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Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid

accumulation and has become the leading chronic liver disease worldwide.

NAFLD is viewed as the hepatic manifestation of metabolic syndrome, ranging

from simple steatosis and nonalcoholic steatohepatitis (NASH) to advanced

fibrosis, eventually leading to cirrhosis and hepatocellular carcinoma (HCC).

The pathogenesis of NAFLD progression is still not clear. Pattern recognition

receptor (PRR)-mediated innate immune responses play a critical role in the

initiation of NAFLD and the progression of NAFLD-related HCC. Toll-like

receptors (TLRs) and the cyclic GMP-AMP (cGAMP) synthase (cGAS) are the

two major PRRs in hepatocytes and resident innate immune cells in the liver.

Increasing evidence indicates that the overactivation of TLRs and the cGAS

signaling pathways may contribute to the development of liver disorders,

including NAFLD progression. However, induction of PRRs is critical for the

release of type I interferons (IFN-I) and the maturation of dendritic cells (DCs),

which prime systemic antitumor immunity in HCC therapy. In this review, we will

summarize the emerging evidence regarding the molecular mechanisms of TLRs

and cGAS in the development of NAFLD and HCC. The dysfunction of PRR-

mediated innate immune response is a critical determinant of NAFLD pathology;

targeting and selectively inhibiting TLRs and cGAS signaling provides therapeutic

potential for treating NALF-associated diseases in humans.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD), which is newly

defined metabolic associated fatty liver disease (MAFLD) is

characterized by abnormal hepatic lipid accumulation and

inflammatory syndrome, in addition to one of the following three

criteria: overweight/obesity, type 2 diabetes mellitus (T2DM), or

evidence of metabolic dysregulation (1–4). Recently, NAFLD is

emerging as the rising public health problem that endangers human

health worldwide (5, 6). The meta-analysis reveals that, the global

prevalence of NAFLD has been approximately 25.2%, with the

highest prevalence in Southeast Asia (42.0%) and the lowest rates

reported from Africa (13.5%) (7, 8). The rising rates of obesity,

insulin resistance, type 2 diabetes, and hyperlipidaemia contribute

to the development of NAFLD (9). Thus, the prevalence of NAFLD

is more than 70% among obese and diabetic patients (10). The

hepatic metabolic disorder leads to chronic inflammation and

compensatory tissue repair, which result in steatohepatitis with or

without fibrosis. Current clinical studies indicated that around 10-

20% of NAFLD patients would gradually develop into nonalcoholic

steatohepatitis (NASH). NASH is characterized by liver

inflammation, hepatocellular injury, and different degrees of

hepatic fibrosis, which is mediated by innate immune responses.

There are up to one-third of NASH cases might progress to

advanced fibrosis or cirrhosis, then eventually develop into

hepatocellular carcinoma (HCC) (11–14). The current mechanism

studies indicate that lipotoxicity, inflammation, oxidative stress,

mitochondrial dysfunction, and gut-liver axis are associated with

the development of NAFLD to NASH and HCC (15–19). However,

the pathogenesis of NAFLD progression is still not clear, and there

are still no FDA-approved effective therapies available for end-stage

NAFLD except liver transplantation (20, 21).

Growing evidence suggests that hepatic innate immune

response plays an important role in triggering NAFLD initiation

and progression. Although the innate immune system is considered

to be a metabolic sensor against metabolic-related stresses, an

overactive innate immune response becomes pathological. This

scenario occurs in the development from NAFLD to NASH (22,
Frontiers in Endocrinology 02
23). Pattern recognition receptors (PRRs) constitute the first line of

defense in the host immune system, and are mainly expressed in the

cell membrane, endosome, or cytoplasm of innate immune cells,

such as macrophages, Dendritic cells (DCs), neutrophils, natural

killer (NK) cells, and even in hepatocytes (24–26). During the initial

event of the innate immune response, PRRs detect the

evolutionarily conserved structures on invaded bacteria or viruses

from cell death and tissue damage by pathogen-associated

molecular patterns (PAMPs) or damage-associated molecular

patterns (DAMPs), which lead to the activation of multiple

intracellular signaling pathways and trigger the production of

inflammatory cytokines and chemokines (24, 27, 28). Toll-like

receptors (TLRs), a well-known family of endocytic PRRs, are

widely expressed on all types of cells in the liver, including

Kupffer cells (29, 30), hepatocytes (29, 31), hepatic stellate cells

(HSCs) (32, 33) and biliary epithelial cells (29) (Table 1). cGAS is a

newly discovered DNA sensor, which is considered to involve in the

development of diverse liver diseases, such as viral hepatitis,

NAFLD, drug-induced liver injury (DILI), and HCC (35, 43, 44).

