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Climate change and pregnancy
complications: From hormones
to the immune response
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1Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal
Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany, 2Institute of
Immunology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
Pregnant women are highly vulnerable to adverse environments. Accumulating

evidence highlights that increasing temperatures associated with the ongoing

climate change pose a threat to successful reproduction. Heat stress caused by

an increased ambient temperature can result in adverse pregnancy outcomes,

e.g., preterm birth, stillbirth and low fetal weight. The pathomechanisms through

which heat stress interferes with pregnancy maintenance still remain vague, but

emerging evidence underscores that the endocrine system is severely affected. It

is well known that the endocrine system pivotally contributes to the physiological

progression of pregnancy. We review – sometimes speculate - how heat stress

can offset hormonal dysregulations and subsequently derail other systems which

interact with hormones, such as the immune response. This may account for

the heat-stress related threat to successful pregnancy progression, fetal

development and long-term children’s health.

KEYWORDS
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Introduction

Climate change manifests in various environmental threats, including rising

temperatures and heat waves. These threats have been associated with severe health

consequences, and heat-related illness, e.g., heat cramps, collapse or stroke (1). Pregnant

women are highly vulnerable to environmental challenges (2). This vulnerability is

attributable to the physiological changes of the maternal cardiovascular and respiratory

system, as well as the adaptations of the endocrine and the immune system (Figure 1). An

increasing number of epidemiological studies provide evidence that environmental heat

stress triggers adverse pregnancy outcomes (3, 4). Additionally, heat stress may also

interfere with the pre-conceptional phase, resulting in menstrual cycle aberrations and
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diminished fertility rates (5, 6). Heat stress poses a comprehensive

threat to reproductive health with a wide range of personal, societal

and socioeconomic consequences.

Successful mammalian reproductive outcome depends on a

delicate balance of molecular and cellular markers. A key player is

the endocrine system, which not only adapts to the demands of

pregnancy by maintaining uterine quiescence, but also adjusts to

predictive environmental challenges, e.g., circadian rhythm, as well

as unpredicted environmental challenges such as heat stress (7, 8).

Dependent on the type or intensity of the challenge, the endocrine

system responds with aberrant hormonal levels, which may result in

severe consequences for female health (9). The endocrine response

is tightly linked to the immune response during pregnancy, through

which the immunological tolerance towards the fetus is maintained

(10). Therefore, environmental stressors pose a significant risk to

disturb the immunological balance essential for feto-maternal

tolerance via hormone-mediated pathways.

Heat can be defined as temperatures above the thermoneutral

zone. The thermoneutral zone allows healthy adults to maintain a

physiological body temperature via a constant metabolic rate (11).

Thus, temperatures above a specific threshold are known to induce

heat-related stress responses (12). However, this definitions falls

short to take the individual perception of heat - based on the

geographical region, acclimatization and personal discomfort - into

account. This limitation is also reflected by the heterogeneity of heat

stress definitions, exposure windows and exposure duration used in

preclinically studies conducted in mice or livestock as summarized

for this review in Table 1.

The ongoing climate change and the societal responsibility to

guarantee maternal health emphasizes the need for in-depth

research in order to understand the pathophysiology of heat in

the context of female reproduction and hormonal dysbalance

throughout women’s life (Figure 2). We here summarize recent

findings addressing the impact of heat stress on the endocrine and

immune system during the preconceptual phase and pregnancy in a

number of mammalian species and refine the conceptual

understanding on the endogenous stress response to heat stress.
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Heat stress: A threat to
reproductive success

Infertility, which is defined as the failure to successfully

conceive after more than 12 months of unprotected sexual

intercourse, increasingly affects millions of couples worldwide

(46). Despite its multifactorial origin, there are several studies

indicating that environmental heat can indeed negatively impact

fertility in mammals. A study analyzing the effects of high

temperatures in the United States between 1931 and 2010 found a

decrease in birth rates of 0.4% nine months after exposure to one

additional heat day with a mean temperature above 26.7°C

compared to an additional day with relatively colder temperatures

between 15.6°C and 21.1°C (5). Likewise, a multi-site study revealed

that a 1°C increase of the maximum temperature decreases the total

fertility rate by 1.3 as shown for Italy, whereas fertility rates of

individuals in countries with moderate climate (15-20°C) are

unaffected (47). Although heat stress affects both sexes, reduction

of reproductive success is partially explained by the observation that

heat exposure alters porcine endometrial tissue during the pre-

implantation period resulting in diminished fertility rates in females

which might be caused by hormonal dysregulation (13). Work done

in cattle or rats showed similar results by indicating an association

of high ambient temperatures and alterations of the estrous cycle

(14, 48). Thus, it is tempting to speculate that the observed

reduction in fertility rates upon heat-exposure in women is also

caused by alterations of the menstrual cycle. A study investigating

the effect of seasonal changes on menstrual cycle length using

smartphone application data of 310.000 women failed to support

this notion (6). However, this lack in comparability may be

explained by the fact that high ambient temperatures and

seasonal changes are two different entities.

