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Precocious puberty under
stressful conditions: new
understanding and insights
from the lessons learnt from
international adoptions and
the COVID-19 pandemic
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Psychology and Philosophy, University of Cagliari, Cagliari, Italy, 4Health Sciences Department, University of
Florence, Florence, Italy, 5Azienda Ospedaliero Univesitaria Meyer IRCCS, Florence, Italy
Neuro-biological variations in the timing of sexual maturation within a species

are part of an evolved strategy that depend on internal and external

environmental conditions. An increased incidence of central precocious

puberty (CPP) has been described in both adopted and “covid-19 pandemic”

children. Until recently, it was hypothesised that the triggers for CPP in

internationally adopted children were likely to be better nutrition, greater

environmental stability, and improved psychological wellbeing. However,

following data collected during and after the coronavirus (COVID-19) global

pandemic, other possibilities must be considered. In a society with high levels of

child wellbeing, the threat to life presented by an unknown and potentially

serious disease and the stressful environment created by lockdowns and other

public health measures could trigger earlier pubertal maturation as an

evolutionary response to favour early reproduction. The main driver for

increased rates of precocious and rapidly progressive puberty during the

pandemic could have been the environment of “fear and stress” in schools and

households. In many children, CPP may have been triggered by the

psychological effects of living without normal social contact, using PPE, being

near adults concerned about financial and other issues and the fear of getting ill.

The features and time of progression of CPP in children during the pandemic are

similar to those observed in adopted children. This review considers the

mechanisms regulating puberty with a focus on neurobiological and

evolutionary mechanisms, and analyses precocious puberty both during the

pandemic and in internationally adopted children searching for common yet
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unconsidered factors in an attempt to identify the factors which may have acted

as triggers. In particular, we focus on stress as a potential factor in the early

activation of the hypothalamic-pituitary-gonadal axis and its correlation with

rapid sexual maturation.
KEYWORDS

central precocious puberty, adoption, COVID-19, rapidly progressive precocious
puberty, neurobiology of puberty, psychology
Introduction

Central precocious puberty (CPP) is defined as the appearance

of physical and hormonal signs of pubertal development at an

earlier age than considered normal. In girls it is defined by the

appearance of secondary sexual characteristics before the age of 8

years and is caused by a premature activation of the hypothalamic-

pituitary-gonadal axis (HPG) (1). The average age at onset of

puberty may vary in some subpopulations. For instance, in

African American and Hispanic American girls, thelarche may

normally occur at 7 years of age, and menarche occurs

approximately 0.5 years earlier than in Caucasians. The estimated

prevalence of CPP is approximately 1 in 5,000–10,000 among

Caucasians, with a higher incidence in girls than in boys

(approximately 10:1), on a worldwide basis (2). The incidence of

central precocious puberty has been steadily increasing over the last

century, with the average age at menarche dropping from 17 years

in the early-1800s to 13 years by the mid-1900s, with a further

minor decline over the last three decades (3). Danish data for the

20-year period from 1998 to 2017 showed a 3-fold and 2-fold

increased incidence of CPP in girls and boys, respectively (4).

This trend towards earlier pubertal onset – the “secular trend of

puberty” – is related with both genetic and environmental causes

(3, 4).

Decreased infant mortality due to increased caloric resources,

antibiotics and improved medical care is often reported as one of

the main factors driving the earlier onset of puberty observed across

industrialized countries. Yet, increasing amounts of data also

support a “psychosocial acceleration hypothesis” (5, 6) that

maintains that early life adversities speed up sexual maturation,

especially in populations where nutritional stress and mortality

rates are low (7). We suggest that the hypothesis that early life

adversities affect pubertal timing is supported by studies on

international adoption and, recently, by the surge in reported

CPP during the COVID19 pandemic.

International adoption from developing countries is a

widespread phenomenon both in Europe and North America.

Although a decrease has been observed in the last twenty years

(-81.7% from 2004 to 2018), numbers remain high (8). In 2021, Italy

registered a national average of 7.3 adoptees for every 100,000

residents in the paediatric population. The country is second only to

the United States for international adoptions and the average age

that adopted children have at arrival in Italy is approximately 7
02
years (9). Adoption is one of the most widely recognized risk factors

for CPP (2, 10, 11) although the causal relationship between

adoption and CPP is still a matter of debate, and the mechanisms

remain elusive. Current speculation focuses on the influence of

emotional and environmental factors. Among the latter, early-life

nutritional deficiency followed by increased adiposity after adoption

has been suggested as a potential trigger (12). However, most of

these hypotheses do not apply to girls presenting with CPP during

the covid-19 pandemic (13). Different hypotheses have been put

forward, suggesting both direct and indirect stimulating factors (13,

14). However, the underlying mechanisms are uncertain and no one

factor can explain the dramatic increase in CPP observed during the

covid-19 pandemic in girls.

