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How to maximize the
therapeutic effect of exosomes
on skin wounds in diabetes
mellitus: Review and discussion
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2State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases &
National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology,
Sichuan University, Chengdu, Sichuan, China
Chronic skin wound healing, especially in diabetes mellitus, is still unsolved.

Although many efforts have been made to treat diabetic skin wounds, current

strategies have achieved limited effectiveness. Nowadays, a great number of

studies have shown that exosomes might be a promising approach for treating

diabetic wounds. Many studies and reviews have focused on investigating and

discussing the effectiveness and mechanism of exosomes. However, maximizing

its value in treating skin wounds in diabetes mellitus requires further

consideration. In this review, we reviewed and discussed the aspects that

could be further improved in this process, including finding a better source of

exosomes, engineering exosomes, adjusting dosage and frequency, and

combining more efficient delivery methods. This review provided an overview

and idea of what we can do to improve the therapeutic effect of exosomes on

skin wounds in diabetes mellitus. Only by combining all the factors that affect the

effectiveness of exosomes in diabetic wound healing can we further promote

their clinical usefulness.
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1 Introduction

The healing of chronic skin wounds, especially diabetic skin wounds, is one of the most

intractable problems for clinicians and a heavy burden for patients, both physically and

financially (1, 2). To date, there are numerous strategies and methods to treat diabetic

wounds, and however, these are not exempt from limitations (3, 4). Hence, there is a crucial

and urgent need for effective and safe methods to promote diabetic wound healing.

Exosomes are one type of extracellular vesicles (EVs) secreted by various cells and show a

double-layer membrane structure and a particle size ranging from 30 to 200 nm. They are

involved in cell-cell communication and intracellular signaling. Exosomes show a lot of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1146991/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1146991/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1146991/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1146991/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1146991&domain=pdf&date_stamp=2023-03-27
mailto:scu2013dongjia@sina.com
mailto:drtwd@sina.com
https://doi.org/10.3389/fendo.2023.1146991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1146991
https://www.frontiersin.org/journals/endocrinology


Dong et al. 10.3389/fendo.2023.1146991
advantages, such as being stable, easily stored, and not rejected by

the immune system, offering a homing effect, and the dosage can be

easily controlled (5). Recent research results indicated that

exosomes participated in the development and outcome of

diabetes and its related complications (6). For the difficult-to-heal

skin wounds caused by diabetes, exogenous exosome therapy could

promote the functional recovery of multiple essential cells. They

effectively promoted angiogenesis, collagen synthesis, and

modulating inflammation (7), so exosome therapy might become

very important in wound healing strategies in order to enhance

antimicrobial stewardship (8).

Although exosome therapies hold great potential for facilitating

diabetic skin wound healing and regeneration, for any drug, its

clinical efficacy will also depend on many other factors, like dosage,

application frequency, and delivery methods (9, 10). In this review,

according to published studies on the application of exosomes in

diabetic wound healing, we first summarized the characterization of

skin wounds in diabetes mellitus and the role of exosomes in

promoting this type of wound healing. More importantly, we

reviewed and discussed the aspects that could be further

improved to maximize the value of exosomes in detail.
2 Characterization of skin wounds in
diabetes mellitus

The healing of skin wounds follows four steps, hemostasis,

inflammation, proliferation, and remodeling. However, in diabetes

mellitus, several factors impair these processes, making healing

longer and more difficult. For example, the high glucose in diabetic

wounds can lead to the gathering of bacteria and the weakening of

leukocyte phagocytosis, ultimately leading to serious local infection

and inflammation. The neurons are the most sensitive and initially

affected cells in diabetes mellitus, and diabetic neuropathy is one of

the major causes of diabetic ulcers (11). Moreover, the blood vessels

of diabetic wounds are damaged, and their angiogenic capacity is

weak, leading to insufficient nutrition supply and low oxygen

concentration in diabetic wounds (12). In addition to an

inadequate oxygen supply, high oxygen consumption by wound

cells during inflammation also induces hypoxia. Likewise, hypoxia

further amplifies the inflammatory response, thereby prolonging

injury by increasing the levels of oxygen radicals (13). Therefore,

improving these factors is the key to treating skin wounds in

diabetes mellitus.
3 Effect of exosomes on promoting
skin wound healing in
diabetes mellitus

