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Regulation of autophagy by
natural polyphenols in the
treatment of diabetic kidney
disease: therapeutic potential
and mechanism
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Diabetic kidney disease (DKD) is a major microvascular complication of diabetes

and a leading cause of end-stage renal disease worldwide. Autophagy plays an

important role in maintaining cellular homeostasis in renal physiology. In DKD,

the accumulation of advanced glycation end products induces decreased renal

autophagy-related protein expression and transcription factor EB (TFEB) nuclear

transfer, leading to impaired autophagy and lysosomal function and blockage of

autophagic flux. This accelerates renal resident cell injury and apoptosis,

mediates macrophage infiltration and phenotypic changes, ultimately leading

to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise

in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB

and lysosomal repair. This review summarizes the characteristics of autophagy in

DKD, and the potential application and mechanisms of some known natural

polyphenols as autophagy regulators in DKD, with the goal of contributing to a

deeper understanding of natural polyphenol mechanisms in the treatment of

DKD and promoting the development of their applications. Finally, we point out

the limitations of polyphenols in current DKD research and provide an outlook

for their future research.
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1 Introduction

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes

mellitus. As the incidence of diabetes continues to rise, DKD has become one of the

fastest-growing causes of chronic kidney disease and its associated morbidity and mortality

(1, 2). Simultaneously, the occurrence and severity of kidney disease increase the risk of

adverse health outcomes, including cardiovascular disease and cancer, and premature
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mortality in patients with diabetes (3, 4). There is, therefore, an urgent

need to improve the diagnosis and management of DKD. DKD

pathogenesis is complex, with various metabolic and hemodynamic

alterations involved in the development and progression of DKD (5).

Autophagy protects against DKD development by regulating

cellular metabolism and organelle homeostasis, as well as degrading

and recycling damaged proteins, macromolecules, and organelles

(6). Furthermore, under diabetic conditions, autophagy interacts

with multiple intracellular stress signals to maintain cellular

integrity and contributes to the clearance of damaged proteins

and organelles (7). Conditional knockout mice of autophagy-

related genes (Atg5- or Atg7-KO mice) in renal resident cells

further demonstrate the essential role of basal autophagy in

cellular homeostasis (8–10). However, autophagy is suppressed in

DKD, and dysregulation of autophagy and lysosomal homeostasis,

therefore, aggravates podocyte injury, glomerulosclerosis, and

fibrosis in DKD (11, 12). Autophagy defects in DKD are thought

to be caused primarily by advanced glycation end products (AGEs).

AGEs are a complex and heterogeneous group of compounds that

originate as heterogeneous molecules from the nonenzymatic

products of glucose reactions or other saccharide derivatives with

proteins or lipids (13). Their presence in cells and tissues can be

detected by several methods including competitive immunoassay,

skin autofluorescence, and stable isotopic dilution analysis liquid

chromatography and tandem mass spectrometry (14). AGEs are

endocytosed by renal proximal tubules and degraded by lysosomes,

but they can also form inside different renal cell types. High glucose

(HG), AGE-rich diet, and decreased renal clearance all have the

potential to accelerate AGE formation and accumulation in DKD

(15). This may lead to apoptosis and inflammation and thereby lead

to DKD progression (16). Accumulating evidence supports the

causative role of AGEs in autophagy defects in DKD (17).

Conversely, autophagy is thought to play a protective role against

AGEs-induced apoptosis. The p62-dependent autophagy, for

example, was shown to facilitate the removal of AGEs, and the

absence of p62 accelerated the accumulation of AGEs in the soluble

and insoluble fractions (18).

Although great efforts have been made to develop effective

therapies for DKD, delaying its progression to end-stage renal

disease (ESRD) remains a great challenge. Natural polyphenols,

which are abundant in fruits, vegetables, spices, and herbs, are

known for their health benefits on DKD by improving detachment

and apoptosis of podocytes, tubulointerstitial fibrosis, proliferation,

excessive matrix production of mesangial cells, and infiltration and

phenotypic changes of macrophages, potentially by improving

autophagy and lysosomal function (19).

In this review, we critically evaluate the strengths and

limitations of natural polyphenols, focusing on their regulation of

autophagy to provide a clinical reference for the treatment of DKD.
2 Dysregulation of autophagy in DKD

Autophagy and lysosomal dysfunction of renal resident cells are

important pathological factors affecting DKD progression. In this

section, we discuss the characteristics and regulatory role of
Frontiers in Endocrinology 02
autophagy in the onset and progression of DKD and highlight the

importance of autophagy regulation in renal resident cells and renal

macrophages (Figure 1).
2.1 Autophagy regulatory pathways

Mammalian target of rapamycin (mTOR), AMP-activated

protein kinase (AMPK), and Sirtuin 1 (SIRT1) are the main

autophagy-regulatory pathways in DKD (20) and maintain

cellular homeostasis in DKD. mTOR complex 1 (mTORC1)

activation is involved in the early stages of DKD (21, 22).

Furthermore, specific activation of mTORC1 in podocytes

induces DKD-like renal damage, including podocyte effacement,

glomerular basement membrane thickening, mesangial expansion,

epithelial-mesenchymal transdifferentiation, and proteinuria (23).