In addition to the effects of heat stress on women during

preconception, exposure to heat has also been associated with the

risk for adverse pregnancy outcomes (37). Beside stillbirth, these

include preterm birth, low birth weight and congenital cardiac

defects, which pose serious threats to the child and can cause long-
FIGURE 1

Increased susceptibility of pregnant women to heat stress with possible consequences for the progression of pregnancy and offspring’s health.
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lasting health impairments (49, 50). Among the possible pregnancy

adversities, the risk for preterm birth has likely been best

investigated and the majority of studies identified a risk

perpetuation caused by heat, as highlighted by a current summary
Frontiers in Endocrinology 03
on the topic (51). A meta-analysis of six independent studies

reported 1.16-fold higher odds of preterm birth after exposure to

extreme heat, along with complications such as lower birthweight,

congenital anomalies and stillbirth (3).
TABLE 1 Heat definitions used in the referenced studies considering preclinical models.

Non-pregnant

Temp. RH
(%) Species Exposure intensity Exposure

duration
Exposure

timepoint (gd)
Heat stress definition by

author Ref.

35°C – Swine 12 hrs 10 days – (13)

38°C 45-60 Rat 360 min/day 98 days – (14)

45°C 30 Rat

22-26 min until core
temperature = 40°C

Single exposure

Moderate

(15)
42-48 min until core
temperature = 42°C

Severe

38°C 55 Rat 120 min/day 90 days Long-term (16)

Direct solar radiation – Cow 420 min/day ~ 21 days Chronic (17)

38, 40 and 42°C 50 Mouse 120 min/day 9 days – (18)

43°C (abdomen and
scrotum)

– Mouse 15 min Single exposure Acute (19)

32°C 60 Rat 480 min 7 days Acute (20)

38°C – Rat 60 min Single exposure Acute (21)

38°C – Rat 20 and 60 min Single exposure – (22)

42°C 50 Rat 30, 60 or 120 min Single exposure Acute (23)

39°C or 41°C – Rat 30 min Single exposure – (24)

42°C – Rat 80 min Single exposure – (25)

39°C
50 Mouse

90 min 7, 21 or 42 days Chronic
(26)

43°C 30 min Single exposure Acute

42°C 50 Mouse 180 min
7, 14, 21 or 28

days
Chronic (27)

THI>73 – Cow All-day 21 days Acute (28)

Pregnant

Temp. RH
(%) Species Exposure intensity Exposure

duration
Exposure

timepoint (gd)
Heat stress definition to

by author Ref.

41.2°C 55 Mouse 60 min Single exposure 14 – (29)

40-48°C – Mouse 60 min 7 days
0.5-5.5, 6.5-14.5, 14.5-

17.5
– (30)

43°C (whole body
except head)

– Rat 15 min Single exposure 9.5 – (31)

37-39°C – Sheep All-day 30 days 110 Chronic (32)

37.5°C (Black globe
temp.)

– Cow All-day 80 days 160-190 – (33)

THI>80 – Cow All-day 7 or 14 days 103.9 Mild chronic (34)

40.5°C – Mouse 120 min 7 days 1 – (35)

35°C – Mouse All-day 6 days 12.5 – (36)
frontier
Temp.,Temperature; RH, Relative Humidity; THI, Temperature-Humidity-Index; Ref., Reference; gd, gestational day.
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Understanding the pathogenesis
of heat stress-induced pregnancy
complications: From animal models
to humans

Despite the fact that heat-associated pregnancy complications

are increasingly in the focus of research endeavors, insights into the

underlying pathogenesis are still sparse. This can be partly

explained by a general neglect to include pregnant women in

research studies. In contrast, the effect of heat stress on livestock

has been extensively studied due to its economic importance. Also,

cattle are generally kept in controlled environments, which

facilitates investigating the effect of environmental stressors.

