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Crosstalk between bone and
muscle in chronic kidney disease

Limy Wong 1,2* and Lawrence P. McMahon1,2

1Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill,
VIC, Australia, 2Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
With increasing life expectancy, the related disorders of bone loss, metabolic

dysregulation and sarcopenia have become major health threats to the elderly.

Each of these conditions is prevalent in patients with chronic kidney disease

(CKD), particularly in more advanced stages. Our current understanding of the

bone-muscle interaction is beyond mechanical coupling, where bone and

muscle have been identified as interrelated secretory organs, and regulation of

both bone and muscle metabolism occurs through osteokines and myokines via

autocrine, paracrine and endocrine systems. This review appraises the current

knowledge regarding biochemical crosstalk between bone and muscle, and

considers recent progress related to the role of osteokines and myokines in

CKD, including modulatory effects of physical exercise and potential therapeutic

targets to improve musculoskeletal health in CKD patients.
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Introduction

Chronic kidney disease (CKD) has a complex relationship with ageing, where the CKD

phenotype provides an accelerated model of ageing through various mechanisms while

ageing also hastens the progression of kidney disease. Patients affected by CKD experience

profound musculoskeletal functional decline at a younger age, which is compounded by

concurrent losses in bone and skeletal muscle mass, leading to reduced mobility and

excessively high rates of falls and fractures, the effects of which are often life-limiting.

Disturbances in mineral and bone metabolism in CKD are conventionally jointly

referred to as CKD-Mineral Bone Disorder (CKD-MBD), and comprises abnormalities in

the homeostasis of calcium, phosphorus, vitamin D and parathyroid hormone (PTH);

abnormalities of bone turnover, mineralisation or volume; and vascular or soft tissue

calcification (1). Despite earlier research and vigorous exploration of therapeutic strategies

in managing skeletal health focusing on bone and mineral abnormalities, a disturbing

limitation in patient care persists, particularly in those with advanced CKD and/or who are

dialysis-dependent. Meaningful clinical and biological targets are lacking in this

population, resulting in management uncertainty for the prevention of bone loss

and fractures.
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Furthermore, it is increasingly recognised that sarcopenia plays

a detrimental role in musculoskeletal health in CKD. Sarcopenia is a

condition characterised by a reduction in muscle mass, strength

and/or performance that accrues over many years and is associated

with ageing (2). However, it is now recognised that sarcopenia

begins earlier in life with many contributing factors beyond ageing

alone. CKD patients suffer severe skeletal muscle wasting, and again

this is particularly evident in its advanced stages. There is no

pharmacological treatment available at present to reverse or halt

the progression of muscle atrophy, although aerobic and resistance-

training exercise and nutritional interventions have been shown to

be of some benefit (3–5).

Our understanding of the interaction between bone and skeletal

muscle now exceeds the concept of purely mechanical coupling,

with evidence that these tissues communicate at a biomolecular

level (6). Bone and muscle have been shown to be interrelated

secretory organs, which produce osteokines (bone-derived factors)

and myokines (muscle-derived factors) respectively. Each of these is

important in regulating bone and muscle metabolism through

autocrine, paracrine and endocrine signalling. The growing

knowledge about the crosstalk between bone and muscle, and the

likely influence of exercise on both tissues has important

implications for clinical practice and introduces potential

therapeutic targets to improve bone and muscle parameters, and

consequently, the patient’s overall health and wellbeing. However,

the biochemical relationship between bone and muscle in tandem is

less well understood in the uraemic milieu.

This review presents an in-depth discussion about the known

endocrine and other crosstalk between bone and muscle, the

modulatory effects of physical exercise on these tissues, potential

therapeutic targets and, lastly, important research questions in

this field.
Bone fragility in patients with chronic
kidney disease

In the general population, osteoporosis is defined as a reduction

in bone density; while bone disorders in CKD are more complex.