Increased mTORC1 activity in the proximal tubule in diabetes

induces renal fibrosis and renal function decline (24), and targeted

mTORC1 inhibition by rapamycin and sodium-glucose

cotransporter 2 inhibitors (SGLT2i) is renoprotective in DKD

(24–26). In contrast to mTORC1, AMPK is a positive regulator of

autophagy. AMPK can regulate autophagy by direct

phosphorylation modification, as well as induce autophagy by

inhibiting mTORC1. Loss of AMPK aggravates proteinuria in

DKD (27). AMPK activation ameliorates apoptosis and fibrosis in

DKD (28, 29), and the effect of metformin mitigates renal oxidative

stress and fibrosis in DKD is also associated with activating AMPK

(30). Notably, AMPK also plays an important role in maintaining

mitochondria l homeostas is and optimizing oxidat ive

phosphorylation to maintain energy homeostasis in DKD (31). A

recent study found that AMPK plays a central role in the

amelioration of kidney injury in diabetes nephropathy (DN) by

the vitamin D (VD)-vitamin D receptor (VDR). VD-VDR activates

AMPK to regulate autophagy in DN in a calcium-dependent

manner (32). SIRT1, an NAD+-dependent deacetylase, plays a

protective role in kidney disease (31). SIRT1 can directly

deacetylate Beclin1 to activate autophagy (33) and regulate the

expression of autophagy-related proteins (34), as well as regulate

autophagy by serving as a substrate (35, 36). Induced SIRT1-

overexpression in podocytes attenuates proteinuria and

glomerular injury in DKD (37, 38). Furthermore, SIRT1 mediates

communication between proximal tubules and podocytes,

contributing to maintaining the nicotinamide mononucleotide

concentration around glomeruli, which is essential for preventing

podocyte injury and proteinuria in DKD (39, 40).
2.2 Mitophagy and lipophagy

Mitophagy, which contributes to mitochondrial quality, is an

important selective autophagy mechanism in DKD, as impaired

mitochondrial function and abnormal mitochondrial accumulation

are involved in DKD onset and progression (41, 42). Mitophagy

inhibition aggravates tubulointerstitial inflammation and premature

tubular cell aging (43, 44). Similarly, mitophagy has also been

implicated in podocyte energy metabolism, inflammation, and
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apoptosis (45), and promoting mitophagy homeostasis contributes to

the amelioration of podocyte injury in DKD (46).

Lipid metabolism disorders and autophagy imbalance are the

main characteristics of DKD, both of which are rapidly developing

areas of research (47, 48). Ectopic lipid deposition (ELD) accelerates

renal resident cell injury and senescence (49). Lipophagy improves

ELD and attenuates lipotoxicity-induced kidney injury (50).

Furthermore, lipophagy reduces cholesterol influx and

ameliorates lipotoxicity-induced podocyte injury and tubular

injury in DKD (51, 52).
2.3 Autophagy and kidney inflammation

Crosstalk between autophagy and inflammation is widespread

and important in many diseases (53), including DKD.

Inflammation plays a key role in DKD onset and progression,

and autophagy plays multiple roles in the inflammatory response

(54). The accumulation of AGEs triggered the inflammatory

response in DKD (55), and autophagy as an important regulator

ameliorated renal inflammation by promoting the degradation of

AGEs (56). Furthermore, autophagy-related gene 5 (ATG5)

ablation was found to impair autophagy and enhance NF-kb
activation (10). Notably, lysosomal rupture also leads to

inflammasome activation, further aggravating inflammation (57).

TFEB, an important transcription factor for autophagy and
Frontiers in Endocrinology 03
lysosomal regulation, plays a multifaceted role in regulating

macrophage activation and control cytokine/chemokine

transcription (58). NLRP3 inflammasome is an important player

in the regulation of inflammation. NLRP3 inflammasome activation

impairs glomerular autophagy in DKD, and NLRP3 inhibition or

deletion is sufficient to restore autophagy in podocytes (59),

highlighting the close relationship between inflammation and

autophagy in DKD. Thus, targeted elimination of the crosstalk

between autophagy and inflammation has a promising therapeutic

effect on DKD (35, 60, 61).
2.4 Lysosomal dyshomeostasis

Lysosomes play invaluable roles in various types of autophagy

and cell death (62), are dynamic regulators of cellular and

organismal homeostasis, and are responsible for the degradation

of cellular content (63). Lysosomes contribute to cellular

metabolism, membrane repair, and immune signal transduction

(64) and also communicate extensively with other organelles,

including mitochondria (65) and the nucleus (66), by establishing

membrane contact sites and functional interactions. Lysosome-

related research on DKD is advancing rapidly. The accumulation

of AGEs triggers lysosomal membrane permeability and lysosomal

dysfunction (67). Conversely, lysosomal biogenesis promotes

degradation of AGEs in DKD (55). Restoring lysosomal function
FIGURE 1

Characteristics of autophagy in DKD. (The mTOR, AMPK, and SIRT1-regulated autophagy pathway is an important protective mechanism for DKD.
Mitophagy and lipophagy are critical to DKD. There is a close crosstalk between autophagy and inflammation. Lysosomes promote the degradation
of AGEs).
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to activate autophagy improves podocyte damage in DKD (12), and

a similar effect has been observed in renal tubules (55).