Among mammals, certain milestones of reproduction are

conserved, which allows to translate findings on the impact of

heat stress in cattle to humans to a certain degree (52). Both species

cycle continuously while not pregnant, are monovular - ovulation of
Frontiers in Endocrinology 04
one oocyte per cycle -, have a gestational period of 9 months and

have ovaries with a similar size and morphology (53). Additionally,

reproductive techniques such as artificial insemination,

synchronization protocols and superovulation techniques, to

name a few, are widely applied in cattle (54).

In addition to livestock, rodent models can also provide insights

on the impact of heat stress on reproductive success, since rodents

can be kept in controlled microenvironments. Due to the

availability and possibility to generate genetically modified

animals, rodents also serve as a powerful source of information to

understand the pathogenesis of diseases (55, 56). In the context of

pregnancy, mouse models have a high translational value due to a

similar placental expression of paternal antigens as well as a

comparable immune response (57).

However, large ruminant and small mono-gastric animals

deviate with regard to their thermoregulation, which limits the

translational value of some of the insights in livestock and rodents.

Rodents regulate their body temperature by adapting food intake,
FIGURE 2

Direct and indirect implications of heat stress on the reproductive life cycle of female mammals (5, 26, 27, 37–45).
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ruminants rely on regulation of evaporative heat loss (58, 59).

Additionally, the ratio of body surface area and body mass can also

affect heat dissipation and thermal regulation (59).
Effect of heat stress on the
hypothalamus-pituitary axis

In humans, heat stress is well known to induce acute

neurological deficits and cognitive impairments (60). This may be

partly attributed to alterations of the hypothalamic tissue. In rats

exposed to severe heat challenges, hypothalamic neurons showed

morphological aberrations and an increased frequency of pyknosis

(15). Additionally, a moderate to severe heat challenge in rats

caused higher levels of oxidative stress. These neuroinflammatory

processes were accompanied by an increase in systemic

corticotropin-releasing hormone (CRH) and adrenocorticotropin

hormone (ACTH) levels, which could be an indicator for increased

stress levels and subsequently altered hypothalamic-pituitary

hormone secretion. Further, neuroinflammation might also

contribute to an impaired temperature regulation and a decrease

in heat tolerance (29).

Similar morphological impairments are observed in pregnant

mice. Here, acute heat stress led to significantly elevated neuronal

damage in the hypothalamus (29). Further signs of hypothalamic

cell damage such as pyknosis, cell body shrinkage and apoptotic

changes were detected. Similar to the study performed in rats, the

authors of the present study also measured increased ACTH levels

in heat-challenged pregnant mice. Additionally, morphological

alterations were accompanied by significantly higher levels of

oxidative stress and increased hypothalamic levels of the pro-

inflammatory cytokines TNF-a and IL-1b. These observations

not only provide strong evidence for the severe neuronal

inflammation upon heat exposure, but also indicates that

pregnancy perpetuates these effects. It is known, that the onset of

pregnancy alters plasticity and neurophysiological activity of the

brain and particularly the hypothalamus (61). These physiological

changes might leave the hypothalamic regions more susceptible to

heat stress, resulting in further impairment of the adjacent signaling

axis. However, increased neuroinflammation during pregnancy is

not limited to heat stress, since it was also observed in response to

other stressors, such as sound stress or exposure to bacterial

antigens (62). In mice, sound stress and bacterial antigens

enhanced the permeability of mucosal membranes and

subsequent infiltration of bacteria, which led to disseminated

inflammation (62). Therefore, the reported consequences of heat

stress might be as well attributed to a general stress response

during pregnancy.

An impairment of the hypothalamic function in response to

heat challenge can subsequently affect the secretion of pituitary

hormones. In fact, a study performed in rats focusing on

gonadotropins identified an increase in follicle-stimulating

hormone (FSH) and a decrease in luteinizing hormone (LH)

levels in response to heat challenge, whereas gonadotropin-

releasing hormone (GnRH) concentrations were unaffected (16).
Frontiers in Endocrinology 05
Elevated FSH level upon heat stress have also been observed in

dairy cows (17), whereas findings in prepubertal female mice are

more conflicting (18). Interestingly, heat stress also caused

neuroendocrine perturbations in male mice, mirrored by elevated

levels of FSH and reduced levels of inhibin, along with altered

reproductive function (19). Taken together, these observations

underscore that heat stress directly affects the hypothalamic-

pituitary axis, which is summarized in Figure 3.
Peripheral tissues: Adrenal glands,
uterus and placenta under heat stress