This review presents an overview of the possible triggers for

early pubertal onset both in internationally adopted children, and in

children during the pandemic period, calling for an urgent

evaluation of the psychosocial acceleration hypothesis.
The evolutionary life history
of puberty

Reproductive development is regulated by the hypothalamus-

pituitary-gonadal (HPG) axis. This consists of three main

anatomical areas that are sequentially and bi-directionally linked

to each other: the arcuate nucleus (infundibular nucleus in

primates) of the hypothalamus, that contains gonadotropin

releasing hormone (GnRH) neurons; the adenohypophysis, that

contains the gonadotrophs; and the gonads. Across mammalian

species the physiological steps necessary for successful

reproduction, i.e. sexual maturation and fertility, require an

increase in the pulsatile activity of GnRH neurons (15–17). When

GnRH is released intermittently and within a specific amplitude

range it stimulates the secretion of LH and FSH in the portal system

(18). In humans and non-human primates GnRH neurons

stimulate LH secretion during infancy and at the beginning of

puberty. Between these two developmental periods GnRH neurons

show a very low intermittent activity, secrete very small amounts of

hormones, and LH, FSH and sex steroids in the blood are found at

their lowest concentrations (19, 20).

This on-off-on neurosecretion of GnRH is not present in rodents

and is associated with the juvenile developmental stage typical of

primates (20). The juvenile life stage, which further delays pubertal
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onset, is characterized by a slow growth that results from a trade-off

between the metabolic requirements for developing a large, costly

brain and those for body growth. Peak brain metabolic consumption

occurs at the age of 4-5 years in humans, when the brain’s metabolic

requirements equal 66% of resting energy expenditure (21, 22) and

then fades as brain development moves from growth toward synaptic

pruning. This is also the slowest period of annual growth rate in terms

of fat deposition and body length in humans (23). Once the brain

metabolic consumption tapers off, energy supply is redirected toward

somatic, maintenance and reproductive development. However, in

our species a further lengthening of the juvenile stage is observed,

characterized by a mid-spurt growth, an adiposity rebound and by

the first sign of pubertal development expressed as axillary and/or

pubic hair growth (24).

Despite the evident advantages of growing a larger body or a

bigger and complex brain, there are also obvious risks in delaying

the onset of reproduction, the most serious of which would be dying

before reproducing. Accordingly, the timing of reproductive

readiness is crucial for any organism. Each species has evolved a

reproductive clock which responds to environmental cues that

throughout the species’ evolutionary history have been relatively

predictable. Yet variations in the onset of sexual maturation are

observed within species, between sexes and across generations and
Frontiers in Endocrinology 03
individuals. For example, in humans the age of pubertal onset has a

range of variation of approximately 4 years, with girls entering

puberty earlier than boys and children from non-industrial

populations showing the most delayed onset (25). It is possible

that variations in the timing of sexual maturation within a species

are, at least in part, an evolved conditional strategy that depends on

internal and external environmental conditions (5, 26, 27).

Models of life history theory provide evidence for two important

selective pressures that govern the timing of sexual maturation in a

species. These are: a) “extrinsic mortality” which represents any

environmental condition that causes disease and increases the risk

of mortality; a higher risk of adult extrinsic mortality should result in

an anticipation of reproductive age, and b) juvenile mortality which

when high should result in a postponement of reproductive onset

(28). SSafer and nutritionally richer environmental conditions during

early development are expected to speed-up growth and sexual

maturation, resulting in organisms that are larger (and thus more

competitive and, possibly, with higher fertility) at sexual maturity. In

calorie deprived and harsh conditions, growing more slowly, in order

to wait for better times to come, could be the best strategy but it

would result in an individual of smaller size at sexual maturity. These

models fit well with secular trends in human pubertal development

(28, 29) (Figure 1).
D

A B C

FIGURE 1

Somatic growth vs reproduction trade-offs in energy allocation are expected to influence the relationship between body size and age at sexual
maturity. (A) Two individuals with same genotype are exposed to the same caloric resource regimen and pathogen load. Resources will be allocated
toward brain and somatic growth and maintenance (immune system). If for some reason (i.e. a new mutation) one of them matures earlier (dashed
line), resources will be allocated to reproduction at the expense of somatic growth. (B) Two individuals with the same genotype experiencing
different environmental risks (different levels of caloric intake, pathogen load and thus high vs low mortality/morbidity risk). Individuals with less
resources will take longer to develop, coming near the latest species-specific limit for sexual maturation but reaching the lower limit for species-
specific adult body size (dashed line). On the contrary, the individual with better resources can afford to invest both in brain development, body
growth and maintenance, therefore, maturing earlier and becoming bigger (secular trend). (C, D) If conditions threatening child survival/well-being
are present, the extent to which these conditions will influence sexual maturation will depend on caloric resources and pathogen load (i.e. the
amount of resources available for somatic growth, maintenance and reproduction). In poor environments, psychological and social threats are
expected to have a small and negligible effect on sexual maturation while in resource-richer conditions higher adversity is predicted to speed up
sexual maturation relative to conditions of low psychosocial threat. This is represented by the dashed-dotted line in (C) and by a moderation model
in (D). G, somatic growth; B, brain growth; M, maintenance; R, reproduction. Size of circles and slices are proportional to the amount of resources
available for the development of different organismal systems. Double arrows indicate the potential span for species-specific age and size at sexual
maturity (hypothetical scale). Size of circles, slices and or double arrows are arbitrary.
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Early life adversity and puberty