Interestingly, recent studies have found that tunneling nanotubes

(TNT) mediated the exchange of autophagosomes and lysosomes

between podocytes to allow healthy podocyte components to

replace damaged organelles, and the inhibition of TNT

accelerated lysosomal dysfunction and apoptosis in podocytes

(68). The inactivation of TFEB, a master transcription factor that

drives lysosomal functions, is closely related to lysosomal

insufficiency and dysfunction in DKD (69). AGEs inhibit the

nuc l e a r t r an s l o c a t i on and a c t i v i t y o f TFEB (70 ) .

Pharmacologically targeting TFEB activation ameliorates tubular

and podocyte injury, apoptosis, and inflammation in DKD (69–71).

Maintaining lysosomal homeostasis may therefore be a potential

therapeutic approach for DKD (7, 72).
3 Autophagy and renal homeostasis

Autophagy functions differently in various cell types. In this

section, we review studies on autophagy in four important cell types

implicated in DKD: podocytes, tubular epithelial cells, mesangial

cells, endothelial cells, and macrophages (Table 1, Figure 2).
3.1 Autophagy and podocyte injury

Podocytes are terminally differentiated glomerular epithelial

cells that play key roles in maintaining the integrity of the

glomerular filtration barrier. Podocyte injury and effacement are

the main causes of glomerulosclerosis and massive proteinuria in

patients with DKD. The physiological function of podocytes

requires high levels of autophagy (73). Podocyte-autophagy

inhibition occurs in the early stages of DKD and leads to the

progression of DKD and massive proteinuria (11). Loss of

autophagy was found to simultaneously accelerate podocyte and

endothelial injury, leading to disruption of the glomerular filtration

barrier and glomerulosclerosis (74). Mitophagy is also involved in

podocyte injury. For example, progranulin (PGRN) deficiency

aggravates podocyte injury and proteinuria in DN mice, while

elevated PGRN levels maintain podocyte mitochondrial

homeostasis by mediating mitochondrial biogenesis and

mitophagy via the SIRT1-PGC-1a/FoxO1 pathway (46). Similarly,

forkhead-box class O1, a transcription factor, reduces podocyte

injury in DKD by regulating mitophagy (88). Recent evidence

suggests that autophagy aids in the reduction of ELD and the

amelioration of lipotoxicity-mediated podocyte injury in DKD (51).

Notably, lysosomes are involved in the processing of endocytosed

albumin in podocytes, lysosomal dysfunction may contribute to

podocyte injury, albuminuria, and glomerulosclerosis (89). AGE-

stimulation leads to decreased lysosomal enzyme activity, TFEB

inactivation, and lysosomal membrane permeabilization in

podocytes (12). This results in an inhibition of the autophagic

flux, resulting in podocyte actin cytoskeletal disorganization and

loss of slit membrane integrity. Pharmacological attenuation of

autophagy and lysosomal dysfunction with drugs such as
Frontiers in Endocrinology 04
rapamycin, reduces proteinuria and ameliorates podocyte injury

in DKD (90). These studies highlight the importance of autophagic

flux in maintaining podocyte homeostasis.
3.2 Autophagy and renal proximal tubular
epithelial cells

Although DKD is trad i t iona l ly charac ter i zed by

glomerulopathy, many patients with DKD who develop ESRD do

not show increased proteinuria (91), illustrating the importance of

renal proximal tubular epithelial cell (PTEC) damage for the onset

and progression of DKD. Phenotypic changes in PTECs are early

manifestations of DKD (92, 93), and the severity of

tubulointerstitial lesions strongly correlates with renal outcomes

(94). The autophagy-lysosome pathway is important in PTEC,

although, unlike in podocytes, the basal level of autophagy in

renal PTECs is very low (8). Mice with proximal tubule-specific

ATG5 or ATG7 deletion exhibit exacerbated renal function

impairment and premature renal senescence (8, 9). Furthermore,

deleting sodium-glucose cotransporter 2 (SGLT2), a master

regulator of renal tubular glucose reabsorption, reduces renal p62/

SQSTM1 accumulation, suggesting that glucose uptake may

contribute to autophagy inhibition in PTECs (95). AGEs, which

are elevated by long-term HG levels, are degraded by endocytosis in

PTEC lysosomes and gradually accumulates with the PTEC

autophagy impairment (14). The AGE-overload, in turn, disrupts

lysosomal function and autophagic flux, aggravating PTEC injury

(55, 67). Impaired mitophagy plays a fundamental role in DKD

pathogenesis, and mitophagy deficiency in PTECs leads to tubular

cell injury and accelerated senescence (43). MitoQ, a mitochondria-

targeted anti-oxidant, attenuates tubular injury and improves renal

function by enhancing mitophagy (96). It is important to note that

tubular injury often coincides with glomerular injury in DKD,

forming tubuloglomerular feedback (TGF) (97), and autophagy

plays an indispensable role in TGF through Megalin and SIRT1

(75, 98). Collectively, these studies indicate that PTEC autophagy

plays an important renoprotective role in DKD.
3.3 Autophagy and mesangial cells

Mesangial cells (MCs) play an important role in maintaining

the structural integrity of the glomerular microvascular bed and

mesangial matrix homeostasis (99) by eliciting multiple biological

responses to injury, including matrix remodeling and crosstalk with

neighboring cells (100). MC hypertrophy, basement membrane

thickening, and mesangial matrix expansion induced by HG

levels are the earliest pathological features of DKD (101).