The diagnosis and management of bone disorders in CKD is

challenging for several reasons: (i) heterogeneous changes in bone

tissue other than osteoporosis that could compromise bone strength

such as osteomalacia, osteitis fibrosa cystica, adynamic bone disease

(with inadequate bone turnover) and mixed bone lesions; (ii) the

inability of dual-energy X-ray absorptiometry to provide

meaningful details regarding underlying bone mineral density;

(iii) inaccuracy of serum-derived bone turnover markers due to

reduced renal clearance and (iv) infrequent use of bone biopsy, the

gold standard determinant of bone pathology, due to its restricted

availability, invasive nature, and limited interpretative expertise (7).

Dialysis-dependent patients have a 4- to 14-fold higher risk of

developing fractures than the healthy general population, a risk

which extends to those with an estimated glomerular filtration rate

(eGFR) between 15 to 60 mL/min/1.73m2 (8–12).

Despite early research efforts to identify better management

strategies, the incidence of fractures has continued to rise in recent
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years, with no therapeutic agent yet approved for patients with

kidney-related bone disease. Agents that have been targeted include

vitamin D analogues and calcimimetics to suppress PTH and

improve bone remodelling, thus potentially reducing fracture risk,

and antiresorptive and osteoanabolic agents. The latter are

approved for osteoporosis in the general population and have

been administered off-label in CKD Stage 3B-5 high-risk patients.

However, their use has been limited due to the lack of large-scale

clinical trials and concern regarding their contribution to further

kidney dysfunction and adynamic bone disease, which has now

evolved as the predominant form of renal osteodystrophy

associated with poor outcomes (13, 14).
Muscle health in patients with chronic
kidney disease

Skeletal muscle is the largest tissue in the human body,

accounting for about 40-50% of body mass (15). It is imperative

for gait and posture and also functions as an endocrine organ.

Maximal muscle mass is achieved during young adulthood but after

the age of 50, muscle loss occurs at a rate of ~1-2% per annum (16).

Sarcopenia, a recently recognised disease entity, is common in

older-aged adults but can also occur earlier in life from systemic

illnesses, particularly conditions that trigger an inflammatory

response such as CKD and malignancy. Sarcopenia is thus

prevalent in the CKD population and is associated with an

increased risk of hospitalisation and mortality in both dialysis and

non-dialysis dependent patients. Low skeletal muscle mass

(determined by radiological measures) is associated both with a

higher waitlist mortality among kidney transplant candidates and

an increase hospital readmission rate within the first 30 days after

kidney transplant discharge (17, 18).

Several risk factors have been proposed to contribute to the

development of sarcopenia in CKD including ageing, chronic

inflammation, hormonal changes/resistance, metabolic acidosis, a

more sedentary lifestyle and poor nutritional status leading to an

imbalance between protein synthesis and degradation. We recently

reported that the differentially expressed genes and proteins in

skeletal muscle of CKD subjects belong to 8 major biological and

signalling pathways, namely apoptosis, autophagy, inflammation,

insulin/insulin-like growth factor 1 (IGF1) signalling, lipid

metabolism, mitochondrial function, muscle cell growth and

differentiation, and protein turnover (19).
Bone metabolism and remodelling

The overall composition of bone tissue is altered in CKD due to

abnormal systemic mineral metabolism and bone remodelling. Cells

within bone include osteocytes (90-95%), osteoblasts (5%), and

osteoclasts (1%) (20). It is a dynamic tissue and its structural

integrity is maintained by bone remodelling, consisting of

coordinated actions of the three cell types in a process tightly

regulated by both local and systemic factors (21). The presence of

the myogenic interleukin-6 (IL-6) activates the secretion of
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osteoblast and osteocyte-induced receptor activator of nuclear