Physiologically, cortisol or respectively corticosterone levels

depend on the secretion by the pituitary and adrenal gland. Both,

the pituitary and the adrenal gland are affected by heat stress as

indicated by increased organ weights in rats (20). Contradicting

results are reported in another study, postulating a decrease in

adrenal gland mass and volume attributable to a reduction of the

adrenal cortex. More precisely, the alterations can be traced back to

a smaller cell size in the zona fasciculata, which is the second of

three layers of the adrenal cortex and the main location of cortisol

production (21). Both studies differ greatly in the heat exposure

protocol used in the experiments. Whereas the first study exposed

rats to eight hours of heat stress (32°C) for seven consecutive days,

the second study applied 60 minutes of heat stress (38°C) before

sacrifice of animals. This opposed experimental design regarding

acute or chronic heat exposure combined with the differences in

temperatures (Table 1) limit comparability of studies and might

explain the conflictive findings since moderate and severe heat

stress have differential effects on thermoregulation (15).

Based on a comparative study investigating the activation of the

HPA axis in rats by various stressors such as fasting, crowding and

extreme ambient temperatures, exposure to heat resulted in the
FIGURE 3

Effect of heat stress on the female mammalian endocrine system,
highlighting the progression from the hypothalamus-pituitary axis to
the peripheral tissues.
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highest plasma corticosterone level – the cortisol analog in rodents

(22). Both, short periods as well as prolonged exposure to heat led to

an increase in blood ACTH and subsequently corticosterone levels

(20, 23). Interestingly, evaluation of tissue corticosterone levels

provided evidence for differences between peripheral organs after

heat exposure, in which the lung-tissue has been proposed as the

most accurate indicator for acute heat stress (23). Controversially, a

study investigating the effects of heat stress in pre-pubertal rats

reported lower corticosterone levels after heat exposure (24), which

contradicts the finding that a pre-pubertal state is accompanied by a

higher HPA axis reactivity (63, 64). However, the study in pre-

pubertal rats assessed corticosterone levels two days after acute

exposure to heat, which might already reflect a subsidence of the

acute stress response.

Heat-triggered cortisol alterations have not only immediate

effects on the maternal health, but might also be associated with

longer lasting implications for the offspring. During pregnancy the

placenta physiologically produces high amounts of CRH. Via a

positive feedback on the maternal HPA axis, this results in a 40 fold

higher CRH production from first trimester to term and a 3-5 fold

rise in cortisol over gestation (65). Due to its properties as a steroid

hormone, cortisol possesses the ability to cross the feto-maternal

barrier. Thus, maternal cortisol levels affect the developing fetus. To

protect the fetus from these high levels of maternal cortisol, the

placenta functions as an important metabolizer (66). Placental

metabolism of cortisol is mainly regulated by the enzyme 11-beta-

hydroxysteroid dehydrogenase 2 (11ß-HSD2), which converts

cortisol to a biologically inactive form (67). During heat stress in

pregnant mice, expression of 11ß-HSD2 was reduced, along with an

expected increase of cortisol in the fetus (68). This suggests that

alterations of placental function – a key endocrine organ during

pregnancy – may expose the fetus to cortisol surges upon heat

stress. Changes in placental function might be attributed to heat-

specific reductions of placental growth or to an altered HPA axis,

since variations in 11b-HSD expression have also been reported

upon other stress challenges in mice (30, 69). These cortisol surges

can cause long-lasting health consequences for the offspring,

resulting in growth retardation of the adrenal cortex and a

decreased population of somatotropes – growth hormone

producing cells – in the adenohypophysis (31) or a larger volume

of the right amygdala associated with affective problems in

girls (70).

In addition to cortisol, placental trophoblast cells produce

human chorionic gonadotropin (hCG) at the beginning of

pregnancy. hCG has a luteinizing effect on ovarian cells, which

lengthens the lifespan of the corpus luteum and thus leads to

sustained production of progesterone. At the moment there are

no studies addressing the effect of heat exposure on hCG secretion.