However, the role of autophagy in MCs in DKD remains unclear.

AGE-stimulation of MCs leads to time-dependent changes in LC3II

and p62 expression (76). Similarly, HG-stimulation of MCs

suppresses autophagy-related protein levels, including mTOR,

Beclin1, P62, PINK1, and Parkin. Moreover, inhibition of

autophagy in MCs is also found to accelerate AGE-induced

senescence in MCs (80, 81) and aggravate renal inflammation and
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fibrosis in DKD (78). A loss of the tissue inhibitor of

metalloproteinase 3 (TIMP3) aggravates basement membrane

thickening, mesangial expansion, proteinuria, and interstitial

fibrosis in DKD, resulting in decreased expression of FoxO1 and

autophagy-related genes, while re-expression of TIMP3 in MCs

attenuates these effects (102). Activation of MC autophagy can

repair AGEs-induced MC damage by clearing reactive oxygen

species (ROS), which are important mediators of AGE-induced

MC-apoptosis (79), and improve glomerular mesangial expansion

and extracellular matrix deposition, thereby improving DKD (77).

Although these studies provide important evidence for the

protective role of autophagy in MCs, the potential therapeutic

value of autophagy in MCs in DKD requires further research.
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3.4 Autophagy and glomerular
endothelial cells

Glomerular endothelial cells (GECs) injury plays a key role in

the early occurrence and development of DKD (103). High glucose,

ROS accumulation, and autophagy inhibition mediate the loss of

glycocalyx and GECs dysfunction, leading to endothelial

permeability and apoptosis, thereby driving albuminuria and early

renal injury (104, 105). Importantly, injured GECs accelerates renal

progression by forming crosstalk with adjacent glomerular cells (82,

106). Conditional knockout of Atg5 of GECs showed capillary loops

thickening and accumulation of ROS, which eventually developed

significant glomerulosclerosis (107). In addition, knockout of Atg5
TABLE 1 Role of autophagy dysregulation in major cell types affected in DKD.

Cell types Experimental models Major findings References

Podocyte

/
The physiologic function of podocytes requires the maintenance of high levels
of autophagy and is independent of mTOR

(73)

HFD-Induced Diabetes in Podocyte-Specific
Autophagy-Deficient Mice

Autophagy deficiency accelerates podocyte loss and proteinuria (11)

STZ-induced DKD Inhibition of mitophagy accelerates podocyte injury (46)

STZ-induced DKD
Autophagy promotes the degradation of cholesterol and ameliorates podocyte
injury resulting from lipotoxicity

(51)

STZ-induced DKD
Loss of autophagy accelerates podocyte injury, disruption of the glomerular
filtration barrier and glomerulosclerosis

(74)

Tubular epithelial
cell

AGE-induced podocyte injury Lysosome restoration activates autophagy to ameliorate podocyte injury (12)

/ the basal level of autophagy in renal PTECs is very low (8)

/ Apoptosis and senescence of tubular cells accelerated by autophagy deficiency (9)

STZ-induced DKD Knockdown of SGLT2 aggravates the impaired autophagy

Lysosomes of tubule cells promote degradation of AGEs (14)

/ Autophagy mediates tubulobulbar feedback (75)

Mesangial cell

AGEs induced HBZY-1 cells AGEs induce autophagy alterations in a time-dependent manner (76)

HFD/STZ-induced DKD
Autophagy improves the expansion of glomerular mesangium and the
deposition of extracellular matrix

(77)

high glucose induced SV40 MES 13 Autophagy dysfunction aggravates inflammation and fibrosis (78)

AGEs induced HBZY-1 cells Autophagy clear ROS and repair AGEs induced MCs damage (79)

/ Inhibition of autophagy accelerates senescence in MCs (80, 81)

Glomerular
endothelial cells

STZ-induced DKD ECs specific deletion of Atg5 leads to capillary rarefaction and accelerated DN (74)

HFD/STZ-induced DKD Autophagy improved the proliferation and inhibited apoptosis of GECs (82)

db/db mice Autophagy inhibition promoted endothelial-to-mesenchymal transition (83)

Macrophage

STZ-induced DKD
Activation of TFEB and recovery of autophagy promote M2 polarization of
macrophages

(71)

HG induced RAW264.7 Autophagy promotes macrophage adhesion and migration in DKD (84)

STZ-induced DKD Mitophagy regulates macrophage phenotype in DKD (85)

HG induced RAW264.7
High glucose induced macrophage derived exosomes promote renal tubular
epithelial cell autophagy inhibition

(86)

HG-induced podocyte injury
M2 macrophage derived exosomes activate autophagy to ameliorate podocyte
injury

(87)
HG, high glucose; STZ, Streptozocin; HFD, High fat diet; DKD, diabetic kidney disease; AGEs, advanced glycation end products; EndMT, endothelial-to-mesenchymal transition.
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GECs leads to capillary rarefaction and endothelial-to-

mesenchymal transition (EndMT) and accelerating the fibrosis

and progression of DN (74, 83, 108). Interestingly, the injured of

GECs promoted podocyte dysfunction (109). In turn, autophagy of

podocytes plays a renoprotective role against DKD related

structural endothelial injury (110). Activating the AMPK pathway

was proved to improve the renal injury of DKD by improving

autophagy of GECs (29, 111), suggesting the important role of

autophagy of GECs in improving DKD.
3.5 Macrophage autophagy in DKD

DKD is a chronic inflammatory disease characterized by

massive inflammatory cell infiltration and overexpression of

proinflammatory factors. Increased macrophage infiltration is

observed in the kidneys of DN mice and patients with DKD.