factor-kB (RANK), which drives osteoclastogenesis (22). This also

results in an increased expression of RANKL, which binds to its

receptor and triggers a cascade of signalling events that induce

osteoclast differentiation, activation and survival. By contrast,

osteoprotegerin (OPG), a soluble decoy receptor, binds RANKL

to prevent the latter binding to RANK, thereby inhibiting

osteoclastogenesis (23) and restraining bone loss. Dysregulation

of the RANK-RANKL-OPG axis can lead to osteoporosis. Studies

investigating RANKL levels in CKD patients have demonstrated

conflicting findings (24–26), whereas OPG concentrations have

consistently been reported to be higher in haemodialysis patients

(24, 27, 28), which could reflect a compensatory protective

mechanism to moderate bone remodelling.
Osteokines and muscle metabolism

The discovery that osteocytes produced fibroblast growth factor

23 (FGF23), which circulates in different forms targeting the kidney

and other organs including muscle, led to the recognition of bone as

an endocrine organ. The list of osteokines has since continued to

expand. Herein, we describe several osteokines that have been

demonstrated to have regulatory effects on muscles (see Table 1).
Fibroblast growth factor 23

FGF23 was first discovered in 2000 as a cause of autosomal

dominant hypophosphataemic rickets (29). It is part of a

superfamily of 22 peptides grouped into 7 subfamilies. FGF23 is

mainly secreted by osteocytes and osteoblasts. It downregulates the

luminal expression of sodium/phosphorus co-transporters in the

proximal renal tubules to stimulate phosphaturia (30). FGF23 also

suppresses the production of 1,25(OH)2Vitamin D by inhibiting 1-

alpha hydroxylase, leading to phosphate wasting (31) and

consequently poor bone mineralisation. The canonical FGF23

signalling pathway requires the obligatory co-receptor alpha

klotho (a-KL), a transmembrane protein with extracellular

glucuronidase activity, for binding to the first of four tissue-

specific fibroblast growth factor receptors (FGFR), FGFR1 (32).

However, some FGF23 signalling occurs independent of a-KL and

is referred to as non-canonical FGF23 signalling, through binding

and activation of other receptors: FGFR3/FGFR4/calcineurin/

nuclear factor of activated T-cells (33), mainly in the setting of

markedly elevated circulating FGF23 levels. Effects include distinct

changes in several organs. Treatment of neonatal rat ventricular

myocytes for 48 hours with varying concentrations of FGF23

induced morphometric hypertrophy in a similar extent to

treatment with fibroblast growth factor 2 (FGF2). Moreover, in

vivo experiments using both intravenous and intramyocardial

injection of FGF23 showed induction of left ventricular

hypertrophy in non-CKD mice (34).

What effects FGF23 has in vivo, with or without a-KL, remains

uncertain. Higher serum levels have been shown to be

independently associated with pre-frailty and frailty in a large
Frontiers in Endocrinology 03
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cohort of community-dwelling elderly inhabitants (35). Similarly, as

part of the SPRINT trial, Jovanovich et al. reported that FGF23 was

associated with increased frailty among older adults with CKD (36),

suggesting that FGF23 might have more diverse negative biological

effects. Both FGF23 and a-KL were previously shown to inhibit

differentiation of cultured skeletal muscle cells through

downregulation of insulin/IGF-1 signalling (37). FGF23 was also

found to induce premature senescence of human skeletal muscle

mesenchymal stem cells via the p53/p21 pathway in an a-KL-
independent manner, supporting its inhibitory effects (38).

However, plasma FGF23 concentrations have also been reported

to be positively correlated with muscle mass indices in a small

haemodialysis cohort (39). As a potential therapeutic target,

exercise endurance was found to improve significantly in C57BL/

6J mice following exogenous administration of recombinant FGF23

(40). However, Avin et al. found that FGF23 did not influence

C2C12 myoblast proliferation and differentiation and ex-vivo

FGF23 treatment did not alter soleus contractility (41). Thus, the

regulatory effect of FGF23 on skeletal muscle remains unresolved

and further research is required to address this question.
Osteocalcin

Osteocalcin (OCN) is the most abundant non-collagenous

osteoblast-derived protein. There are two main forms of OCN in

the circulation: g−carboxylated and uncarboxylated (uOCN).

Considered to be the active form, the latter has been shown to be

involved in the regulation of insulin secretion and sensitivity (42),

glucose metabolism (43), male fertility (44) and brain function (45).

Although the data from in vitro and in vivo studies are controversial

(46–49), OCN is thought to play an important role in bone

remodelling by modulating osteoblast and osteoclast activity.