The derogation of successful reproduction caused by heat stress

does not only manifest through placental alterations, but might also

be linked to heat-triggered effects on the uterus. In fact heat stress

has been shown to affect the morphology of the preimplantational

endometrium, especially affecting the luminal epithelial cells, and

triggering aberrant local cell proliferation as well as the dilation of

the uterine glands (16). During pregnancy the maintenance of

uterine quiescence could be interrupted by increased FSH
Frontiers in Endocrinology 06
concentrations acting on the myometrium potentially favoring

preterm births (71). Another hormone highly relevant for the

induction of labor is oxytocin. Produced in the hypothalamus,

oxytocin mediates, beside its anti-inflammatory and anti-

apoptotic functions, uterine contraction during birth.

Pretreatment of rats with oxytocin before the onset of heat stress

protected them from heat stroke related symptoms such as lung

edema and increased over-all well-being (25). In line with these

protective capacities of oxytocin before exposure to heat, oxytocin

concentrations are increased during heat stress (32). This suggests

an acute protection mechanism, mediated by its effects on vascular

resistance, cardiac output or the overall induction of a hypotensive

response (72).
Heat stress modulates sex
hormone levels

Several studies reported some form of dysfunction in the female

gonads upon heat exposure. Irregular phenotypes of granulosa cells

accompanied by detachment of oocytes from the granular cell layer

could be found in acute and chronic heat stressed mice (26, 27).

Consistent with the morphological changes of the granulosa cells, a

decrease in estradiol concentrations upon chronic heat stress has

been observed (16, 27, 73). This might be explained by decreased

expression patterns of the enzyme aromatase in response to heat

stress, which is the key hormone of the estrogen synthesis (27).

Despite granulosa cell damage, gonadotropin receptors on the cell

surface show diminished FSH receptor expression upon acute heat

stress in rats, along with increased FSH receptor expression in

chronic heat stressed rats (16, 74). However, the exact pathways by

which heat stress influences morphological integrity and receptor

expression of granulosa cells are unknown. Further, it needs to be

investigated why granulosa cells seem to be more susceptible to

heat-related damages compared to other cell types. The relevance of

heat as a stressor was demonstrated by a study comparing estradiol

levels after heat or psychological stress. Although exposure to both

stressors lowered estradiol levels, this effect was more pronounced

after heat stress. Interestingly, combination of both resulted in even

lower levels of estradiol indicating cumulative effects on gonadal

tissue damage (14).

Additionally, considering the fact that regulation of the

hypothalamic-pituitary-gonadal (HPG) axis functions via negative

and positive feedback mechanisms, low hormone concentrations

due to impaired production by the gonadal tissues have been

proposed to lead to a decreased feedback response in the

hypothalamus and the pituitary gland and stimulate the secretion

of gonadotropins (75).

Although estrogens are pivotal during pregnancy, few studies to

date focused on the dynamics of estrogen levels throughout

mammalian pregnancy in response to heat stress. One study

dating back to 1982 failed to detect any heat-related alterations of

free estrogens in chronic heat stress-exposed pregnant cows (33).

However, the authors describe a decrease of estrone-sulfate upon

heat stress, which indicates placental insufficiency. Since the
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placenta is the major source of estrogens during human pregnancy,

future studies evaluating estrogen levels should therefore also

consider placental functionality. Also, changes in estradiol levels

might be particularly relevant in the context of thermoregulation,

since estradiol promotes vasodilatation and thus facilitates heat

dissipation lowering the body temperature (76, 77). Thus, a

comprehensive study addressing possible changes of estrogens in

combination with placental assessment might provide novel

insights on the consequences of heat stress.

Besides its pivotal role in establishing fertility and pregnancy

maintenance, progesterone is also a thermal influencer. In contrast to

estrogen, progesterone promotes heat conservation and higher body

temperature (76). An increase in progesterone, as evident during

pregnancy, might thus explain the high susceptibility to heat stress

due to an inability to dissipate heat, subsequently favoring

pathological hyperthermic conditions. Although, the exact

contribution of progesterone to thermoregulation is not fully

understood, studies in rodents provide evidence that chronic heat

stress resulted in reduced concentrations of progesterone (14). This

observation was also confirmed in heat-stressed cattle (34). However,

this effect was no longer evident in rats exposed to heat if challenged

for a prolonged period of time (16). Reduction in progesterone levels

might be linked to a decreased synthesis of pregnolone, the precursor

of progesterone, which was diminished in bovine granulosa cells due

to a decreased transcription of steroidogenic genes (78). However, to

date there are no data available on how heat exposure alters the

expression of steroidogenic genes in murine or even human cell

culture experiments.