In this Review, we will summarize the currently available

information regarding the role of PRRs on the pathogenesis and

progression of NAFLD.
2 Toll-like receptors in NAFLD
and HCC

TLRs are one of the earliest discovered PRRs, which form the

cornerstone of in innate immune responses. To data, ten and twelve

known functional TLRs have been identified and characterized in

humans (TLR1-10) and twelve (TLR1-9 and 11-13) in mice,

respectively. Some TLRs, such as TLR1, 2, 4, 5, 6 and 10, are

found on the plasma membrane in the form of homodimers or

heterodimers, which mainly recognize the membrane components

of pathogenic microorganisms, including LPS, lipid A, lipoproteins,

flagellin. The other TLRs including TLR3, 7, 8, and 9 are expressed

on the intracellular membrane to recognize the microbial nucleic

acid ligands. After binding with its ligand, the PRRs are activated
TABLE 1 The expression and action of TLRs and cGAS-STING in a variety of liver cells.

Liver cells Detected PRRs
expression

PRR function in the development of NAFLD and HCC

Kupffer cells TLR2,3,4,7 cGAS-STING 1. TLR4 promotes the development of steatohepatitis-related HCC (34)
2. In NAFLD, Liver macrophages activates HSCs through cGAS-STING pathway (35)
3. MtDNA from hepatocytes of HFD-fed mice induced TNF-a and IL-6 expression in Kupffer cells through
STING pathway (36)
4. Activation of TLR7 signaling in Kupffer cells induces hepatocyte death and inhibit Treg cells activities, leading
to the progression of NASH (37)

Hepatocytes TLR1-9, cGAS-STING 1. TLR4 or TLR9 deficiency improve liver fibrosis in Tak1Dhep mice (38)
2. In HCC, DNA damage induces cGAS-STING signaling in malignant hepatocytes (39)

hepatic stellate cells
(HSCs)

TLR2,3,4 1. Radiotherapy activates HSCs through TLR4 signaling pathway and increases the potential of HCC metastasis
(40)
2. Interfering TLR4 expression in HSCs inhibited the HSCs activation and attenuated the liver fibrosis (41)

biliary epithelial cells
(BECs)

TLR1-9 1. Activation of TLRs in BECs triggers the production of cytokines or chemokines and anti-microbial peptides
(42)
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and then recruit the downstream adaptors to elicit the assembly of

signaling complexes by initiating the signaling cascades in MyD88-

dependent or TRIF-dependent manner. The transcriptional factors,

such as IRF3/IRF7, NF-kB, and AP-1, are activated and then

translocated into the nucleus, resulting in the production of

inflammatory cytokines, chemokines, and type I interferons.

Recent accumulating evidence has demonstrated the association

between NAFLD progression and TLR signaling pathway

activation, particularly TLR4, TLR2 and TLR9 (Figure 1).
2.1 The role of TLRs in the pathogenesis of
NAFLD/NASH

The mRNA levels of TLR 1-10 were determined in the liver

samples of 11 patients with NAFLD and 11 health persons (45). The

mRNA expression of TLR 1 to 5 was significantly higher in NAFLD

patients, and the mRNA level of TLR 6 to 10 mRNAs was

comparable between NAFLD patients and healthy controls.

Another study found that the protein level of TLR6, but not

TLR2, was gradually increased in the hepatocytes from the

cohorts of NAFLD and NASH patients compared to those from

normal liver biopsy, indicating that TLR6 contributed to

inflammatory responses in the development of NASH (46).

However, the effect of TLR2 on different models of NASH seems

to be controversial. TLR2 deficient mouse exhibited severe

hepatocellular damage and accelerated MCD diet-induced
Frontiers in Endocrinology 03
steatohepatitis and fibrosis (47). However, TLR2 deficiency has

been shown to decrease the infiltration of inflammatory cells and

the activation of inflammasome in choline-deficient amino acid-

defined (CDAA) diet induced NASH model (48), indicating the

critical role of TLR2 in the initiation of liver inflammation. TLR1

deficiency displayed significantly protective effect from the

development of diet-induced NAFLD when compared to that in

wild-type mice. Moreover, TLR1 expression was positively

correlated with the level of Holdemanella genus, and was negative

associated with the content of Gemmiger and Ruminococcus genera

in NAFLD patients (49). Thus, TLR1 may be acted as a potential

target in the treatment of NAFLD patients along with TLR1

high expression.