High levels of circulating OCN and uOCN were observed in CKD

patients (50–52), potentially due to increased bone metabolism,

decreased renal clearance or both, with progression correlating with

serum intact PTH and alkaline phosphatase (ALP) (50, 51), most

probably reflecting the severity of the underlying bone disorder.

OCN was also discovered to promote muscle uptake and

utilisation of glucose and fatty acids. Ocn-/- mice were found to

have impaired exercise capacity, which was rescued by exogenous

OCN administration (53). OCN was also shown to be a major

regulator of IL-6 expression in the muscle during exercise and the

rise in circulating IL-6 levels was proposed to originate from

muscle, eventually forming a feed-forward axis to amplify

adaptation to exercise (53). Moreover, using mice lacking OCN

(Ocn-/-), its receptor in all cells (Gprc6a-/-) and specifically in

myofibres (Gprc6aMck
-/-), Mera et al. showed that OCN signalling

is essential in maintaining muscle mass by promoting protein

synthesis in myotubes (54). uOCN was later found to enhance

C2C12 myoblast cell proliferation and differentiation through

activation of the PI3k/Akt, p38 MAPK and GPRC6A-ERK1/2

signalling pathways (55). Taken together, these findings strongly

support that OCN, especially its active form, plays an important

role in regulating muscle mass and might potentially be a

therapeutic target in sarcopenia. However, recent studies have
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found to be contrary. Using a newly generated Ocn-deficient

mouse model by deleting Bglap and Bglap2, Moriishi et al.

showed that OCN played no role in bone formation or

resorption, glucose metabolism, testosterone synthesis, or muscle

mass (56). Similarly, Diegel et al. generated Ocn-deficient mouse

using a CRISPR/Cas9-mediated gene editing tool and found that

these mice displayed normal bone mass, serum glucose and fertility

(57). The apparent discrepancies between studies remain

inexplicable and additional efforts are required to confirm

these findings.
Receptor activator of nuclear factor-kB/
Receptor activator of nuclear factor-kB
ligand/Osteoprotegerin

RANK and RANKL are expressed in osteoclasts and osteoblasts

respectively, as well as in skeletal muscle, and their interaction

activates the nuclear factor-kB (NF-kB) signalling pathway, a key

transcription factor inducing the expression of various

proinflammatory genes , which can inhibi t myogenic

differentiation and activate the local ubiquitin proteasome system,

ultimately leading to muscle atrophy (58). In addition, RANK has

been shown to regulate calcium storage and muscle performance

during denervation (59). Both genetic deletion of muscle RANK

and short-term anti-RANKL treatment were shown to improve

muscle integrity and strength of young dystrophic mdx mice (60).

Hamoudi et al. demonstrated that anti-RANKL treatment inhibited

NF-kB signalling and increased the proportion of M2 macrophages

in dystrophic mice, thus reducing muscle inflammation and

improving its mechanical properties (61). Similar findings were

also observed in young dystrophic mdx mice when treated with

recombinant full length OPG-Fc, a decoy receptor for RANKL (62).

Furthermore, postmenopausal women who were treated with

denosumab, a neutralising antibody against RANKL, for an

average duration of 3 years were found to have improved

appendicular lean mass and handgrip strength and these gains

were absent in the bisphosphate treatment group (63). Altogether, it

seems that the RANK-RANKL-OPG axis plays a pivotal role in

bone and muscle metabolism. Given that coexistence of

osteoporosis and sarcopenia is prevalent in the elderly population,

the potential benefit of anti-RANKL treatment in possibly

mitigating skeletal muscle atrophy while enhancing bone

mechanical properties should be further investigated. However,

any relationship between higher OPG concentrations (and OPG/

RANKL ratio) and sarcopenia in CKD is yet to be determined.
Sclerostin

Sclerostin is primarily secreted by mature osteocytes (64) and is

a negative regulator of bone formation via inhibition of the Wnt/b-
catenin pathway through binding to Wnt coreceptors, low-density

