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Construction of a telomere-
related gene signature to predict
prognosis and immune
landscape for glioma
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and Xiaoyan Fan3

1Department of Neurosurgery, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China,
2Department of Endocrinology, Affiliated Haikou Hospital of Xiangya School of Central South
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Zhejiang, China
Background: Glioma is one of the commonest malignant tumors of the brain.

However, glioma present with a poor clinical prognosis. Therefore, specific

detection markers and therapeutic targets need to be explored as a way to

promote the survival rate of BC patients. Therefore, we need to search for quality

immune checkpoints to support the efficacy of immunotherapy for glioma.

Methods: We first recognized differentially expressed telomere-related genes

(TRGs) and accordingly developed a risk model by univariate and multivariate

Cox analysis. The accuracy of the model is then verified. We evaluated the

variations in immune function and looked at the expression levels of immune

checkpoint genes. Finally, to assess the anti-tumor medications often used in

the clinical treatment of glioma, we computed the half inhibitory concentration

of pharmaceuticals.

Results: We finally identified nine TRGs and built a risk model. Through the

validation of the model, we found good agreement between the predicted and

observed values. Then, we found 633 differentially expressed genes between

various risk groups to identify the various molecular pathways between different

groups. The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts, endothelial

cells, macrophages M0, M1, and M2, mast cells, myeloid dendritic cells, and

neutrophils was favorably correlated with the risk score, but the enrichment of B

cells and NK cells was negatively correlated with the risk score. The expression of

several immune checkpoint-related genes differed significantly across the risk

groups. Finally, in order to create individualized treatment plans for diverse

individuals, we searched for numerous chemotherapeutic medications for

patients in various groups.
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Conclusion: The findings of this research provide evidence that TRGs may

predict a patient’s prognosis for glioma, assist in identifying efficient targets for

glioma immunotherapy, and provide a foundation for an efficient, customized

approach to treating glioma patients.
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1 Introduction

According to the World Health Organization, glioma is one of

the most prevalent malignant tumors of the brain and is categorized

as grades 1, 2, 3, or 4; grades 1 and 2 are low grade glioma (LGG),

while grades 3 and 4 are high grade glioma (glioblastomamultiforme,

GBM) (1, 2). 30% of all primary brain and spinal cord tumors are

glioma, which make up more than 80% of all malignant brain tumors

and are clinically very likely to be fatal (3). Glioma currently have a

poor clinical prognosis upon presentation. Despite advancements in

chemotherapeutic agents, radiation, and surgical methods for

resecting tumors, the overall survival of glioma patients is still not

encouraging (4). After conventional surgery, radiation and

chemotherapy, glioma patients have a median survival period of

about 14 months and an estimated 5-year survival rate of about 9.8%

(5). So far, immunotherapy for glioma is the more effective treatment

modality. Immune checkpoint inhibitor therapy allows effector T

cells to reactivate and exert cytotoxicity on tumor cells through a

combination of specific antibodies and checkpoint molecules

(10.3389/fimmu.2020.578877). Therefore, we need to search for

quality immune checkpoints to support the efficacy of

immunotherapy for glioma.

Telomere is a region at the end of a chromosome that is

composed of two parts, the repetitive TTAGGG DNA sequence

and the shieldin complex (6). Telomeres ensure the stability of

chromosomes, providing security, and are significant for cell

division and certain diseases (7). In addition, telomere

abnormalities can lead to many diseases and are closely associated

with the development of many mental health problems and cancer

(7, 8). A study elucidated polymorphisms in telomere length-related

genes and found that some telomeric loci were associated with a

high risk of liver cancer (9). It has been shown that the length of the

telomere-related genes (TRGs) is associated with the development

of glioma (10). Malignant glioma usually exhibit telomerase activity,

although normal brain tissue hardly ever does (11). Malignant
grade glioma; GBM,
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chment analysis; IC50,
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glioma cells may be capable of unrestricted proliferation and

apoptosis inhibition due to abnormal telomerase reactivation (11).