Comparable to the findings in non-pregnant mice, heat stress

exposure of early pregnant mice led to a significant decrease in

progesterone concentrations (35). Concurrently to these hormonal

changes, increased markers of autophagy were detected in the

steroid producing cells of the corpus luteum. Autophagy is

relevant for regulating the function of the corpus luteum and

might be relevant for luteal regression. Since progesterone is

produced by the corpus luteum at the beginning of pregnancy,

before the placenta takes over, regression by autophagy could

contribute to decreased progesterone concentrations. This

hypothesis is supported by observations in chronic heat stress-

exposed cattle three weeks before gestation, where lower

progesterone levels, reduced conception rates and lower

transferable embryo were described (28).

Another explanation relates to the common progenitor of

progesterone and cortisol: cholesterol-derived pregnenolone.

Increased demand of cortisol in response to heat stress could lead

to a competition of both syntheses and reduce progesterone

availability (66).
Heat stress and the immune system
during pregnancy

During the course of pregnancy, the maternal immune system

undergoes gradual adaptations, which are essential to guarantee
Frontiers in Endocrinology 07
maternal tolerance towards the genetically foreign fetus.

Dysregulation of these immunological adaptations is associated

with pregnancy complications, such as recurrent spontaneous

abortions, preterm birth or intrauterine growth restriction (79).

Hormones significantly orchestrate the maternal immune

adaptations during pregnancy (57). Thus, heat stress-induced

alterations of the endocrine response can also affect the immune

response in pregnant individuals. Progesterone primarily dampens

the production of pro-inflammatory cytokines by local immune cells

and induces more tolerogenic phenotypes in dendritic cells, which

then enables them to promote regulatory T cells, essential for

pregnancy maintenance (80, 81). In addition, progesterone also

promotes immune tolerance by inducing immunomodulatory

molecules at the feto-maternal interface (82). As discussed above,

heat exposure seems to reduce progesterone concentrations. A

decrease in progesterone might subsequently lead to a shift towards

an inflammatory immune response at the beginning of pregnancy,

with decreased tolerance towards the fetus, which then favors fetal

loss (62). Towards the end of human pregnancy, progesterone

contributes to maintain an anti-inflammatory environment until

induction of labor. Thus, heat stress associated progesterone

reduction might trigger inflammation processes prematurely and

contribute to the pathogenesis of heat-induced preterm birth.

Glucocorticoids such as cortisol are well known for their anti-

inflammatory capacity. Additionally, they are involved in cell

recruitment of macrophages to the feto-maternal interface as

demonstrated in experiments with glucocorticoid receptor knock-

out mice (83). Although the exact function of glucocorticoids in the

context of the initiation of labor has yet to be elucidated, it is well

known that in addition to the increase of glucocorticoid levels

during the course of pregnancy a significant surge takes place when

approaching labor (84). Thus, increase of glucocorticoid levels – as

observed upon heat exposure – might not only contribute to an

impaired immune response early during pregnancy, but also

towards term. Studies evaluating the immune cell function at the

feto-maternal interface upon heat stress triggered hormone

alterations are missing and should urgently be conducted starting

with preclinical models. Due to the immunological dynamics of

pregnancy, different exposure windows should be tested and clearly

defined to assure reproducibility.

Studies testing the direct effect of heat stress on immune cells

during pregnancy are sparse. One study evaluating placental immune

response to heat stress in late gestational mice described an increase in

the expression of inflammatory genes (36). Here elevated molecular

expression of the macrophage marker CD68 were accompanied by an

upregulation of genes associated with the complement system, such as

C1qa, C3 and CD55. The authors hypothesize that heat stress led to a

recruitment of macrophages to the placenta, which then activate the

complement system. Additionally, a decrease of Csf1was observed.