lipoprotein receptor-related proteins 5 and 6 (65). Wnt-3a was also

found to promote C2C12 myoblast differentiation through

upregulation of MyoD and Myogenin while sclerostin treatment
frontiersin.org
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inhibited the effect of Wnt-3a on the C2C12 myoblast

differentiation (65). A recent cross-sectional study of 240 healthy

non-diabetic Korean individuals found that serum sclerostin levels

were significantly higher in the low muscle mass group (66) and

similar findings were observed in haemodialysis patients with

diabetes (67). Interestingly, in a breast cancer mice model with

bone metastasis, treatment with anti-sclerostin antibody prevented

tumour growth in bone and bone destruction, as well as

improvement in muscle function (68). Romosozumab, a human

monoclonal antibody directed against sclerostin, has recently been

approved for treatment of osteoporosis in postmenopausal women

with high fracture risk. Its effect on skeletal muscle remains to be

confirmed in larger human studies. Interestingly, skeletal muscle

has also been found to secrete sclerostin, which works

synergistically with bone-derived sclerostin to strengthen the

negative regulatory mechanism of osteogenesis (69).
Insulin-like growth factor 1

IGF1 is an anabolic hormone with about 50% structural

homology with proinsulin. It is primarily synthesised in the liver,

but also in extrahepatic tissues including bone and acts on skeletal

muscle in a paracrine manner, primarily through the Type 1 IGF

receptor (IGF1R) to stimulate cellular uptake of glucose and amino

acids, enhance protein synthesis and suppress protein degradation

(70). It is an important determinant of muscle mass and function.

pAkt, which is a major cellular signalling effector of insulin and

IGF-1, was consistently found to be reduced in the skeletal muscle

of CKD individuals (19). A reduction of Akt activity induces

activation of FOXO transcription factors, ultimately resulting in

overexpression of genes that are involved in catabolic processes as

well as autophagy (71). Moreover, reduced IGF1 concentrations in

CKD patients have been associated with body composition and

lower bone mineral density (72, 73). However, IGF1 therapy has not

been shown to have beneficial effects on bone density, muscle

strength or muscle mass in older women (74).
Myokines and bone metabolism

Muscle-derived factors are called myokines, a term first

proposed by Pedersen and colleagues in 2010 (75). These

molecules include but are not limited to myostatin, irisin, IL-6,

IL-8, IL-15, leukaemia inhibitory factor, brain-derived neurotrophic

factor, IGF-1 and FGF2 (76).
Myostatin

Myostatin was the first myokine identified in 1997 (77) and is

primarily produced in skeletal muscle. It is a highly conserved member

of the transforming growth factor-b superfamily and is one of the most

potent negative regulators of skeletal myogenesis. It inhibits muscle cell

growth and differentiation by interacting with the activin type II

receptors (ActRIIA and ActRIIB), leading to upregulation of the
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cytokines and other signalling mediators that disrupt protein

metabolism (71). Myostatin knockout results in excessive skeletal

muscle hypertrophy in mice (78, 79) and notably, myostatin

deficiency also increases bone mineral density (80–82), which might

be attributed to both loading-associated effects and biochemical

interaction between bone and muscle. Myostatin was later discovered

to have a negative impact on bone remodelling by enhancing

osteoclastogenesis and reducing bone formation (83). Enhancement

of osteogenic differentiation was observed in bone-marrow derived

mesenchymal stem cells from Mstn-/- mice as compared to wild-type

mice, which was load-dependent (81). Furthermore, myostatin was

shown to accelerate RANKL-mediated osteoclast formation via

activation of the NFAT signalling pathway (84).

Several studies have investigated the plasma concentrations of

myostatin in CKD patients, the majority of them reporting higher

levels in CKD and dialysis-dependent patients compared to healthy

subjects (85). A few novel myostatin-targeted agents such as

LY2495655 (humanised myostatin antibody that neutralises

myostatin) and bimagrumab (humanised monoclonal antibody

that binds to ActRII) have been tested in Phase II clinical trials

with inconsistent results; some demonstrating positive outcomes

with increased lean body mass and improved handgrip strength and

gait speed (86, 87), while others did not (88).