In the research, we screened and correlated TRGs with the aim

of identifying immune checkpoints associated with glioma

immunotherapy to improve the efficacy of clinical glioma and

improve patient survival.
2 Materials and methods

2.1 Preparation of data

The TCGA-glioma and GEO-GSE74187 databases provided the

RNA-seq data and clinical information for glioma (12). Data that

was missing or had a survival time of less than 30 days was removed.

TRGs were downloaded from TelNet (http://www.cancertelsys.org/

telnet/; Table S1) (13).
2.2 Construction and validation of model

To find TRGs that were differently expressed between normal

and glioma samples (|logFC| >= 1 and P value< 0.05), the R package

limma and wilcox tests were used (14). Prognostic TRGs were

identified using univariate Cox analysis (P< 0.001), and a risk model

was created using multivariate Cox analysis. Each patient with

glioma had their risk score calculated using a formula: ok
i=1biSi.

To validate this model, the GEO-GSE74187 dataset was used as an

external validation set. To compare the survival rates of various

groups, a Kaplan-Meier analysis was used. To evaluate the accuracy

of survival prediction, the receiver operating characteristic (ROC)

curves and the area under curve (AUC) were used.

Based on clinical characteristics, we divided the patients into

several groups and investigated the survival rates of various groups

within various groupings. The model was tested using univariate and

multivariate Cox analyses to ensure that it was an accurate predictor of

prognosis. The consistency index (C-index) was used to calculate the

model’s accuracy. A nomogram was developed to predict the 1, 3, and

5-year survival rates of glioma patients using the model and clinical

data. We found differentially expressed genes (DEGs) in different

groups (|logFC > 1| and FDR< 0.05) and ran kyoto encyclopedia of

genes and genomes (KEGG) and Gene Ontology (GO) enrichment

analyses on these DEGs (P< 0.05) using clusterProfiler 4.0 (15).
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2.3 Evaluation of immune landscape

The number of gene mutations was determined using mutational

analysis, and scores for tumor immune dysfunction and exclusion

(TIDE) and tumor mutation burden (TMB) were computed to

forecast immunotherapy response (16, 17). Additionally, we

computed survival variations between various TMB groups and

other groups. Immune cell infiltration was calculated using the

EPIC, TIMER, MCP-COUNTER, XCELL, QUANTISEQ,

CIBERSORT, and CIBERSORT-ABS algorithms (18–24). To

evaluate the variations in immune function and look into the

expression levels of several immunological checkpoint genes, we

used a single-sample gene set enrichment analysis (ssGSEA).
2.4 Identification of anti-tumor drugs

To assess the anti-tumor medications often used in the clinical

treatment of glioma, we calculated the half inhibitory concentration
Frontiers in Endocrinology 03
(IC50) of pharmaceuticals and compared the IC50 across various groups

using the “pRRophetic” R package (10.1371/journal.pone.0107468).
3 Result

3.1 Construction and validation
of signature

Differential expression analysis revealed 22 differentially

expressed TRGs (Figure 1A), univariate Cox analysis revealed 19

prognostic TRGs (P< 0.001; Figure 1B), and multivariate Cox

analysis produced a signature with 9 prognostic TRGs

(Figure 1C). The findings of the survival analysis (P< 0.001;

Figure 1D) and the validation set from GSE74187 (P = 0.011;

Figure 1E) both indicated that the high-risk group had a shorter

survival time. The signature was used to forecast glioma patients’ 1-,

3-, and 5-year survival rates, with the corresponding AUC values of

0.867, 0.909, and 0.867 (Figure 1F). Compared to other clinical
A B

D E

F G

C

FIGURE 1

(A) Differential expression analysis. (B) and (C) Univariate and multivariate Cox analyses. (D) and (E) The survival analysis from TCGA-glioma and
GSE74187. (F) The AUC values for the model. (G) The AUC of the model was also higher than other clinical features.
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features, the model’s AUC was greater, indicating that it is more

trustworthy (Figure 1G).