It has been reported that endothelial cells (ECs), fibroblasts,

macrophages, and keratinocytes participate in angiogenesis,

collagen synthesis, and anti-inflammatory processes, which are

significant in diabetic wound healing. However, in the diabetic
Frontiers in Endocrinology 02
environment, the number and function of these cells are restricted

to varying degrees, and the wound-healing process is delayed or

interrupted. Studies found that exosomes could greatly promote

survival and inhibit the apoptosis of ECs (14–17), fibroblasts (11),

keratocytes (11), and neurons (11). Mostly, exosomes were reported

to promote the proliferation, migration, and angiogenesis of

endothelial cells, and a variety of pathways were involved, like

PI3K/AKT pathway, ERK1/2 pathway, FGF4/p38MAPK pathway

and HIPK2 pathway (15, 17–29). This greatly enhances the ability

of local vascular regeneration in diabetic wound healing. Exosomes

could also promote the proliferation and migration of keratinocytes

(28, 30, 31) and fibroblasts (20, 25, 28, 32–35), and the associated

pathway could be seen in Figure 1. It was reported that exosomes

played a role in polarizing pro-inflammatory M1 macrophages to

anti-inflammatory M2 macrophages (36–38), and the inhabitation

of the phosphorylation of AKT might contribute to this progress

(37). Especially, the increase of nerve fiber density and the

functional recovery of neurons induced by exosomes played an

important role in diabetic skin wound healing (39). All the

functions of exosomes confirmed the potential application value

of exosomes for wound healing in diabetes mellitus. However, how

to maximize or further improve the therapeutic effect of exosomes is

still a problem that needs a further breakthrough.
4 How to maximize the therapeutic
effect of exosomes

4.1 Which is the better source of exosomes

Up to now, exosomes from various cell sources have been used

to promote wound healing in diabetes. Stem cells are the most

studied, including adipose stem cells (ADSCs) (11, 17, 28, 31, 35, 38,

40–47), bone marrow mesenchymal stem cells (BMSCs) (15, 16, 23,

26, 32, 33, 37, 44, 48–51), human umbilical cord-derived

mesenchymal stem cells (hUCMSCs) (27, 52, 53), synovium

mesenchymal stem cells (SMSCs) (18, 21), gingival mesenchymal

stem cells (GMSCs) (39), human urine-derived stem cells (USCs)

(22), menstrual blood-derived mesenchymal stem cells (MenSCs)

(36), placental mesenchymal stem cells (PMSCs) (54), human

endometrial stem cells (hEnSCs) (34), hair follicle-derived

mesenchymal stromal cells (55), epidermal stem cells (ESCs) (56,

57). Other cells, like fibrocytes (58), human umbilical cord blood

endothelial progenitor cells (19, 59), human umbilical cord blood

mononuclear cells (hUCBMNCs) (30), macrophages (24), human

amniotic epithelial cells (25), dermal fibroblasts (DFs) (14), M2

macrophages (60), human umbilical vein endothelial cells

(HUVECs) (61), also were used for exosome isolation. Among

these sources, ADSCs and BMSCs were chosen by most researchers.

Considering the abundant sources and guaranteed effectiveness,

these two kinds of stem cells might be the most reliable source of

exosomes. It was reported that there were differences in the efficacy

of the two types of stem cell-derived exosomes. For example, M.

Pomatto et al. found that BMSCs-derived exosomes were shown to

mainly promote cell proliferation, whereas ADSCs-derived
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exosomes demonstrated a major effect on angiogenesis (44).

Therefore, the better source of exosomes still needs more

comprehensive assessments.

Of course, the source of exosomes might not be limited to cells.

For example, Chen et al. found that serum exosomes could

accelerate diabetic wound healing by promoting angiogenesis and

extracellular matrix formation (62). Guo et al. and Xu et al. isolated

exosomes from platelet-rich plasma (PRP) and found this type of

exosome could effectively induce the proliferation and migration of

endothelial cells and fibroblasts to improve angiogenesis and re-

epithelialization in diabetic skin wounds (20, 63). Besides, milk was

also reported to be a source of exosome isolation (64). In our view,

serum, PRP, and milk were abundant sources of exosomes.