Csf1 can induce an anti-inflammatory phenotype in macrophages,

suggesting that its decrease in response to heat stress skews

macrophage function towards pro-inflammation. Macrophages have

pleiotropic functions during pregnancy, therefore a possible change in

function in response to heat stress must be confirmed in future studies.
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Additionally, the immune system may not only be acutely

affected by heat stress, since long-term consequences have also

been postulated. Triggered by the acute stress response, heat stress

may lead to an acclimatization that enhances cytoprotective anti-

oxidative and anti-apoptotic pathways against future stress

exposure (85). This mechanism, referred to as heat acclimation-

mediated cross-tolerance, is mediated by epigenetic modification of

histones, namely phosphorylation of histone H3 and acetylation of

histone H4, which promote gene expression of cytoprotective

mediators (86, 87). Since these observations were made in male

rats, they urgently require further validation in pregnancy models.
Psychological consequences of heat
stress: From sleep deprivation to
climate anxiety

In addition to the discussed direct effects of heat exposure on

hormone levels or immune homeostasis, heat may also indirectly

modulate the endocrine pathways of HPG axis. Tropical nights

(night-time minimum temperature equal or higher than 20°C) (88)

are associated with sleep deprivation and reduced quality of sleep.

Both have been linked to alterations of sex hormone concentrations,

which negatively impact reproductive fitness in rats (89, 90). Here,

the crosstalk between reproductive hormones and melatonin is of

great interest, since sleep deprivation is known to impact the

endogenous melatonin secretion. Melatonin modulates sex

hormone synthesis especially in the hypothalamus and the

pituitary gland (7). For the years 2050 and 2099, the predicted

numbers of additional nights of insufficient sleep with 2010 as

baseline average are estimated to be 6 respectively 14 per 100
Frontiers in Endocrinology 08
individuals (90). Thus, the relevance of sleep deprived hormonal

imbalances in the near future should not be underestimated.

Climate change poses a direct threat to mental health of

pregnant women by favoring adverse pregnancy outcomes. Acute

environmental events such as hurricanes, droughts or wildfires, and

also chronic exposure to increased air pollution and high

temperatures leads directly to mental health disorders such as

posttraumatic stress syndrome or depression and indirectly by

favoring water and food insecurities as well as migration (91).

Recently, climate anxiety has been introduced as additional

mechanism on how climate change effects mental well-being.

Climate anxiety describes distress about the consequences of

climate change, the existential threat and uncertainty that climate

change poses, which cannot be anticipated neither in time nor place

(92). Interestingly, this anxiety is strongly linked to the individual

perception of climatic changes and does not necessarily correspond

to personal experiences, since it includes individuals, who have not

experienced climate-related adverse events. Climate anxiety itself is

not pathophysiological, but poses a permanent psychological

stressor and bares the potential to become chronic and thus,

clinically evident. Especially adults at the beginning of their

reproductive years reported to be extremely worried about

climate change (93), which even results in a hesitancy to have

children. Given the high prevalence of these negative emotions and

beliefs concerning the future of families and children, climate

anxiety constitutes a significant psychological stress factor that

must be urgently evaluated in female and male adults during their

reproductive years.

In contrast to high temperatures, which directly affect

thermoregulation, the indirect effect of heat in inducing an

endogenous stress response – mirrored by heat-induced sleep

deprivation and climate anxiety – must be taken into account,
FIGURE 4

Future directions of heat stress related pregnancy research.
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since this enhanced stress perception perpetuates the endocrine

stress response in pregnant as well as non-pregnant individuals.
Outlook

This review highlights the multifaceted consequences of heat

stress on the endocrine balance and immune homeostasis, especially

in the context of pregnancy. Clearly, many open questions remain

before we fully understand how heat stress affects reproductive

outcome. E.g., it remains to be tested if heat exposure directly affects

the thermoregulation in pregnant women via inducing cell stress,

hereby inducing endocrine and immunological aberrations. Or

whether heat stress simply functions as an external stressor,

which activates the endogenous stress response, hereby activating

the hormonal stress response cascade. In fact, both pathways can

alter fetal and childhood development trajectories and affect the

endocrine hemostasis of this next generation. Also, the impact of

acute vs. chronic heat stress effects remains to be elucidated, and

multifactorial risk assessments should be considered in order to

control for possible confounder of heat stress, such as ozone and air

pollution. The limited number of studies addressing these

observations in animal pregnancy models or human pregnancy

cohorts leave a blind spot to the vulnerable societal group of

pregnant women. Given the rapid progression of climate change

and cumulating weather extremes, it is of particular importance to

intensify efforts of local research groups and global initiatives.

However, to address these knowledge gaps, universal definitions

of chronic and acute heat stress need to be established, to allow for

comparison between studies (Figure 4). Given the increasing

number of studies reporting on pregnancy adversities due to

environmental heat stress on a global scale, these observations

demand an interdisciplinary expertise from clinicians, lab

scientists, statisticans and epidemiologists.
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