Macrophage infiltration and phenotypic changes are significantly

associated with proteinuria and fibrosis in DKD (112).

Furthermore, communication between macrophages and renal

resident cells, such as podocytes and PTECs, may influence DKD

progression (113, 114). Emerging evidence suggests that

macrophage autophagy plays a crucial role in macrophage
Frontiers in Endocrinology 06
polarization, chronic inflammation, and organ fibrosis (115). In

DKD, HG-stimulation results in macrophage-derived exosomes

targeting and inhibiting PTEC autophagy (86), and M2

macrophage-derived exosomes activate autophagy to ameliorate

podocyte injury in DKD (87). Conversely, autophagy can regulate

changes in the macrophage phenotype (85), and autophagy

inhibition enhances macrophage adhesion and migration (84).

Furthermore, studies have reported that TFEB activation

promotes macrophage polarization toward the M2 type,

suppresses inflammation, and improves kidney injury in DKD

(71). Targeting autophagy regulation in macrophages has been

well-studied in many diseases (116, 117). Macrophage autophagy

may therefore be a promising therapeutic target for DKD.
4 Polyphenols used to regulate
autophagy in DKD

Dietary polyphenols are a widespread class of secondary plant

metabolites. The potential of polyphenols to restore SIRT1 and

NAD+ metabolism in kidney diseases has received significant

attention (118). In addition, epigenetic regulation of autophagy is

an important mechanism for maintaining homeostasis. Natural
FIGURE 2

Autophagy as a therapeutic target in DKD. (Autophagy is inhibited in DKD. Autophagy-lysosome dysfunction mediates podocyte injury leading to
glomerulosclerosis and massive proteinuria and mediates renal proximal tubular epithelial cells injury aggravating renal fibrosis, and mediates mesangial
cell injury and endothelial-to-mesenchymal transition promoting the production of mesangial matrix and aggravating glomerulosclerosis and proteinuria.
In addition, inhibition of macrophage autophagy aggravated renal inflammation leading to glomerulosclerosis, proteinuria, and renal fibrosis).
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polyphenols can reverse epigenetic alterations of autophagy and

delay the progression of DKD (119). Resveratrol was found to

regulate SIRT1 and DNA-methyltransferase (DNMT) and

exhibited potential regulatory capacity on DKD (120, 121).

Similarly, quercetin has also been found to regulate the

expression of multiple chromatin modifiers (including DNMTs,

histone deacetylases, histone acetyltransferases, and histone

methyltransferases) (122). In this section, we review natural

polyphenols as autophagy regulators, including the regulation of

mitophagy and promoting TFEB-nuclear transfer. The reviewed

compounds and their specific effects on autophagy regulation are

summarized in Table 2 (Figure 3).
4.1 Resveratrol

Resveratrol (RSV), a potent, natural SIRT1-agonist, reduces

oxidative stress and AGE production, inhibits endoplasmic

reticulum (ER) stress, and ameliorates lipotoxicity and

inflammation, thereby effectively protecting renal function from

DKD without significant side effects, and is widely recommended

as a dietary supplement for DKD treatment (148). RSV is also an

effective autophagy regulator in DKD, promoting autophagy by

activating SIRT1, thereby ameliorating DKD (123). RSV enhance
Frontiers in Endocrinology 07
autophagy to improve insulin resistance, lipid metabolism, and renal

function in DKD (124), and protects against HG-induced podocyte

apoptosis, whereas inhibition of autophagy reverses this therapeutic

effect (125). Further research found that RSV can further improve

autophagy and apoptosis in podocytes by up-regulating miR-18a-5p

(126) and down-regulating miR-383-5p (125). Furthermore, RSV, in

combination with vitamin E, improves the lysosome-dependent

autophagy pathway, thereby ameliorating AGE-mediated podocyte

actin cytoskeleton damage (12).
4.2 Curcumin

Curcumin, a bioactive polyphenolic compound found in

turmeric, exhibits anti-inflammatory, anti-oxidant, autophagy-

enhancing, anti-apoptotic, and anti-fibrotic properties in DKD

(149). Moderate doses of curcumin induce autophagy, whereas

high doses induce lysosomal membrane permeabilization, leading

to cell death (150). Curcumin has been described as a

pharmacological inhibitor of the mTOR-signaling pathway in

many diseases (151, 152). Curcumin also activates TFEB, thereby

enhancing autophagy and lysosomal activity (153, 154). In DKD,

curcumin suppresses p-mTOR levels, thereby promoting autophagy

and alleviating podocyte epithelial-to-mesenchymal transition
TABLE 2 Summary of natural polyphenols targeting autophagy to improve DKD.