Patients in the low-risk group had a longer survival time,

according to the various clinical subgroups, suggesting that the

model is applicable to patients with a range of clinical features

(Figure 2A). In both univariate and multivariate Cox analyses, the

risk score was shown to be an independent prognostic predictor (P<

0.001; Figures 2B). The C-index showed that the model performed

better in predicting the prognosis of glioma than did traditional

clinical criteria (Figure 3A). The correlation plot showed that the

observed 1, 3, and 5-year survival rates and the anticipated rates

agreed strongly (Figure 3B). We developed a nomogram using the

signature and clinical characteristics that might be used to precisely

forecast the survival of glioma patients (Figure 3C).
3.2 Assessment of immunological
landscape

We found 633 DEGs between various risk groups to analyze

the various molecular pathways between different groups (Table
Frontiers in Endocrinology 04
S2). Figures 4A, B show the results of the GO and KEGG analyses,

while Tables S3, S4 give more information. In comparison to the

high-risk group, the frequency of gene mutations was much

greater in the low-risk group (Figures 5A, B). Lower TIDE

scores (P = 0.019; Figure 5C) and higher TMB scores (P< 0.001;

Figure 5D) in the high-risk group indicated that they were more

likely to respond to immunotherapy. According to survival

research, distinct TMB and risk groups had statistically different

survival rates, suggesting that integrating TMB scores might

improve the ability to predict the prognosis of glioma patients

(Figures 5E, F).

The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts,

endothelial cells, macrophages M0, M1, and, M2, mast cells,

myeloid dendritic cells, and neutrophils was favorably correlated

with the risk score, but the enrichment of B cells and NK cells was

negatively correlated with the risk score (Figure 6). The various risk

groups showed statistically significant differences in all

immunological activities (Figure 7A). The expression of several

immune checkpoint-related genes, such as CTLA-4 (P< 0.001),

PDCD1 (P< 0.001), LAG3 (P< 0.001), and CD274 (P< 0.001),

differed significantly across the risk groups (Figure 7B).
A

B

FIGURE 2

(A) According to the various clinical subgroups, patients in the low-risk group had a longer survival time. (B) It was discovered that the risk score was
a standalone prognostic factor.
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A B

C

FIGURE 3

(A) The model performed better in predicting the prognosis of glioma than did traditional clinical criteria. (B) The observed survival rates demonstrated a
strong agreement with the projected rates in the correlation plot. (C) A nomogram with signature and clinical characteristics.
A B

FIGURE 4

(A, B) The GO and KEGG analyses for 633 DEGs.
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3.3 Selection of anti-tumor drugs

Along with immunotherapy, we are looking for chemotherapeutic

drugs for patients in different risk groups. Finally, in order to create

individualized treatment plans for diverse individuals, we searched for

numerous chemotherapeutic medications for patients in various

groups (P< 0.001; Figure 8).

4 Discussion

With a low patient survival rate and a poor clinical prognosis,

glioma has a high occurrence (25). The overall survival rate of glioma
Frontiers in Endocrinology 06
patients continues to be dismal despite the quick development of

surgical resection methods, chemotherapy, and radiation (4).

Therefore, to ensure that immunotherapy for glioblastoma is

effective, we must discover superior immune checkpoints.

High-throughput sequencing data and computational biology

are currently used extensively in the study of biomedicine (26, 27).

Wang et al., for instance, identified biomarkers in several tumors

using computational biology techniques like WGCNA, which gives

us a methodologically sound foundation on which to examine the

process of carcinogenesis (28–30). In the research, we first created a

risk model linked to TRGs by discovering TRGs. After that, using
A B

D

E F

C

FIGURE 5

(A, B) The specific genes that have been altered differed substantially between groups. (C) and (D) The high-risk group have a lower TIDE score and a
higher TMB score. (E) High-TMB groups had considerably reduced survival rates. (F) The four groups’ survival rates varied greatly from one another.
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this methodology to determine the risk score for glioma patients, we

divided them into low- and high-risk groups. In order to confirm

the validity of the model, we did univariate and multivariate Cox

analyses on the patients in the high-risk group and discovered that

they all had shorter survival rates than those in the low-risk group.

As expected, the predictive accuracy of the risk model was high.

