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Significance of pyroptosis-
related gene in the diagnosis
and classification of
rheumatoid arthritis
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Dongan He1, Xiaoqian Che1, Jiawei Gao1, Haiming Zhang1*,
Jiandong Guo1* and Jinxi Zhang1*

1Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China,
2Department of Orthopaedics, The First Affiliated Hospital of Zhejiang University of Chinese Medicine,
Hangzhou, China
Background: Rheumatoid arthritis (RA), a chronic autoimmune inflammatory

disease, is often characterized by persistent morning stiffness, joint pain, and

swelling. Early diagnosis and timely treatment of RA can effectively delay the

progression of the condition and significantly reduce the incidence of disability. In

the study, we explored the function of pyroptosis-related genes (PRGs) in the

diagnosis and classification of rheumatoid arthritis based on Gene Expression

Omnibus (GEO) datasets.

Method: We downloaded the GSE93272 dataset from the GEO database, which

contains 35 healthy controls and 67 RA patients. Firstly, the GSE93272 was

normalized by the R software “limma” package. Then, we screened PRGs by

SVM-RFE, LASSO, and RF algorithms. To further investigate the prevalence of RA,

we established a nomogrammodel. Besides, we grouped gene expression profiles

into two clusters and explored their relationship with infiltrating immune cells.

Finally, we analyzed the relationship between the two clusters and the cytokines.

Result: CHMP3, TP53, AIM2, NLRP1, and PLCG1 were identified as PRGs. The

nomogram model revealed that decision-making based on established model

might be beneficial for RA patients, and the predictive power of the nomogram

model was significant. In addition, we identified two different pyroptosis patterns

(pyroptosis clustersA andB)basedon the5PRGs.We found thateosinophil, gamma

deltaTcell,macrophage,natural killercell, regulatoryTcell, type17Thelpercell, and

type 2 T helper cell were significant high expressed in cluster B. And, we identified

gene clusters A and B based on 56 differentially expressed genes (DEGs) between

pyroptosis cluster A and B. Andwe calculated the pyroptosis score for each sample

toquantify the different patterns. Thepatients in pyroptosis cluster Bor gene cluster

B had higher pyroptosis scores than those in pyroptosis cluster A or gene cluster A.

Conclusion: In summary, PRGs play vital roles in the development and occurrence

of RA. Our findingsmight provide novel views for the immunotherapy strategies with

RA.
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1 Introduction

Rheumatoid arthritis (RA), a chronic autoimmune inflammatory

disease, is often characterizedbypersistentmorning stiffness, jointpain

and swelling (1). RA affects approximately 1% of the world population

and has become one of the most common causes of significant

disability (2). Although the pathogenesis and etiology of RA have

not been fully known, the interaction of environmental, genetic, and

immunological factors has been shown toplay an important role in the

development ofRA(3). Earlydiagnosis and timely treatmentofRAcan

effectively delay the progression of the condition and significantly

reduce the incidence of disability (4). Therefore, screening for

diagnostic genes associated with RA, exploring their subtype

classification, and elucidating the underlying pathogenesis of RA

could be effective in preventing and treating RA, and might provide

new approaches for clinical treatment of RA.

Pyroptosis, a novel inflammatory programmed cell death, is

mediated by the caspase family and the GSDM protein family (5).

Pyroptosis is characterized by cell swelling and cell membrane

rupture, and the release of pro-inflammatory cytokines that

eventually induce and aggravate the inflammatory response (6).

Increasing studies conformed that pyroptosis might play a key role

in the development of many immune diseases (7). In the arthritic

mouse model, NLRP3-/- or Caspase-1-/- mice could alleviate

symptoms of arthritis (8). Gsdme-/- mice have been demonstrated

to reduce intestinal inflammation in the inducible colitis model (9).

Besides, bronchial epithelial cell pyroptosis promotes airway

inflammation in asthmatic mice (10). However, the role of

pyroptosis-related genes (PRGs) in RA remains unclear.