Irisin

Irisin, a cleaved product offibronectin Type III domain containing

5 (FNDC5), is secreted from skeletal muscle in response to an increased

expression of peroxisome proliferator-activated receptor-g co-

activator-1-a (PGC1a) following exercise, to promote thermogenesis

by browning white fat. It is also possibly involved in glucose

metabolism (89). Irisin has been shown to promote myogenesis by

enhancing myoblast proliferation and differentiation, increasing

protein synthesis via activation of Akt and ERK, expanding the

satellite cell pool and upregulating the expression of exercise-related

genes, for example IL-6 (90, 91). Its anabolic effects on bone tissue are

supported by in vivo studies, where low-dose weekly irisin injections for

4 weeks in young male mice resulted in increased cortical bone mass

and strength, stimulating bone formation via upregulation of

osteogenic transcription factors including activating transcription

factor 4, Runt-related transcription factor 2 and Sp7 transcription

factor. Interestingly, a lower number of osteoclasts were also observed

in mice treated with irisin, which might contribute to the increase in

bone strength (92). Recent findings raise the possibility that irisin could

be a potential target for treating osteoporosis/CKD-MBD and

sarcopenia. There is a known negative correlation between

circulating irisin levels and osteoporotic fractures in postmenopausal

women (93). Furthermore, plasma irisin levels are known to be lower in

CKD patients (94), and recently, reduced irisin expression in the

gastrocnemius muscle of 5/6 nephrectomised mice was found to be

correlated with cortical bone mineral density (95).

Interleukins

Some circulating inflammatory cytokines (e.g. IL-6, IL-7 and IL-

15) are important for muscle development and growth as well as
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activation of muscle repair mechanisms. As mentioned previously,

muscle-derived IL-6 promotes myogenesis and skeletal muscle

growth via the regulation of proliferative capability of muscle stem

cells (96). Apart from its glucose uptake and fatty acid oxidation, IL-6

stimulates bone resorption by inducing RANK and RANKL

expression and the resorptive process has been demonstrated to be

dependent on osteoblast signalling (22). IL-6-/- mice have increased

bone formation and higher osteoclast numbers, but with a greater

osteoclast apoptosis rate and reduction in resorption capacity (97). Its

role in osteoblastogenesis remains controversial. Low grade chronic

inflammation is prevalent in CKD patients and the interactions

between cytokines, inflammation and muscle wasting are complex.

On the one hand, systemic inflammation strongly correlates with

muscle wasting, malnutrition, cardiovascular disease and mortality in

patients with end-stage kidney disease (ESKD) (98–100). Higher

expression of tumour necrosis factor-alpha (TNF-a) and IL-6 were

observed in the muscle of CKD patients and mice compared to

healthy controls and were associated with the development of muscle

atrophy (19). Contrarily, both TNF-a and IL-6 have pleiotropic

functions with a positive effect on muscle growth and regeneration.

IL-6 was also shown to facilitate the local infiltration of macrophages

and stimulate local IGF-1 production in muscle tissue of CKD mice

(101). Furthermore, increased IL-6 efflux from muscle was found to

correlate with increased muscle protein synthesis during

haemodialysis (102). Similarly, IL-15, another anabolic factor in

skeletal muscle, has also been demonstrated to have conflicting

effects on osteoclast activity and bone mass (103, 104). Finally,

higher circulating IL-15 levels correlate with a reduction in body

fat and increased bone mineral content in mice (105).
Others

Each of muscle-derived IGF1 and FGF2 exert anabolic effects on

bone metabolism by promoting osteoblast proliferation and hastening

bone formation. IGF1 regulates bone anabolism as a response to

enhanced osteoblast survival and proliferation, whereas FGF2 has

been proposed to be secreted following disruption of the plasma

membrane in response to injury or mechanical muscle contraction,

rather than by exocytosis (106). Moreover, FGF2 was found to reduce

glucocorticoid-mediated bone resorption via inhibition of sclerostin

signalling, reinforcing its anabolic effects on bone metabolism (107).