Compounds
Types
of
study

Source Model Molecular
targets Pathway

Modulation
on
autophagy

Effects References

Resveratrol
In vitro,
In vivo

Wine, berries,
and peanuts

STZ
induced
DKD; db/
db mice;

LC3-II/LC3-I↑,
p-AMPKa/
AMPKa↑, p-
ULK1↑, SIRT1↑,
Atg7↑, Atg5↑,
LC3↑

AMPKa/
mTOR;
SIRT1

Improve
autophagy;
Restore
lysosome
function

Improve insulin resistance,
lipid metabolism and renal
function

(12, 123–126)

Curcumin
In vitro,
In vivo

turmeric
STZ-
induced
DKD

LC3II/LC3I↑,
p62↓, p-
mTOR↓,
UVRAG↑, p-
Akt↓, P13K↓,
Atg5↑, Beclin-
1↑

PI3k/Akt/
mTOR;
Beclin1/
UVRAG/
Bcl2

Improve
autophagy

Improve podocytes EMT
and apoptosis

(127–129)

Puerarin
In vitro,
In vivo

radix puerariae
STZ-
induced
DKD

LC3-II↑, p62↓,
Beclin-1↑,
Atg5↑, LKB1↓

HMOX1/
SIRT1;
PERK/
eIF2a/
ATF4

Improve
autophagy

Protect podocytes from
damage induced by
diabetes

(130, 131)

Kaempferol
In vitro,
In vivo

tea leaves,
broccoli,
hazelnuts,
propolis,
grapefruit and
other green
plants

db/db mice

LC3II↑, Beclin-
1↑, Atg7↑, Atg
5↑, p62/
SQSTM1↓, p-
AMPK↑, p-
mTOR↓

AMPK/
mTOR

Promotes
autophagy;

Amelioration of podocyte
injury and renal cell
apoptosis

(132, 133)

Cyanidin-3-O-
glucoside

In vitro anthocyanins
HG-
mouse

LC3-II/LC3-I↑,
Beclin-1↑, p62↓,
p-AMPK/

SIRT1/
AMPK

Improve
autophagy and
apoptosis

Improve podocytes EMT
and apoptosis

(134)

(Continued)
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TABLE 2 Continued

Compounds
Types
of
study

Source Model Molecular
targets Pathway

Modulation
on
autophagy

Effects References

podocytes
(MPC5)

AMPK↑, p-
mTOR/mTOR↓,
SIRT1↑

Ferulic acid
In vitro,
In vivo

Ferula
asafoetida L.,
Anthemis
nobilis L. and
Equisetum
hyemale L.

HFD/STZ-
induced
DKD

LC3-II/LC3-I↑,
p62↓

/
Improve
autophagy

Improve renal injury (135)

isorhamnetin
In vitro,
In vivo

the fruits of
Hippophae
rhamnoides L.
and the leaves
of Ginkgo
biloba L.

HFD/STZ-
induced
DKD

FYCO1↑, ULK-
1↑, TECPR↑,
WIPI↑

/
Improve
autophagy

Improve fasting blood
glucose, lipid metabolism
and renal function

(136)

phenolics from
Physalis
Peruviana fruits

In vitro,
In vivo

Physalis
peruviana fruits

STZ-
induced
DKD

LC3-II↑,
AMPK↑,
mTOR↓

AMPK/
mTOR

Improve
autophagy and
apoptosis

Improve renal injury (137)

Wogonin
In vitro,
In vivo

the root of
Scutellaria
baicalensis
Georgi

STZ-
induced
DKD

ATG7↑, LC3-II/
LC3-I↑, Beclin-
1↑, p62↓

PI3K/Akt/
NF-kB

Regulation of
crosstalk
between
autophagy and
apoptosis

Attenuate podocyte injury;
regulate the crosstalk
between autophagy and
apoptosis to reduce
glomerulopathy and
podocyte damage

(138, 139)

Dihydromyricetin
In vitro,
In vivo

Ampelopsis
Michx

STZ-
induced
DKD

LC3-II/LC3-I↑,
Beclin-1↑, p62↓,

PI3K/
AKT/
mTOR

Improve
autophagy

Improve renal interstitial
fibrosis

(140)

Genistein In vitro soy
HG-
induced
podocyte

LC3-II↑, p62↓,
p-mTOR↓

mTOR
Improve
autophagy

Improve podocyte damage (141)

Salvianolic Acid
A

In vitro,
In vivo

dried root and
rhizome of
Salvia
miltiorrhiza
Bunge

HFD/STZ-
induced
DKD

SIRT1↑,
ATG5↑,
ATG7↑,
ATG12↑, LC3-
II↑, Beclin-1↑,
p62↓, Bnip3↑

Sirt1-
Foxo3a-
Bnip3

Ameliorate the
impaired
autophagy

Restored glomerular
endothelial function and
alleviated renal structural
deterioration

(142)

Bergenin
In vitro,
In vivo

Bergenia
crassifolia, Ficus
racemosa,
Mallotus
japonicus, M.
philippinensis,
etc

HFD/STZ-
induced
DKD

p-mTOR↓
mTOR/b-
TrcP/Nrf2

/
Inhibit the generation of
extracellular matrix in
glomerular mesangial cells

(143)

Ginkgetin In vitro
Ginkgo biloba
leaves

HG-
induced rat
glomerular
mesangial
cells

LC3-II/LC3-I↑,
p62↓, p-MPK↑,
p-mTOR↓

AMPk/
mTOR

Mesangial cell oxidative
stress injury, inflammation,
and extracellular matrix
deposition

(144)