In the research, we used bioinformatics methods to investigate

the function of PRGs in the diagnosis and classification of

rheumatoid arthritis form the Gene Expression Omnibus (GEO)

datasets. Firstly, we identified differential expression of PRGs from

the GSE93272 dataset. Then, we screened 5 PRGs associated with

RA by support vector machine-recursive feature elimination (SVM-

RFE), least absolute shrinkage and selection operator (LASSO)

logistic regression and random forest (RF) algorithms, and

established a nomogram model for predicting the prevalence of

RA. In addition, we divided gene expression profiles into two

clusters and explored their relationship with infiltrating immune

cells. Finally, we further analyze the relationship between two

clusters and cytokines. We found that the pyroptosis-related

pattern could distinguish RA patients from normal people and

provide new directions for the prevention and treatment of RA.
2 Materials and methods

2.1 Data acquisition and preprocessing

Themicroarray datasetswere downloaded from theGEOdatabase

(https://www.ncbi.nlm.nih.gov/geo/) using “rheumatoid arthritis”,

“whole blood,” and “Homo sapiens” as keywords. The inclusion

criteria were as follows: the whole-genome expression profiling of

whole blood of RA patients and healthy control samples was available
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in the datasets; every dataset contained a sample count of > 20; and all

included samples were not treated with drugs. The microarray dataset

GSE93272 from the GPL570 platform containing 35 healthy controls

and 67 RA patients was downloaded from the GEO database (11).
2.2 Identification of differentially
expressed PRGs

The GSE93272 cohort was normalized by the “limma” package

of R software (12). Based on previous literatures (13–15), we

acquired 52 PRGs. However, we did not find the expression data

of GSDMA in GSE93272. Therefore, 51 PRGs were used for the

following analysis. Then, we identified differentially expressed PRGs

in RA and normal samples using the “limma” package. The p-value

< 0.05 was considered a significant difference. Heatmap and boxplot

were performed using the R packages “pheatmap” and “ggpubr” to

visualize the differentially expressed PRGs.
2.3 Screening of PRGs for RA

Based on the differentially expressed PRGs, three feature

selection algorithms, including SVM-RFE (16), LASSO logistic

regression (17) and RF algorithm (18) were adapted to screen

RA-related biomarkers, respectively. The SVM-RFE algorithm

was performed by the R packages “e1071” and “caret” with five-

fold cross-validation (19). The LASSO logistic regression was

employed with the R package “glmnet” (20). The RF algorithm

was analyzed by the R package “randomForest” (21). Then, the

“venn” R package was used to select overlapping genes from the

three algorithms as signature genes for further analysis.
2.4 Construction of a nomogram model

We constructed a nomogram model based on PRGs (CHMP3,

TP53, AIM2, NLRP1, and PLCG1) to predict the occurrence of RA

patients with the “rms” package in R (22). The calibration curve was

used to assess the predictive performance of the nomogram model.

Then, we further performed decision curve analysis (DCA) and

clinical impact curve analysis (CICA) to estimate the clinical utility

of the nomogram model (23).
2.5 Consensus clustering

Consensus clustering is an algorithm for identifying cluster each

member and their number in datasets (24). We utilized the

consensus clustering method to distinguish distinct pyroptosis-

related clinical subtypes of RA and identify different PRGs

patterns based on the significant differentially expressed PRGs

with the package “ConsensusClusterPlus” in R (25). “Points”

represents the score of the corresponding factor below and “Total

Points” indicates the summation of all the scores of factors above.
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2.6 Estimation of the pyroptosis
gene signature

To quantify the pyroptosis patterns, we used principal component

analysis (PCA)algorithms tocalculate thepyroptosis score for eachRA

sample. The Principal Component 1 (PC1) and Principal Component

2 (PC2) were chosen as the signature scores. And pyroptosis scores for

each RA patient were calculated using the following formula (26, 27):

Pyroptosis Score = S(PC1i + PC2i), where i is the expression of PRGs.
2.7 Estimation of immune cell infiltration
for RA

The single-sample gene-set enrichment analysis (ssGSEA) was

employed to measure the relative abundance of immune cells in RA

samples via the R packages “limma”, “GSVA”, and “GSEABase”

(28). And the gene set for marking each immune cell type was

obtained from the study of Charoentong (29).
2.8 Functional and pathway
enrichment analysis

To investigate the functional and molecular pathways of

differentially expressed genes between pyroptosis gene clusters A

and B, we performed GO, KEGG enrichment analyses by the

“colorspace”, “stringi” and “ggplot2” packages in R (30, 31). P <

0.05 was considered statistically significant.
2.9 Statistical analysis

The Kruskal-Wallis test was adopted to compare differences

between normal samples and RA samples. The significant

differences were identified with the p-value < 0.05. All statistical

analysis were performed using the R version 4.0.3.
3 Results

3.1 The landscape of the differentially
expressed PRGs

We analyzed the differential expression levels of 51 PRGs between

RA patients and healthy controls using the “limma” R package

(Supplementary Table 1). A heatmap and histogram were used to

visualize the 23 differentially expressed PRGs. We found that BAX,

CASP1, CASP3, CASP4, CASP5, CHMP2B, CHMP3, HMGB1, IL18,

IL1A, AIM2, NLRC4, NOD2, TNF, andGZMAwere overexpressed in

RA patients compared to healthy controls (Figures 1A, B).
3.2 Identification of characteristic genes

