 0.07, P = 0.05) between birth weight and PCOS on a

genome-wide scale. Although the result of replication LDSR

analysis showed a non-significant genetic correlation between

birth weight and PCOS (rg = -0.16, se = 0.12, P = 0.18), the effect

directions and magnitudes were consistent with one another.
Discussion

In this study, we used MR to test the potential causal

relationship between fetal genome predicted birth weight and

PCOS risk. From a genomic perspective, it is important to

discriminate between the maternally transmitted alleles or

intrauterine environment effects and the fetal own genetic effects

on birth weight. To confirm our results, we further tested whether

there was a causal effect of the fetal genome predicted birth weight

on offspring PCOS risk, after excluding maternal transmitted and

non-transmitted (i.e., maternal intrauterine environment effects)

alleles. Our findings provided little evidence for a causal effect of the

fetal genome-determined birth weight on offspring developing

PCOS in later life. These findings were consistent with previous

observational studies that there was no difference in birth weight

between women with PCOS and controls (18–20, 23, 48).

Notably, controversial findings were observed in other studies

(12, 49), and the LDSR analysis results of the present study

suggested a marginally significant genetic correlation between the

two traits. Meanwhile, the potential pleiotropic effects underpinning

the link between birth weight and PCOS were reported. A recent

study found that two genetic variants (i.e., rs2910164 C > G and

rs182052 G > A) in genes MIR146A and ADIPOQ, both of which

were related to PCOS, were associated with birth weight (50).

Although a causal effect of birth weight on PCOS risk was not

observed in the present MR analysis, genetically pleiotropic effects

of variants that contribute to the associations between birth weight

and PCOS cannot be ruled out. Our study suggested that the

association between birth weight and PCOS is likely to be driven

by genetic pleiotropy of variants on the fetal genome.

It is noteworthy that observational studies and animal

experiments demonstrated that prenatal exposure to androgens

possibly in combination with a genetic predisposition may affect

birth weight and subsequent PCOS (51–55). In the present study,

the potential confounding of maternal genetic effects was

minimized by using fetal genetic variants associated with birth

weight as IVs and further excluding maternal transmitted or non-

transmitted genetic variants.
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Strengths and limitations

There are several strengths in our study. We benefited from

large sample sizes and study design yielding more reliable results.

First, to our best knowledge, we used the summary statistics from

the largest published birth weight GWAS with adjusting for

maternal genetic effects (n = 406,063 European ancestral

individuals) to select genetic variants as IVs, and the outcome

data were also extracted from the latest or largest GWAS meta-

analyses on PCOS (4, 29). Second, as mentioned above, Warrington

et al. separated maternal and fetal genetic effects on birth weight by

using SEM. We used the fetal genetic effects on their own birth

weight as the IV-exposure associations, after adjusting for maternal

genetic effects, which could provide insights into the underlying

biological or pathogenic mechanisms between fetal growth and

PCOS development in later life. Third, we also constructed IVs for

birth weight by filtering out maternal transmitted and non-

transmitted variants using summary statistics from a study in

which the study design is different from the study conducted by

Warrington et al. to minimize the confounding bias due to maternal

genetic effects. Fourth, we performed a series of sensitivity analyses

with multiple sets of IVs and robust MR methods to strengthen the

robustness of causal inference. The sensitivity analysis results were

consistent with the results of the main analysis.

Several limitations deserve discussion. First, similar to Chen

et al. in their description of the methodology, the allele-specific

effects on offspring birth weight/fetal growth by maternally non-

transmitted, paternally transmitted, and maternally transmitted

alleles were used to represent maternal genetic effect, fetal genetic

effect, and combination of both, respectively (37). As suggested in

the study conducted by Chen et al. (37), we filtered out maternal

non-transmitted and transmitted alleles that indicated maternal

genetic effects. However, the allele-specific effects on offspring birth

weight/fetal growth by maternally transmitted alleles were

composed of maternal and fetal effects. In the original study,

genetic dissection of maternal and fetal genetic effects was not

performed by modeling maternal and fetal effects using linear

combinations of these three haplotype effects, that is maternal

genetic effect, fetal genetic effect, and a combination of both.

Therefore, more large-scale studies are needed to dissect maternal

and fetal genetic effects on birth weight using linear combinations of

these three haplotype effects in the future. Second, in our study,

there exited moderate sample overlap between data on birth weight

(in GWAS by EGG Consortium (29)) and PCOS (in GWAS

conducted by Day et al. (4)) Up to 2,867 women in the 1958

British Birth Cohort (56) and the Rotterdam Study (57) in the

Netherlands National Trial Register (www.trialregister.nl) were

included in both GWASs (4, 29). Sample overlap in two-sample

MR analysis would bias causal effects estimation (i.e., inflate the

false positive rate) (58), whereas in our study null causal effects of

birth weight on PCOS risk were revealed in both primary and

replication analyses, thus the potential bias due to sample overlap

would not alter the conclusion of our findings. Third, PCOS, as a

common and complex genetic disease with multiple etiologies, is

caused by genes and environmental factors. In the current study, we
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focus on explaining the genetic correlation between birth weight

and PCOS risk. Postnatal environmental effects need to be further

tested for with genotypes of father-offspring pairs in the future since

paternal genotypes might be associated with offspring PCOS risk

after adjusting for offspring genotypes in the presence of postnatal

environmental effects. Fourth, previous studies suggested that low

birth weight was associated with PCOS development (12), however,

other findings supported that women born with extra high birth

weight increased the risk of PCOS (15). These inconsistent findings

might suggest a non-linear causal effect of birth weight on PCOS

risk. The present study was limited by its two-sample MR design

and GWAS summary statistics used to assess the potential non-

linear effect. It is warranted to be investigated through one-sample

MR analysis when individual-level data are available. In addition,

for the replication analysis of LDSR, a genetic correlation between

birth weight with PCOS did not reach statistical significance.

Considering that populations, in which the original GWAS meta-

analysis for the replication analysis was conducted, were mainly

from the FinnGen and Estonian Biobank (33) that were not fully

consistent with populations where the birth weight GWAS was

conducted, population stratification might arise. Finally, LD scores

estimated from European samples of 1000 Genomes reference data

may not represent LD scores well for heterogeneous meta-analyses

of GWAS, these may lead to the reduced accuracy of results from

LDSR analysis (59). However, both results of genetic correlation

based on two different data sets showed an inverse genetic

correlation. Therefore, we believe that an inverse genetic

correlation between birth weight and PCOS is plausible. To avoid

a chance finding, genomic restricted maximum likelihood analysis

with individual-level genotype data is needed to further validate our

results in the future.
Conclusions

In conclusion, our findings provided little evidence for a causal

effect of fetal genome predicted birth weight on developing PCOS in

later life. However, we found evidence for genetic pleiotropy

between birth weight and the future PCOS risk, which has the

potential to explain the relationship observed in previous

observational studies. In this study, although birth weight within

the normal range (i.e., 2,500 to 4,000 grams) may not be causally

associated with the risk of PCOS in later life, the potential non-

linear causal associations between low/high birth weight and PCOS

development need to be further investigated. Further, strong

evidence for the genetic pleiotropy between fetal-genome

predicted birthweight and later life PCOS risk not only suggests a

shared genetic basis but provides novel insight into the common

intervention and treatment targets for these two phenotypes.
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