TLR4, a receptor of LPS, is widely expressed on the surface of

Kupffer cells and hepatocytes. In the progression of NAFLD,

metabolic alterations were usually accompanied by the increased

intestinal permeability and gut microbiota dysbiosis (50, 51), which

resulted in the elevating levels of circulating LPS in NAFLD/NASH

patients and HFD or MCD-induced animal models (52, 53). The

level of free fatty acids (FFAs), such as palmitic acid and stearic acid,

was higher in NAFLD patients, indicating the association with the

activation of TLR4 activation (54, 55). Moreover, the mRNA and

protein levels of TLR4 were increased in liver samples from patients

with hepatitis and cirrhosis (56). Overactivation of TLR4 increased

the phosphorylation of NF-kB, MAPK and IRF3, and promoted the

production pro-inflammatory cytokines in MyD88-dependent

manner, which triggered severe liver injury and promoted the
FIGURE 1

The role of Toll-like receptors (TLRs) in the pathogenesis of NAFLD and HCC. Following excessive high-fat diet intake and liver injury, PAMPs (e.g.,
LPS, flagellin, lipopeptides and DNA) from microbes and DAMPs released from damaged or dying cells are accumulated in the liver. TLRs recognize
PAMPs and DAMPs and initiate downstream cascades in TRIF- or MyD88-dependent manner. The activation of IKK, MAPKs and TBK1 kinases trigger
dimerization and translocation of NF-kB, AP-1 and IRF3/7 respectively, then induce the expression of several cytokines, chemokines, type I
interferons, and other pro-apoptotic genes. The secretion of these active factors may contribute to insulin resistance, lipid accumulation,
inflammation, hepatocyte apoptosis or anti-cancer responses. Different TLRs play diverse roles in the process of NAFLD to HCC. PAMPs, pathogen-
associated molecular patterns; DAMPs, damage-associated molecular patterns; TRIF, TIR-domain-containing adapter-inducing interferon b; MyD88,
myeloid differentiation primary response 88; IKK, IkB kinase; MAPK, mitogen-activated protein kinase; TBK1, TANK-binding kinase 1; NF- kB, nuclear
factor kappa B; AP-1, activator protein 1; IRF, interferon regulatory factor. Red, accelerative effect; Green, protective effect.
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development of NAFLD. Genetic ablation of TLR4 resulted in a

marked attenuation of liver inflammation in preclinical NASH

models (57). In addition, absence of TLR4 downstream molecules

IKKϵ and TBK1, or treatment with an IKKe- and TBK1-specific

inhibitors showed a protective effect against hepatic steatosis (58,

59). These data demonstrate that TLR4 signaling promotes NAFLD

progression, and inhibition of LPS release from the intestinal

microbiota or usage of TLR4 signaling antagonism may be a

feasible strategy for the prevention or treatment of NAFLD/NASH.

Similar with TLR4, the mRNA level of TLR9 was significantly

upregulated in patients with NASH, but not in patients with hepatic

steatosis (60). As a CpG DNA sensor, TLR9 could be activated by

circulating mitochondrial DNA (mtDNA), which exhibited higher

level in plasma from mice and patients with NASH (61–63).

Pharmacological inhibition of TLR9 prevented the hepatic

histopathological injury, proinflammatory cytokine production, and

plasma ALT activity in NASH models (61). Furthermore, TLR9

deficiency significantly reduced liver weights and ameliorated

hepatic steatosis in HFD-induced NASH mice, indicating the

protective role of TLR9 in hepatic dysmetabolism (64).
2.2 The role of TLRs in the development
of HCC

Approximately 80% of HCCs are developed by chronic liver

disease, hepatic fibrosis and cirrhosis (65). Liver inflammation is

considered as a risk factor to induce the development of HCC. TLRs

has been reported to be a critical point in the pathogenesis and

progression of HCC. Lin et al. reported that TLR4 was functionally

expressed on two human hepatoma cell lines HepG2 and H7402.