To further screen the characteristic genes related to PRGs for RA,

we utilized the LASSO logistic regression algorithm, the RF algorithm,
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and the SVM-RFE analysis for feature identification (Supplementary

Table 2). Thirteen genes from differentially expressed PRGs were

identified as biomarkers for RA using the LASSO logistic regression

algorithm (Figure 1C).We used RF algorithm to detect nine key genes

from differentially expressed PRGs as vital biomarkers (Figure 1D).

Eight signature genes were identified from differentially expressed

PRGs by the SVM-RFE analysis (Figure 1E). Finally, we overlapped

three different algorithms analysis results and obtained 5 genes

(CHMP3, TP53, AIM2, NLRP1, and PLCG1) that were significantly

related to RA (Figure 1F).
3.3 Construction of the nomogram

To predict the prevalence of RA patients, we constructed a

nomogram model based on the 5 PRGs (Figure 2A). As shown in

Figure 2B, the calibration curve of the nomogram revealed accurate

predictive ability. The DCA result revealed that decision-making

based on established models may be beneficial for RA patients

(Figure 2C). And the CICA result (Figure 2D) found that the

predictive power of the nomogram model was significant.
3.4 Two distinct pyroptosis patterns

Based on the 5 PRGs, we identified two different pyroptosis

patterns (cluster A and cluster B) using the consensus clustering

method (Figure 3A and Supplementary Figure 1). There were 38

cases in clusterA and 29 cases in cluster B.Weplotted the histogram to

observe the differential expression levels of the 5PRGsbetween the two

clusters. TP53, NLRP1, and PLCG1 showed higher expression in

pyroptosis gene cluster A than in pyroptosis gene cluster B, while

AIM2 revealed the opposite results. And CHMP3 showed no

differently expressed between the two patterns (Figure 3B). As

shown in Figure 3C, the two pyroptosis patterns could be

distinguished though the 5 significant PRGs with PCA analysis.

Then, the differential immune cell infiltration between the two

pyroptosis patterns was analyzed (Figure 3D). We found that

eosinophil, gamma delta T cell, macrophage, natural killer cell,

regulatory T cell, type 17 T helper cell, and type 2 T helper cell were

significant high expressed in cluster B (p < 0.05). Besides, we calculated

the abundance of immune cells in RA patients and evaluated the

correlation between the 5 PRGs and immune cells (Figure 3E).
3.5 Function and pathway enrichment

A total of 56 differentially expressed genes (DEGs) were identified

between the two pyroptosis patterns. To further explore the potential

functional and molecular pathways of DEGs, we performed GO and

KEGG enrichment analyses, and the results were shown through an

enrichment circle diagram. In the GO enrichment analysis of

differential expression PRGs, biological processes (BP) terms were

correlated with defense response to virus (GO:0051607) and defense

response to symbiont (GO:0140546); cellular components (CC) terms

were related to tertiary granule (GO:0070820) and early endosome

(GO:0005769); and molecular functions (MF) terms were associated
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with double stranded RNA binding (GO:0003725) and pattern

recognition receptor activity (GO:0038187) (Figure 4A;

Supplementary Table 3). The results of KEGG enrichment analysis

revealed that DEGs were significantly enriched in the NOD-like

receptor signaling pathway and the NF-kappa B signaling pathway

(Figure 4B; Supplementary Table 4).

3.6 Identification of two distinct
gene patterns

To further verify the pyroptosis patterns, we classified the RA

patients into different genetic subtypes and termed as gene cluster A
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and B based on the 56 DEGs by using the consensus clustering

method (Figure 5A; Supplementary Figure 2). There were 37 cases

in gene cluster A and 30 in gene cluster B. As shown in Figure 5B,

the heatmap displayed the expression levels of the 56 DEGs in gene

clusters A and B. In addition, we found that the differential

expression levels of the 5 significant PRGs and immune cell

infiltration between gene cluster A and B were consistent with

those in the pyroptosis patterns (Figures 5C, D). The result again

demonstrated the accuracy of dividing into distinct subtypes.