Chrysin
In vitro,
In vivo

Edible plants
such as passion
flowers,
mushrooms,
honey, and bee
propolis

db/db mice

Atg3↓, Atg7↓,
Beclin-1↓, LC3-
I/LC3-II↓,
mTOR↓, p-
mTOR↓

mTOR
Inhibition of
Autophagic

Inhibit mesangial actin
assembly and cell
migration

(133, 145)

Mangiferin
In vitro,
In vivo

Salacia oblonga
HFD/STZ-
induced
DKD

P62↓, LC3-II/
LC3-I↑, p-
mTOR↓, p-

AMPK-
mTOR-
ULK1

Ameliorate the
impaired
autophagy

Improve podocyte damage (146)

(Continued)
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(127), and ameliorates podocyte apoptosis via Beclin1/UVRAG/

Bcl2 pathway (128). In addition, autophagy has also been shown to

reduce AGEs induced apoptosis in tubule cells (129).
4.3 Puerarin

Puerarin, an isoflavone extracted from Pueraria lobata, is widely

used in traditional Chinese medicine. Clinical and basic studies have

shown that puerarin exerts renoprotective effects (155, 156) and that

autophagy is the primary mechanism by which puerarin alleviates

DKD. Puerarin activates autophagy to promote podocyte functional

protein expression under ER stress in DKD (130); acts as a SIRT1-

agonist, ameliorating podocyte injury, and proteinuria by activating

SIRT1 (40); and promotes heme oxygenase 1 and SIRT1 expression

and decreases liver kinase B1 acetylation, thereby activating

autophagy to protect podocytes (131).
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4.4 Kaempferol

Kaempferol, a natural flavanol common in traditional

medicines, fruits, and vegetables, is a histone deacetylase (HDAC)

inhibitor (157) and a promising autophagy modulator exhibiting

therapeutic effects in many diseases (158–160). Kaempferol can not

only promote the expression of autophagy-related genes (161) but

also promote autophagy in macrophages and inhibit NLRP3

inflammasome activation (162). Recent machine-learning

screening has also identified kaempferol as a potent mitophagy

inducer for treating Alzheimer’s disease (163). Kaempferol can

regulate the AMPK/mTOR pathway to promote autophagy,

thereby alleviating mesangial matrix expansion, glomerular

basement membrane thickening, and podocyte loss or fusion in

DKD (132). Further studies have found that kaempferol also

ameliorates ROS generation and mitochondrial damage by AGE

accumulation in mesangial cells through autophagy (133).
TABLE 2 Continued

Compounds
Types
of
study

Source Model Molecular
targets Pathway

Modulation
on
autophagy

Effects References

AMPK↑, p-
ULK1↑

Fisetin
In vitro,
In vivo

Various fruits
and vegetables

eNOS−/−

mice
P62↓, LC3-II/
LC3-I↑

CDKN1B/
P70S6K

Restored
autophagy

Improve podocyte damage (147)

Isorhapontigenin
In vitro,
In vivo

Gnetum
cleistostachyum

STZ-
induced
DKD

Beclin-1↑, P62↓,
Atg5↑, p-
AMPK↑

AMPK/
Nrf2

Activate
autophagy and
reduce
oxidative stress

Improve podocyte and
endothelial cell damage

(111)
HG, high glucose; STZ, Streptozocin; HFD, High fat diet; DKD, diabetic kidney disease; EMT, epithelial-mesenchymal transition.
↑increase; ↓decrease.
FIGURE 3

Polyphenols are used to regulate autophagy in DKD. (Natural polyphenols are potential autophagy regulators. Polyphenols are mainly through the
SIRT1 pathway, mTOR pathway, and AMPK pathway is involved in the regulation of various links of autophagy. In addition, polyphenols can also
improve the autophagy-lysosome pathway by activating TFEB and promoting its nuclear translocation. In conclusion, polyphenols play an important
role in improving DKD by regulating autophagy-lysosome pathway to improve renal inflammation, lipid metabolism, mitochondrial homeostasis,
apoptosis, and fibrosis.
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4.5 Other polyphenols