The activation of TLR4 induced by LPS significantly enhances

COX-2/PGE2/STAT3 positive feedback loop and then triggers the

proliferation of hepatoma cells and the occurrence of multidrug

resistance in HCC chemotherapy (66). Unlike the higher expression

of TLR4 in hepatitis and cirrhosis, the expression of TLR4 in liver

samples of patients with hepatocarcinoma does not change (56).

However, the level of TLR4 is higher in liver samples from relapsed

HCC patients, indicating that TLR4 expression is a potential

prognostic biomarker in HCC therapy (67, 68). On the contrary,

TLR3 expression is associated with longer survival in HCC patients.

Activation of TLR3 signaling by poly(I:C) increased intra-tumoral

chemokine expression, NK-cell activation, and proliferation of

tumor-infiltrating T and NK cells, which contribute to increasing

cell death and decreased tumor growth. The effect of TLR3 on HCC

is further confirmed by Bonnin et al. The level of TLR3 protein is

downregulated in tumoral liver samples and exhibited much lower

in 6 human HCC cells, including Hep3B, HepG2, and HuH7.

Furthermore, the growth of tumors is accelerated in TLR3

deficiency HCC mice. Mechanistically, the absence of TLR3

prevents cell apoptosis and enhances tumor progression (69).

Therefore, TLR3 and TLR4 may be potential prognostic

biomarkers for HCC therapy in humans. Two SNPs in the exon

of TLR2 were identified in HCC and were demonstrated to be

associated with the risk of HCC in a single center-based case-
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control study (70). TLR2 is expressed in tumor-associated

macrophages (TAM) of HCC and contributes to autophagy in the

regulation of M2 macrophage polarization by high-mobility group

box 1 (HMGB1)/NADPH oxidase 2 (NOX2) axis (71). TLR9

overactivation can enhance the therapeutical efficacy of PD-1 or

PD-L1 on HCC treatment by promoting PD-L1 transcription and

enhancing the phosphorylation of STAT3 Tyr705 (72). Recent

research reported that TLR5 was an independent prognostic

marker in HCC therapy, which function is similar to p53 (73).

Pretreatment with TLR5 agonist effectively protects from LPS- and

TNF-induced toxicity in liver and lung, and reudces the mortality,

indicating that TLR5 agonist might be used as an adjuvant to enable

the safe systemic application of TNF as an anticancer therapy (74).

Although TLRs have been demonstrated to be associated with

chronic inflammation in the development of NAFLD/NASH, the

effects of TLR signaling pathway on the progression of NAFLD-

associated HCC remains unclear. TLR2 polarizes the TAMs to a

pro-tumor M2 phenotype in HCC cells, and promotes the

proliferation of HCC (71). However, another study performed

revealed that knockdown TLR2 or downstream molecule MyD88

in B76/Huh7 cells promotes its proliferation and inhibit the

apoptosis to increase the progression of hepatocarcinogenesis

(75). In addition, TLR4 and TLR9 deficiency significantly reduces

liver injury and blocks the progression of liver inflammation to

hepatic fibrosis and HCC in a hepatic deletion of transforming

growth factor-b-activated kinase 1 (Tak1DHep) mouse model (38),

indicating that TLR3-mediated apoptosis may be a promising

therapeutic target in HCC treatment (69). Taken together, further

studies need to be investigated for the molecular mechanisms and

therapeutic potential of TLRs in the development of HCC.
3 The cGAS-STING signaling axis in
NAFLD and HCC

The cGAS-STING axis contains the cytosolic DNA sensor

cGAS, the second messenger cyclic GMP-AMP (cGAMP) and

cGAMP receptor stimulator of interferon genes (STING) (76–79).

STING is expressed in non-parenchymal cells, including innate

immune cells and hepatic stellate cells, and exerts an important role

to maintain liver homeostasis (80). The cGAS-STING signaling is

activated by pathogenic DNA from DNA virus or intracellular

bacteria, and endogenous DNA, including mitochondrial and

nuclear DNA in the cytosol in response to mitochondria stress,

radiation therapy or autoimmune disorders (81–85). cGAS-STING

axis is involved in the activation of IFN-I and pro-inflammatory

responses against microbial infections via TBK1/IRF3 and NF-kB
signaling, and STING- induced autophagy and lysosome-

dependent cell death (86). Recently, cGAS-STING signaling has

been demonstrated to be associated with various diseases, including

inflammation, autoimmune diseases, metabolic disorders,

and tumors (87–89). Here, we will highlight the pathogenical

and therapeutical role of cGAS-STING axis in NAFLD to

HCC (Figure 2).
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3.1 NAFLD/NASH