However, due to insufficient studies, its effectiveness and stability

need to be further confirmed. Especially, a recent study reported

that plant-derived exosomes were of therapeutic value (65);

although it was not applied to skin wounds, it provided an

excellent idea for exosome isolation. Perhaps it is a new direction

for us to find exosomes from the proper kind of plants because

many drugs contain plant extracts.
4.2 Engineering exosomes

In addition to finding more effective natural exosomes, due to

their structural characteristics, exosomes are also highly

engineerable. Engineering of exosomal surface confers cell and

tissue specificity. Besides, exosomes are considered delivery

vehicles of diverse biological molecules, including the delivery of

nucleic acid, proteins, and lipids. Studies showed that some

molecules in the exosomes were particularly beneficial to wound

healing, so increasing these components in exosomes through
Frontiers in Endocrinology 03
various engineering technologies could enhance the function of

exosomes. Engineering strategy could be divided into direct

engineering of exosomes (chemical modification and physical

modification) and indirect engineering of exosomes (genetic

modification of exosome-donor cells) (66). To enhance the

therapeutic effect of exosomes in diabetic wound healing, some

researchers have tried to use an engineering strategy (Figure 2).

Directly loading cargoes to exosomes was adopted by many

studies. For example, direct loading miR-21-5p to ADSCs-derived

exosomes by electroporation exhibited excellent effects on

promoting the proliferation and migration of keratinocytes and

accelerating diabetic wound healing by increasing re-

epithelialization, collagen remodeling, angiogenesis, and vessel

maturation (31). Loading miR-155 inhibitor to BMSCs-derived

exosomes showed synergistic effects in keratinocyte migration and

anti-inflammatory action, leading to accelerated wound healing by

negative regulation of miR-155 (50). ESCs-derived exosomes loaded

with VH298 were also found to have a better therapeutic effect on

wound healing and angiogenesis in diabetes mellitus (56). Yan et al.

used milk-derived exosomes as a novel system for miR-31-5p

delivery and successfully encapsulated miR-31-5p mimics into

milk exosomes through electroporation. Then, they proved that

the miR-31-5p loaded in exosomes achieved higher cell uptake and

improved endothelial cell functions in vitro, promoting

angiogenesis and enhanced skin wound healing in vivo (64).

Genetic modification of donor cells was also adopted because it

was a convenient and stable method. Briefly, donor cells were

infected by lentivirus carrying target cargoes and stably expressed

these cargoes. Then, target cargoes-carried exosomes were isolated

from these donor cells. For example, SMSCs were infected by

lentivirus carrying miR-126-5p. Then, miR-126-3p overexpressed

exosomes (SMSCs-126-Exos) were isolated. SMSCs-126-Exos
FIGURE 1

Effect of exosomes on modulating different cells in diabetic skin wound healing.
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showed more effectiveness in promoting the proliferation of

endothelial cells and fibroblasts and more effective in promoting

angiogenesis in diabetic wound healing (18, 21). Similarly,

exosomes isolated from Nrf2-overexpressed ADSCs could

increase the granulation tissue formation and the levels of growth

factor expression and reduce the levels of inflammation and

oxidative stress-related proteins (40). Exosomes derived from

mmu_circ_0000250-overexpressed ADSCs enhanced the

therapeutic effect of exosomes to promote wound healing in

diabetes by absorption of miR-128-3p and upregulation of sirtuin

(SIRT)1 (43). Exosomes from linc00511-overexpressed ADSCs

accelerated angiogenesis in diabetic foot ulcer healing by

suppressing PAQR3-induced Twist1 degradation (45). Long non-

coding RNA HOX transcript antisense RNA (HOTAIR)-

overexpressed BMSCs produce exosomes with increased HOTAIR

content that promote angiogenesis and wound healing in diabetes

(48). Exosomes from mmu_circ_0001052-overexpressed ADSCs

promote angiogenesis of DFU via miR-106a-5p and FGF4/

p38MAPK pathway (17).

Other studies have enhanced the role of exosomes by changing

the cultural environment of donor cells. Although it was not

targeted to modify certain cargoes, it did change the cargoes in

exosomes, thereby enhancing the role of exosomes in promoting

diabetic wound healing. For example, Melatonin-pretreated MSCs-

derived exosomes increased the ratio of M2 polarization to M1

polarization by upregulating the expression of PTEN and inhibiting

the phosphorylation of AKT in diabetic wound healing (37).

Exosomes derived from atorvastatin-pretreated MSCs accelerate

diabetic wound repair by enhancing angiogenesis via AKT/eNOS

pathway (26). Exosomes derived from pioglitazone-pretreated

MSCs accelerate diabetic wound healing by enhancing

angiogenesis (15). Hypoxia adipose stem cell-derived exosomes

promote high-quality healing of diabetic wounds involving

activation of PI3K/Akt pathways (35) and to improve wound
Frontiers in Endocrinology 04
healing in diabetic mice via delivery of circ-Snhg11 and induction

of M2-like macrophage polarization (38).