Ferulic acid, a phenolic acid present in the seeds and leaves of

most plants, has shown satisfactory effects in the treatment of DKD

(164). Ferulic acid was shown to improve renal injury in patients

with DKD by enhancing autophagy and inhibiting excessive

inflammation (135). Similarly, isorhamnetin, found in Acanthus

nigricans fruits and Ginkgo biloba leaves, ameliorates renal injury in

DN by enhancing autophagy and inhibiting excessive inflammation

(136). Cyanidin-3-O-glucoside activates SIRT1 and AMPK to ease

HG-induced autophagy inhibition, thereby attenuating podocyte

dysfunction and epithelial-mesenchymal transition (134). Phenolics

from Physalis peruviana fruits activate the AMPK/mTOR pathway,

enhancing autophagy and ameliorating apoptosis and kidney injury

in DKD (137). Similarly, ginkgetin reduces HG-induced oxidative

stress damage, inflammation, and extracellular matrix deposition in

mesangial cells via AMPK/mTOR pathway-mediated autophagy

(144). Genistein has also been found to inactivate the mTOR

pathway, maintain autophagy-related protein levels, and inhibit

HG-induced podocyte injury (141). Bergenin, a plant polyphenol

derived from the cortex of Mallotus japonicus (L.f.) Müll.Arg., and

defined as a PPARg-agonist (165), inhibits oxidative stress and

reduces extracellular matrix production in DKD mesangial cells by

inhibiting mTOR phosphorylation (143). Wogonin targets

phosphoinositide 3-kinase (PI3K) to regulate autophagy and

inflammation and attenuates tubulointerstitial fibrosis and tubular

cell injury in DN (138). In addition, wogonin has also been found to

regulate the crosstalk between autophagy and apoptosis to reduce

glomerulopathy and podocyte damage (139). Similarly,

dihydromyricetin enhances autophagy and attenuates renal

interstitial fibrosis in DN via the PI3K/AKT/mTOR pathway

(140). Salvianolic acid A restores the actin cytoskeleton

rearrangement of glomerular endothelial cells in DN by

modulating autophagy and inflammation via the AGE-RAGE-

Nox4 axis, thereby ameliorating early renal injury in DN (142).

Chrysin inhibits AGEs-induced activation of the mTOR pathway

and promotes autophagy to inhibit mesangial cell proliferation, a-
smooth muscle actin production, and adhesion in DN (145).

Mangiferin, a xanthonoid from Salacia oblonga, can promote the

phosphorylation of AMPK and ULK1, inhibit the phosphorylation

of mTOR, increase the number of autophagosomes and thereby

ameliorate podocyte injury and proteinuria in DN (146). Fisetin has

also been found to reduce podocyte injury in DN by restoring

autophagy and inhibiting the NLRP3 inflammasome (147).

Isorhapontigenin attenuates HG-induced oxidative stress and

activates autophagy by stimulating AMPK/Nrf2 pathway, thereby

improving the EndMT and podocyte injury of DKD (111).
5 Autophagy as a therapeutic
target in DKD

Accumulating evidence indicates that autophagy plays a critical

role in both early and late stages of DKD. Pharmacological

activation of autophagy has shown invaluable advantages in
Frontiers in Endocrinology 10
DKD. Rapamycin can reduce streptozocin (STZ)-induced renal

injury by promoting podocyte autophagy and inhibiting apoptosis

(166). Sirolimus has also been found to block mTOR to reduce

fibrosis and mesangial matrix accumulation in STZ-induced DKD

(167). In addition, several effective drugs against DKD, such as

SGLT2 and metformin, also enhance autophagy. It has been

reported that the amelioration of tubulointerstitial fibrosis by

SGLT2i in Akita diabetic mice is entirely dependent on mTORC1,

and deletion of mTORC1 reverses the renoprotective effects of

SGLT2i (24, 25). Similarly, Metformin has also been found to

enhance autophagy of mesangial cell via SIRT1 and AMPK

pathways to effectively ameliorate glycolipid metabolic disorders,

inflammation, MC proliferation, and extracellular matrix

expression in DKD (168, 169). The beneficial effects of some non-

pharmacological DKD therapies, such as diet and exercise, are also

associated with autophagy regulation. Dietary modification was

shown to activate SIRT1 and AMPK and inhibit mTOR to

regulate autophagy, thereby playing a crucial role in improving

DKD (170, 171). A cross-sectional study involving 229 participants

found that exercise can improve proteinuria and plasma lipids in

patients with diabetes (172), and this renoprotective effect of

exercise was found to be associated with activation of AMPK and

inhibition of mTORC1 in Wistar fatty (fa/fa) rats (173).
6 Therapeutic potential of
polyphenols targeted
autophagy for DKD

Natural polyphenols as autophagy regulators have shown

promise in the treatment of DKD. Many clinical studies have

demonstrated the protective effects of dietary polyphenols against

DKD. For example, resveratrol was shown to assist angiotensin

receptor blockers in reducing proteinuria for DKD patients in a

randomized double-blind placebo-controlled clinical trial with 60

participants (174). Similarly, curcumin has also been shown to

improve urinary microalbumin excretion and inflammation in a

randomized, double-blind, and placebo-controlled study that

enrolled 40 patients with overt type 2 DKD (175). Other

polyphenols have also been shown to similarly ameliorate podocyte

injury in clinical studies, such as green tea polyphenols (176). Based

on the preclinical evidence that polyphenols improve autophagy

presented above, it is plausible to conclude that polyphenols show

therapeutic potential to improve DKD by modulating autophagy.

However, there are some challenges in replicating the beneficial

effects of polyphenols in clinical settings, such as polyphenol

absorption and bioavailability, which may be addressed with new

methods and technologies, such as nanotechnology (177).
7 Conclusions and future perspectives

Although considerable progress has been made in DKD

treatment in recent years, delaying DKD progression remains a

global challenge. Autophagy plays a crucial role in DKD onset and
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progression, with impaired autophagy and lysosomal function

aggravating renal resident cell injury and apoptosis, as well as

inducing macrophage phenotype changes, resulting in the

development of proteinuria and fibrosis in DKD. A growing body

of evidence suggests that polyphenol-rich natural products may

assist with DKD while causing no serious side effects. The protective

effects of polyphenols in DKD involve multiple mechanisms of

action, including modulation of inflammation, oxidative stress,

autophagy, and mitochondrial quality control. Although

polyphenols are generally considered safe, oxidative stress caused

by large amounts of polyphenols can have deleterious effects.

Additional studies are therefore needed to determine the optimal

polyphenol dosage, and extensive human clinical trials are required

to evaluate potential side effects.
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