In patients with NAFLD/NASH, STING has been demonstrated

to be expressed and upregulated in myeloid cells (35). The level of

STING protein in hepatic non-parenchymal cells including KCs

and endothelial cells from patients with NAFLD is increased

compared to the healthy controls. Increased numbers of STING

positive monocyte-derived macrophages (CCR2+, S100A9+),

Kupffer cells (CD68+) and CD163+ macrophages are found in

liver samples from NASH patients with fibrosis (90). Consistent

with NAFLD patients, the expression of STING and its downstream

transcriptional factor IRF3 are significantly increased in the liver of

HFD-fed mice (35, 91). The phosphorylation of JNK p46 and

nuclear factor kB (NF-kB) p65 are enhanced in the liver of

NAFLD mice, and promotes the production of tumor necrosis

factor a (TNFa), interleukin (IL)1b, and IL6. However, the

phosphorylation of transcriptional factors and activation of

inflammatory cytokines are significantly lower in mice with

STING disruption (STINGgt). Moreover, the similar inflammatory

status in myeloid cells was also found in mice with STING

deficiency, indicating that myeloid-derived STING contributes to

HFD-induced hepatic inflammatory response (35). Moreover,

STING is deficiency in human and murine hepatocytes and the

express ion of STING is highly expressed in hepat ic

nonparenchymal cells (80, 92). However, the mechanism of HFD-

triggered the activation cGAS-STING signaling is still not clear. It

has been reported an abnormal liver mitochondrial function and

high level of plasma mtDNA in NASH patients and HFD-induced

NASH mice (61). Furthermore, STING deficiency attenuates the

mtDNA-mediated TNF-a and IL-6 expression in KCs in vitro (36).
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Thus, cGAS-STING signaling is activated by cytoplasmic mtDNA,

and then initiates the excessive inflammatory response in the liver

to aggravate the liver injury in NASH patients and mice.

Indeed, inhibition of STING or reduction of its downstream

signaling pathway can attenuate the NAFLD/NASH symptoms.

STING deficiency reduced inflammation, steatosis and fibrosis in

livers in both methionine- and choline-deficient diet (MCD)- and

HFD-induced murine models of NASH (36, 93). Knockdown

STING or IRF3 alleviates the hepatic lipid accumulation, liver

inflammation and hepatocyte apoptosis (91, 94). Furthermore,

mice with STING disruption in myeloid cells exhibited less severe

NASH symptoms (35). In addition, Remdesivir (RDV, GS-5734), an

antagonist of STING, considerably restrains lipid accumulation,

hepatic disorder and liver inflammation in HFD-fed mice (95).

Therefore, targeting cGAS-STING axis may be an effectively

therapeutic strategy for NAFLD/NASH in humans.
3.2 HCC

Activation of cGAS-STING axis aggravates the NAFLD

symptom and accelerates the development of NASH.

Interestingly, cGAS-STING play an opposite role in HCC

progression. Thomsen et al. reported that STING-deficient mice

displayed higher number of large tumors than wild type mice at late

stages of HCC. Furthermore, activation of STING by treatment with

a cyclic dinucleotide (CDN), a traditional STING agonist, could

efficiently reduce HCC tumor size (44). In addition, Lactobacillus

rhamnosus GG (LGG) treatment enhanced the efficacy of immune

checkpoint blockade (ICB) therapies through inducing cGAS/
FIGURE 2

The cGAS-STING signaling pathway in the progression from NAFLD to HCC. A schematic detailing cytosolic dsDNA, which occurs through pathogen
infection, tumor cells, death cells or cellular stress, can be recognized by cGAS. Enzymatic activation of cGAS results in the synthesis of 2′-3′
cGAMP. The binding of cGAMP enables STING translocation from ER membrane to Golgi, then recruits TBK1 and IKK complex. The phosphorylation
of IRF3 and NF-kB by TBK1 and IKK enable these transcription factor dimerization and translocation to the nucleus to induce gene expression of
several cytokines, type I interferons, and chemokines. Activation of cGAS-STING signaling axis could promote lipid accumulation, inflammation, or
anti-cancer responses in different stage of liver disease. dsDNA, double-stranded DNA; cGAS, cyclic GMP-AMP synthase; 2′-3′ cGAMP, 2′3′ cyclic
GMP-AMP; STING, stimulator of interferon genes; ER, endoplasmic reticulum; TBK1, TANK-binding kinase 1; IKK, IkB kinase; IRF3, interferon
regulatory factor 3. Red, accelerative effect; Green, protective effect.
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STING-dependent IFN-b production in colorectal cancer therapy,

which suggesting that cGAS-STING axis play a vital role in anti-

tumor immune responses against HCC (96).