Although exosome engineering used by different studies showed

benefits to the therapeutic effect of exosomes, the contents of

exosomes were diverse and complex. Therefore, avoiding

ineffective and even harmful ingredients being transferred to the

wound is difficult. In our view, the ultimate goal of exosome

engineering might be to maximize the valuable components and

minimize the useless components rather than focus on a single

component. In addition, exosomes mainly play a role in regulating

the function of cells and show no direct antibacterial effect.

Therefore, it may be an effective strategy to increase its

antibacterial ability to use engineering technology to wrap

antibacterial drugs in exosomes.
4.3 Adjust the dosage and frequency

The dosage and frequency are unavoidable issues for any drug

use. Some studies show that a better therapeutic effect can be

achieved simply by increasing the dosage of exosomes, especially

in some in vitro studies. For example, the proliferation and

migration of fibroblasts induced by exosomes could be increased

by increasing the dose of exosomes (21, 24, 32, 46). The uptake of

exosomes by endothelial cells also resulted in dose-dependent

increases in tube formation and angiogenesis (19, 32). For the

frequency, Helena et al. reported that multiple carefully timed

applications of exosomes had superior regeneration than a single

dose of the same total concentration of exosomes (30). Although

there are few exploratory experiments and discussions on dosage

and frequency up to now, they are critical factors in the process of

exosome application. They should be discussed together with the

content of active cargoes in the exosomes. Therefore, it is necessary

to test the dose and frequency in the application of exosomes in the
FIGURE 2

Engineering exosomes for skin wound healing in diabetes mellitus.
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same way as conventional drugs are tested (minimum effective

dosage, therapeutic dosage, maximum dosage, lethal dosage, etc.).
4.4 Improve the delivery methods

Through the above aspects, exosomes could solve some

problems of diabetic wounds that are difficult to heal, such as

difficulties in angiogenesis, nerve damage, and some inflammation

problems. However, the hypoxia, bacteria, and high glucose levels

have not been resolved. This requires better delivery methods to

assist the therapeutic effect of exosomes. Drug delivery methods for

treating skin wounds can be divided into four types: spraying, local

injection, application combined with scaffold materials, and

systemic application (Figure 3).

4.4.1 Local application
Most studies delivered exosomes by subcutaneous injection

around the wounds at 2 points (62), at 4 points (14, 17, 19, 22,

23, 35, 38, 43, 51, 56, 59), at multiple points (15, 26, 37) or points

unknown (24, 47, 48, 50). Others combined subcutaneous injection

around the wounds and injection onto the wound bed to deliver

exosomes for diabetic wound healing (58). Moreover, some studies

indicated that exosomes were delivered by injection onto the wound

bed only (31, 57). Some studies applied exosomes by intradermal
Frontiers in Endocrinology 05
injection around the wounds (33, 36), which was regarded as a drug

delivery method that could directly stimulate the active cells in the

dermis. No matter which injection method was used, it can only

maximize the function of exosomes themselves.

To assist the therapeutic effect of exosomes, diverse scaffolds

were used to deliver exosomes. Different scaffolds played different

regulatory and auxiliary roles in the function of exosomes. In

general, the use of all scaffolds reduces the iatrogenic trauma and

pain caused by the local injection. It has the effect of slowly releasing

exosomes to varying degrees, including some simple (20, 21, 44),

thermosensitive (52), photosensitive (56, 61), pH-responsive (41),

and biomimetic (67) scaffolds. To control the release of exosomes,

Jiang et al. fabricated a matrix metalloproteinase degradable

polyethylene glycol (MMP-PEG) smart hydrogel, which could

release exosomes by reacting to MMP stimulating (28). Both slow

and controlled releases are designed to prolong the exosome’s

action time and maintain the wounds’ local drug concentration.

Many studies improved the performance of the scaffolds,

including increasing the release of oxygen (11, 18, 60) and

improving the antibacterial (41, 49) and adhesive properties (42),

which were important in diabetic wound healing (Figure 3).

Hydroxyapatite (HAP) was reported to release oxygen (68, 69).

Therefore, Li et al. combined HAP and Chitosan (HAP-CS) to form

a hydrogel loaded with exosomes to enhance bioactivities, support

angiogenesis and promote diabetic wound healing (18). Parvaiz et al.
FIGURE 3

Exosome delivery methods for diabetic wounds and the advantages of scaffolds.
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fabricated polyurethane-based oxygen-releasing antioxidant scaffolds

(PUAO-CPO) to load exosomes by incorporating calcium peroxide

(CPO) in polyurethane (PUAO) cryogels, which showed the sustained

release of oxygen and exosomes for more than 10 days. This exosome-

loaded scaffold could increase cell survival under hypoxic conditions

(11). It was also reported that manganese dioxide (MnO2) could

induce the decomposition of endogenous ROS (H2O2) into oxygen

and effectively ameliorate oxidative stress and a hypoxic environment.