Furthermore, we also compared the pyroptosis score between the

two distinct pyroptosis patterns or DEGs patterns. The result

revealed that the pyroptosis score in cluster B or gene cluster B
A B

D

E F

C

FIGURE 1

Landscape of the 23 PRGs. (A) Expression heatmap of the 23 PRGs in healthy control and RA patients. (B) Expression histogram of the 23 PRGs in
healthy control and RA patients. (C) The PRGs screened using the LASSO logistic regression algorithm. (D) The hub genes identified via the RF
algorithm. (E) The PRGs recognized using SVM-RFE algorithm. (F) Venn diagram showing the intersection among PRGs genes between the three
algorithms. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
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was significantly higher than that in cluster A, or gene cluster A

(Figure 6A). The relationship between pyroptosis patterns,

pyroptosis gene patterns, and pyroptosis scores was visualized in

a Sankey diagram (Figure 6B).
3.7 Identification of two distinct
gene patterns

To further reveal the relationship between pyroptosis patterns

and RA, we investigated the correlation between pyroptosis patterns

and STAT1, CCR5, NLRP1, IL-15, and CXCL10. The results

showed that the expression levels of STAT1, CCR5, NLRP1, IL-

15, and CXCL10 were higher in pyroptosis gene cluster B or gene

cluster B than in pyroptosis gene cluster A or gene cluster A, which

suggested that pyroptosis gene cluster B or gene cluster B is highly

linked to RA characterized by the immune response Figure 6C.
4 Discussion

RA is a chronic inflammatory disease characterized by

persistent inflammatory synovitis and systemic inflammation. RA

has attracted wide world attention in recent years due to its high

disability rate (32). Currently, treatment strategies with biologics

and disease-modifying anti-rheumatic drugs have led to significant

improvement in the prognosis of RA patients, while a large

proportion of RA patients still do not experience effective clinical
Frontiers in Endocrinology 05
relief. Studies showed that early diagnosis and positive treatment

significantly improve the clinical prognosis of RA (33). Thus, there

is an urgent need to identify RA-related diagnostic genes, further

explore the molecular mechanisms of RA, and provide novel

therapeutic strategies for the prevention and treatment of RA.

Pyroptosis is a novel form of inflammatory programmed cell

death that plays a vital role in the development of RA (34).

Pyroptosis further exacerbates RA inflammation by releasing

inflammatory cytokines like interleukin (IL)-1b and IL-18 (35).

Besides, studies demonstrated that the serum concentrations of IL-

1b (36) and IL-18 (37) were significantly higher in RA patients

compared to healthy controls. In order to gain new knowledge for

the diagnosis and management of RA, we further studied the

connection between RA and pyroptosis by locating and screening

PRGs in the serum of RA patients.

In this work, we used 51 PRGs to detect differential expression

PRGs using differential expression analysis. We chose 5 candidate

PRGs (CHMP3, TP53, AIM2, NLRP1, and PLCG1) from

differential expression PRGs by applying RF, SVM-RFE, and

LASSO methods in order to filter the 51 PRGs that were the most

pertinent for RA. Then, we constructed a nomogram model based

on the 5 PRGs to predict the occurrence of RA. In addition, we

distinguished two different pyroptosis regulation patterns based on

the 5 PRGs and explored the correlation between infiltrating

immune cells and the 5 PRGs. A total of 56 DEGs were screened

between the two pyroptosis patterns. We further investigated the

GO and KEGG functional enrichment of 56 DEGs. Furthermore,

we used the consensus clustering method to validate the pyroptosis
A

B DC

FIGURE 2

Construction of the nomogram model. (A) Construction of the nomogram model based on the 5 PRGs. (B) Predictive robustness of the nomogram
model as revealed by the calibration curve. (C) Decisions based on the nomogram model may benefit RA patients. (D) Clinical impact of the
nomogram model as assessed by the clinical impact curve.
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A B

D

E

C

FIGURE 3

Consensus clustering of the 5 PRGs. (A) Consensus matrices of the 5 PRGs for k = 2. (B) Differential expression histogram of the 5 PRGs in gene
cluster A and B. (C) PCA for the expression profiles of the 5 PRGs. (D) Differential immune cell infiltration between gene cluster A and B.
(E) Correlation between infiltrating immune cells and the 5 PRGs. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
A B

FIGURE 4

The functional enrichment analyses of DEGs. (A) The GO analyses results for DEGs; (B) The KEGG analysis results for DEGs.
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patterns based on 56 DEGs. We found that two distinct pyroptosis

gene patterns were consistent with the grouping of pyroptosis

patterns. During the progression of RA, cytokines have been

involved in immune regulation, immune response, and

inflammatory response (38). We also explore the relationship

between inflammatory cytokines and the patterns of pyroptosis.