Recently, several studies have reported that the cGAS-STING

signaling is a prognostic biomarker in HCC, and can be acted as an

adjuvant to enhance the anti-tumor efficacy (97–99). cGAS/STING

signaling were found to be related to the stages of HCC patients.

The mRNA level of STING and its downstream target molecule

including IFI16, STAT6 and NLRC3 is positive associated with the

overall survival of HCC patients (97), indicating the cGAS-STING

signaling factors can be used as potential prognostic biomarkers and

therapeutical targets for HCC treatment in humans. Increasing

evidence has been demonstrated the role of cGAS-STING signaling

pathway to enhance the efficacy of radiotherapy and

immunotherapy (100). Radiotherapy (RT) can induce DNA

damage and lead to the accumulation of cytosolic DNA, which

initiate the activation of cGAS-STING signaling and increase the

RT-induced antitumor immunological therapy. Besides, the

radiotherapy effect was enhanced by introducing exogenous

cGAMP, or combination with cGAS-STING agonists and

immunotherapy (101). Wehbe et al. developed a polymer some

nanoplatform encapsulated with STING (STING-NPs) to enhance

cGAMP delivery in the tumor and increase the half-life of cGAMP

with 40-fold. In a B16-F10 melanoma tumor model, STING-NPs

increase the response rates to aPD-L1 antibodies, and lead to

increase the survival time in mice (102). Furthermore, STING-

NP-treated tumor-bearing mice resulted in >50% and 80%

reduction in tumor burden by cGAS-STING signaling in

melanoma and breast adenocarcinoma models. E7766, a

macrocycle-bridged stimulator of interferon genes (STING)

agonist, was demonstrated its potent antitumor activity by

prolonging the immune memory response in a liver metastatic

tumor mouse model (103). Conversely, STING signaling has been

reported to promote the tumorigenesis and progression in some

cases. Upregulation of IFNb induced by cGAS-STING promotes the

expression of immune checkpoint molecules, such as cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell

death ligand 1 (PD-L1), which result in the inhibition of T-cell

activation and immune evasion (104, 105). Therefore, targeting and

selectively activating cGAS-STING signaling may have therapeutic

potential for treating HCC in humans.

Lastly, there are no approved therapies for NAFLD and NASH.

Given that the TLR4, TLR9 and cGAS-STING signaling pathway is

activated under obesity conditions in NAFLD patients and mouse

models, it is tempting to speculate that TLRs and cGAS-STING

contribute to increased inflammation in the progression of NAFLD

to NASH. In fact, some small-molecule inhibitors have been

developed to target TLRs, cGAS-STING and their downstream

components over the past several years. TAK-242, a specific TLR4

inhibitor, has been used for the treatment of rheumatoid arthritis

(RA) (106). RU.521 and RU.365 are found to inhibit cGAS by

binding at the active site of cGAS (107). Remdesivir, an antagonist

of STING, is also considered to be a candidate for the treatment of

NAFLD (95). On the contrary, the PRRs play an important roles in

anti-tumor immunity. The two STING agonists, DMXAA (5,6-
Frontiers in Endocrinology 06
dimethylxanthenone 4-acetic acid) and E7766, were identified as

molecules that exerted potent anti-tumor activity. Thus, it is

important to pay attention to the administration time of

antagonists or agonists that regulate the TLRs and cGAS-STING

signaling pathway in order to prevent an increased risk of HCC. In

conclusion, NAFLD has emerged as one of the most prevalent form

of chronic liver disease worldwide due to overnutrition, genetic

predisposition, gut-liver axis and immune disorder. PRRs and their

downstream signaling closely contribute to NAFLD pathogenesis

and accelerate the development of NASH, hepatic fibrosis, cirrhosis,

and NAFLD-related HCC. In this review, we provide the

comprehensive understanding of the molecular mechanism of

PRRs to control liver inflammation in physiological and

pathophysiological stages of NAFLD and HCC, and highlight the

therapeutic targeting PRRs for the treatment of NAFLD/NASH

and HCC.
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