Then, we analyzed the immune infiltration in the high-risk and

low-risk groups and found that the enrichment of CD4+ T cells,
Frontiers in Endocrinology 07
CD8+ T cells, fibroblasts, endothelial cells, macrophages M0, M1

and, M2, mast cells, myeloid dendritic cells, and neutrophils was

favorably correlated with the risk score, but the enrichment of B

cells and NK cells was negatively related to the risk score. CD8+ T

cells are a common type of T cells, and the CD8+ T cell family

establishes a neuronal-immune-cancer axis through midkine

activation to enhance favorable conditions for the growth of low-

grade glioma (31). In addition, in one study performed by Ge. et al,
FIGURE 6

The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts, endothelial cells, macrophages M0, M1 and, M2, mast cells, myeloid dendritic cells, and
neutrophils was favorably correlated with the risk score, but the enrichment of B cells and NK cells was negatively related to the risk score.
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related discussions elucidated that macrophages, neutrophils and

fibroblasts can be regulated by TP53I13, altering tumor immune

infiltration and thus promoting glioma development and metastasis

(32). The potential of neutrophils as therapeutic targets in cancer

biology has now been extensively studied. Neutrophils play a

complex role in cancer, including their ability to exert pro- or

anti-tumor activity (33). However, further studies are needed to

investigate their exact roles and mechanisms of action to develop

targeted therapeutic approaches. Furthermore, although the degree

of neutrophil infiltration correlates with glioma grade, the

underlying mechanisms are unknown (33).

In addition, in our study, we also found some significant TRGs

such as CTLA-4, PDCD1, LAG3, and CD274 (PD-L1). A critical

part of the tumor immune response pathway is played by CTLA-4

(34). Although it has been shown that CTLA-4 positively correlates

with immune-related proteins in glioma, excessive CTLA-4

expression is associated with a worse prognosis for glioma

patients (35). An immunoglobulin superfamily cell surface

membrane protein, encoded by the PDCD1 gene, is responsible

for programmed cell death. Activated monocytes, NK cells, T cells,

and B cells are the main cell types that express it. Additionally, B or
Frontiers in Endocrinology 08
T cell receptor signaling can cause PDCD1 expression, and tumor

necrosis factor stimulation can further increase it (36). LAG3, an

inhibitory receptor that is predominantly located on activated

immune cells and is frequently co-expressed with PD-1 on

depleted T cells, has emerged as a crucial immunomodulator

target (37). CD274 (PD-L1) is considered a major prognostic

biomarker for immunotherapy of many cancers. CD274 (PD-L1)

is not only associated with decreased cytotoxic T lymphocytes and

increased Tregs in glioma lesions, but also has an intrinsic

oncogenic effect through interaction with Ras (10.3389/

fphar.2018.01503). It has been shown that LAG3 is realized to be

highly expressed in glioma patients, but the sample size is small and

further experimental validation is needed (38). In addition, in

addition to immunotherapy, we have studied a large number of

drugs for different groups of patients in order to develop

individualized treatment plans.

Although we tried to avoid errors as much as possible to make

our experiments credible, there are still some shortcomings that need

to be improved. First, due to database limitations, we were unable to

accurately compare the corresponding checkpoint inhibitor IC50. In

addition, we did not conduct simultaneous in vitro experimental
A

B

FIGURE 7

(A) The various risk groups showed statistically significant differences in all immunological activities. (B) The expression of immune checkpoint-
related genes differed significantly across the risk groups. *** means P < 0.001.
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validation, and further in-depth experiments are needed for this part.

We believe that our risk model construction is reasonable and

acceptable for further validation in future clinical trials based on

the above analysis, validation, and previous relevant reports. Most

importantly, the current data is limited and we need to collect more

data from the clinic to expand the database for future studies.
Frontiers in Endocrinology 09
Conclusion

The present study support that TRGs could predict the

prognosis of glioma patients and help to find effective targets for

glioma immunotherapy and can serve as a basis for effective

individualized treatment of glioma patients.
FIGURE 8

Identification of traditional chemotherapy medications.
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