NOD-like receptor thermal protein domain associated protein 1

(NLRP1) is a member of the NLR family. NLRP1 has been found to

be closely associated with the pathogenesis of RA (39). Activated

NLRP1 promoted the release of inflammatory cytokines, such as IL-
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1b and IL-18 (40). Besides, a study showed that inhibition of NLRP1
activation effectively ameliorated joint inflammation and

destruction in collagen-induced arthritis mice (41). Furthermore,

the polymorphism of the NLRP1 gene was associated with the

incidence of RA in the Han Chinese population (42). A member of

the interferon-inducible HIN-200 protein family is absent in

melanoma 2 (AIM2). AIM2 has emerged as a hub for research

into the pyroptosis-specific pathophysiology of RA. AIM2 has been

linked to the emergence of inflammatory illnesses and autoimmune

arthritis, according to a research (43). AIM2 could format a
A B

D

C

FIGURE 5

Consensus clustering of the DEGs. (A) Consensus matrices of the 56 DEGs for k = 2. (B) Expression heatmap of the 56 DEGs in gene cluster A and B.
(C) Differential expression histogram of the 5 PRGs in gene cluster A and B. (D) Differential immune cell infiltration between gene cluster A and B. *
means P < 0.05, *** means P < 0.001.
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caspase-1-activating inflammasome, thereby controlling the

proteolytic maturation of pro-inflammatory cytokines IL-1b and

IL-18 (44). In addition, a meta-analysis revealed that AIM2 levels

were highly expressed in peripheral blood mononuclear cells from

RA patients (45). Recent study showed that the expression of AIM2

was higher in the RA synovium than in the OA. AIM2 siRNA could

inhibit the proliferation of RA fibroblast-like synoviocytes (46).

PLCG1, also called phospholipase C, gamma 1, is involved in the

receptor tyrosine kinase-(RTK-)-mediated signal transduction

pathway (47). A study found that PRGPI might serve as a

prognostic biomarker for pancreatic cancer patients (48). Besides,

numerous studies have proven the involvement of PLCG1-mediated

inflammatory response in the pathogenesis of osteoarthritis and lung

cancer (49, 50). Chargedmultivesicular body protein 3 (CHMP3) is a

subunit of ESCRT III involved in membrane remodeling (51). High

CHMP3 expression in breast cancer patients predicts better survival

outcomes (52). Moreover, immunohistochemistry revealed

significant high expression of CHMP3 in tumor liver tissue (53).

The P53 tumor suppressor gene (TP53), also known as the p53 gene,

is a protein encoding a molecular weight of 53 kDa. TP53 was found

to regulate important cellular functions, such as apoptosis, cell cycle

regulation, DNA repair, and apoptosis (54). Besides, TP53 is an

inflammatory suppressor associated with autoimmune diseases.

Many studies have indicated that the TP53 mutation is closely

related to the pathological changes of RA (55, 56). TP53 mutation

was identified in synovium of RA patients (57). In the collagen-
Frontiers in Endocrinology 08
induced arthritis model, p53-/- mice showed increased severity of

arthritis (58).

However, there are some limits to the study. Firstly, the lack of

experimental verificationofbioinformatics analysis results.Weneed to

collect human serum samples to further validate our analysis results

and elucidate their value as potential clinical biomarkers. Besides, due

to the small number of available RA datasets in the GEO database and

the limited sample size of this study, the analysis results may be biased.

We will include more samples to further assess the reliability of the

predicted signature genes.
5 Conclusion

In conclusion, our study first found PLCG1 and CHMP3 may

be involved in the pathogenesis of RA. And pyroptosis pattern is

involved in the progress of RA by bioinformatics analysis, which

provides a novel prospective for the prevention and diagnosis

of RA.
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FIGURE 6

Role of pyroptosis patterns in distinguishing RA. (A) Differences in pyroptosis score between pyroptosis gene cluster A and B and differences in
pyroptosis score between gene cluster A and B. (B) Sankey diagram showing the relationship between pyroptosis patterns, pyroptosis gene patterns,
and pyroptosis scores. (C) Differential expression levels of STAT1, CCR5, NLRP1, IL-15, and CXCL10 between pyroptosis gene cluster A and B.
(C) Differential expression levels of STAT1, CCR5, NLRP1, IL-15, and CXCL10 between gene cluster A and B. * means P < 0.05, ** means P < 0.01,
*** means P < 0.001.
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