Thus, integrating MnO2 into antibacterial injectable hydrogels fulfill

multiple requirements, such as ROS depletion, oxygen production,

and antibacterial property. Therefore, loading exosomes to this

scaffold is helpful for the repair of diabetic skin wounds (60). Geng

et al. indicated that carboxyethyl chitosan-dialdehyde carboxymethyl

cellulose (CEC-DCMC) hydrogel showed excellent antibacterial

properties and provided a physical and chemical barrier for further

infection of diabetes wounds, which played an auxiliary role in the

function of exosomes (49). Wang et al. also developed an injectable

self-healing polypeptide-based hydrogel that exhibited inherent

antibacterial activity (41). In addition to the above characteristics,

some studies included the viscosity of scaffold materials to achieve

good adhesion to wounds (42).

To maximize the therapeutic effect of exosomes, Wang Min et al.

fabricated a thermosensitive, injectable, self-healing, and adhesive

polysaccharide-basedmultifunctional hydrogel scaffold that exhibited

efficient antibacterial activity, fast hemostatic ability, good UV-

shielding performance, and pH-responsive exosome release for

promoting diabetic wounds. These biomedical functions for

exosomes-loaded FEP dressing probably enhance their high

capability in angiogenesis and wound healing (42). Although this

kind of scaffold material with extremely rich functions shows various
Frontiers in Endocrinology 06
excellent properties, it is difficult to avoid adding more complex non-

medical components, which will delay its clinical transformation.

Therefore, how to achieve the balance between effectiveness and

safety might need to be comprehensively evaluated.

4.4.2 Systemic application
For diabetic wound healing, we only found one study that

delivered exosomes by systemic application via tail vein injection

(16). For non-diabetic wound healing, one study has compared the

effect of exosomes on wounds by topical injection and intravenous

injection and interestingly found that intravenous injection of

exosomes could enhance the healing of skin wounds compared to

local injection (70). In another study, Zhou et al. systematically

compared the effect of different exosome delivery methods for non-

diabetic wound healing, and the results showed that the combined

application of local smearing and intravenous administration

offered the optimal impact on promoting wound healing,

accelerating re-epithelialization, reducing scar widths, and

enhancing angiogenesis and collagen synthesis (71).

Although the local application can play a good role in treating

diabetes wounds, diabetes, as a metabolic-disorder disease, not only

causes skin wounds to be difficult to heal but also faces some other

physical problems, such as kidney disease, retinopathy, and

neuropathy. Moreover, some studies reported that the significant

upregulation of miRNAs (miR-20b-5p (72, 73), miR-15a-3p (74),

miR-181b-5p (75) were observed in exosomes isolated from

patients with diabetes mellitus), and these miRNAs could

suppress the angiogenesis of ECs via different signaling pathways.

Inhibition of circulating exosomal miRNAs accelerates diabetic

wound repair (Figure 4). Therefore, we speculated that the
FIGURE 4

The systemic application of exosomes was beneficial to diabetic wounds.
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combined local and systemic application of exosomes might benefit

diabetic wound healing, and this requires further research.
5 Conclusions

Exosomes are a promising therapy for wounds in diabetes, and

various ways to maximize their value are discussed in this paper. In

this article, we reviewed and discussed the aspects that could be

improved, including choosing appropriate donor cells, engineering

exosomes, mediating dosage and frequency, and combining more

efficient delivery methods (Figure 5). This review might provide an

overview and idea for better-using exosomes to treat skin wounds in

diabetes mellitus. Further reviews will be necessary to stay up to

date with this rapidly evolving area of research.
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How to maximize the therapeutic effect of exosomes on skin wounds in diabetes mellitus.
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Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol
(2015) 24(8):561–6. doi: 10.1111/exd.12723

11. Shiekh P, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and
antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound
healing. Biomaterials (2020) 249:120020. doi: 10.1016/j.biomaterials.2020.120020

12. Fu W, Liang D, Wu X, Chen H, Hong X, Wang J, et al. Long noncoding RNA
LINC01435 impedes diabetic wound healing by facilitating YY1-mediated HDAC8
expression. iScience (2022) 25(4):104006. doi: 10.1016/j.isci.2022.104006
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