Circulating FGF2 levels have been reported to be lower in patients with

more advanced CKD (108, 109), though its role in the development of

sarcopenia in CKD is yet to be determined.
Effects of exercise on osteokines and
myokines in chronic kidney disease

Observational studies have shown that patients with advanced

CKD, particularly those on maintenance haemodialysis often have a

sedentary lifestyle (110, 111) and about 45% of end-stage kidney

disease (ESKD) patients report not performing any exercise at all

(112). The health benefits of regular physical activity include a

reduced risk of non-communicable diseases (e.g. heart disease,
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stroke and diabetes), better blood pressure control and improved

mental health as well as overall quality of life. Physical activity

improves physical function and reduces both pain and fall risk

among adults with arthritis (113). In the CKD population, a highly

active treatment group had a 25% risk reduction of all-cause

mortality in comparison to inactive patients, even when factored

for the presence of ESKD (114). Physical exercise also has a

beneficial impact on bone mass, through promotion of bone

formation and inhibition of bone resorption (115–117).

Several osteokines and myokines such as uOCN, OPG, irisin,

IL-7, IL-15 and IL-6 are released in response to exercise training,

exerting favourable physiological and metabolic effects in skeletal

muscle and bone, in conjunction with a systemic anti-inflammatory

effect (118, 119). In addition, both plasma and muscle myostatin

levels were shown to decrease following aerobic and resistive

training (120, 121). However, Gomes et al. investigated the effect

of aerobic exercise on bone metabolism biomarkers (OCN, uOCN,

sclerostin, PTH and total ALP) in non-dialysis CKD patients and

found no differences in these biomarkers following a 24-week

period of low-moderate intensity aerobic training except the total

ALP (122). Similarly, both irisin and OCN levels were unaffected by

resistance exercise in haemodialysis patients, though an increase in

OPG was observed (123, 124). Yet, Zhou et al. reported higher

plasma myostatin levels following 12 months of exercise training in

a cohort of 151 non-dialysis-dependent CKD patients (125). These

contrasting results underline the need for further studies in

determining the effects of exercise (aerobic, resistance or

alternative forms) on these bone-muscle biomarkers in CKD.

Notwithstanding inconsistent findings from previous studies, a

recent systematic review investigating the effects of physical

activity in CKD patients reported beneficial effects of resistance

exercise on bone health (126).
Conclusions and directions

Over the last thirty years, studies in CKD patients have mostly

focused either on bone or on muscle separately without recognition

of an interplay between the two organs. This oversight has perhaps

driven the bias and associated interpretative limitations of

mechanical coupling. A better understanding of the secretory

crosstalk and associated biochemical coupling between these two

organs represents a subject of great interest, with conceivable

potential in identifying novel therapeutic targets and ultimately

addressing the major unmet needs in managing renal

osteodystrophy and sarcopenia in CKD population.

That said, the well-documented beneficial effects of exercise on

bone and skeletal muscle in CKD cannot be understated. Although

many dialysis-dependent patients might be too frail to engage in

vigorous exercise, a less intense regimen may still be valuable. It is of

note that the incorporation of exercise programs into standard

clinical care has been slow, possibly because of feasibility concerns

(127). However, in line with the World Health Organisation 2018-

2030 Global Action Plan to promote physical activity for each

according to their ability across the life course, health professionals

play an essential role in improving access and quality of health care
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in the CKD population. There are also potential opportunities for

digital innovations to promote and support participation in physical

activity to improve the health and well-being of our patients.

To finish, several key questions remain unanswered: (1) Is there

a connection between osteoporosis, renal osteodystrophy and

sarcopenia? (2) Does one condition precede or metabolically

influence the other? (3) Is the phenotypic loss of muscle tissue

simply related to comparable changes in bone over the course of

CKD progression, each profoundly influenced by uraemia and a

profoundly sedentary lifestyle? (4) Are other tissues, notably

adipocytes, involved in the observed deleterious changes to bone

and muscle in CKD?
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