While there is consensus on the role played by energetic stress in

postponing reproductive development (30), the effects of psychosocial

stress on the onset and tempo of puberty are less clear. Lower socio-

economic status has been found to predict earlier sexual maturation

through mechanisms that do not depend on body mass index (BMI)

(31, 32). One frequently reported finding is that psychological stress,

experienced during early childhood, accelerates pubertal development,

a phenomenon termed “psychosocial acceleration” (33). Stressors that

represent an explicit threat for child survival (domestic and urban

violence; environmental catastrophes) or that result in child trauma

(sexual abuse) are associated with early pubertal development (34).

However, there is not yet a consensus on the causative link. While

accepting a hierarchical order of importance between nutritional and

psychological stress on pubertal development (7, 35), some authors

assume that environmental conditions linked to extrinsic mortality,

experienced during early childhood, if not successfully buffered, for

example by parental protection or other means to reduce the

(perceived) mortality risk, will translate into faster reproductive

development (36). Importantly, for protection strategies to work the

child must not be explicitly aware of risks to life expectancy (37, 38).

Many evolutionary psychologists consider environmental

harshness, for example social threats or deprivation as an

important factor for speeding up sexual maturation (36). Most of

the evidence indicates that stressful and unsupportive family

environments are associated with earlier maturation in girls with

an anticipation in particular of age at menarche (39). In general,

family breakdown, especially when linked to socially deviant

behaviour in fathers, seems to be a strong predictor of early

menarche (40). Some studies have shown that maltreatment and

poor maternal care are also variables implicated in early menarche

(41). A recent review by Pham et al. (42) revealed that family

structure and functioning, in particular the absence of the father,

predicts early puberty (EP) in females. Belsky et al. confirmed this

but in high income families only (43). The environmental variables

identified as affecting the timing of puberty in girls and boys vary

across studies. In general, the literature highlights that early puberty

in girls correlates to adverse family circumstances related to poor

parenting behaviour such as a lack of emotional warmth, overly

strict maternal attitudes and conflict between parents. Clearly, the

effects of family environment in early in life on pubertal timing are

multifaced and complex to investigate. Overall, the most significant

predictors of early menarche reported in the literature are harshness

during the first 5 years of life, with an absent father and sexual abuse

(6, 44) playing a major role whereas secure attachment to the

maternal figure is recognized as a protective factor capable of

supporting girls in stressful adverse contexts (45, 46).

Clearly, nutritional stress has different developmental outcomes

compared to psychosocial stress. To some extent, this is not

surprising because i) different types of stressors act through

different neurobiological mechanisms; ii) if the organism is

energetically ready to invest in reproduction, then under a higher

risk of extrinsic mortality (indirectly experienced during

development through harsh environments) it may pay to

accelerate pubertal development (35, 36: Figure 1).
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In the next paragraph, the components of the neuroendocrine

system known to integrate environmental cues related to resource

availability and social conflict (physical and psychosocial stress)

into the HPG axis to modulate pubertal onset will be described.
Neurobiological mechanisms linked to
pubertal development

The ability to integrate environmental cues in the HPG axis

depends on central and peripheral neuroendocrine factors that, by

conveying environmental, metabolic and homeostatic information

modulate GnRH neurosecretion. Some of these factors act directly

on the GnRH neurons, while others mediate their effects through

kisspeptin neurons of the arcuate nucleus, the actual GnRH pulse

generators. Loss of function mutations in the kiss1 gene or its

receptor GPR54 have been consistently found to result in the

absence of puberty in humans and animals (47, 48).

The release of kisspeptin is intermittent and highly correlated

with the intermittent neurosecretion of GnRH (49) and the infusion

of kisspeptin in prepubertal male monkeys induces GnRH

intermittent secretion (50, 51). Moreover, kisspeptin levels in the

hypothalamus of monkeys increases as animals move from the pre-

pubertal to pubertal stage and the expression of kisspeptin and its

receptor GPR54 are higher at the onset of puberty compared to

prepuberty in both rats and monkeys (52). These neurons co-

express two peptides along with kisspeptin: neurokinin B (NKB)

and opioid dynoprhin (DYN) and the coordinated activity of these

neuromodulators determines kisspeptin release.

Stimulatory regulation of GnRH neurons derives also from

glutamatergic neurons scattered throughout the hypothalamus,

norepinephrine and from another population of kisspeptin

neurons found in the anteroventral periventricular nucleus

(AVPV) of the hypothalamus (the preoptic area of primates) that

are important for the LH surge that precedes ovulation (47, 52).

Glutamate is the main excitatory neurotransmitter in the brain and

glutamate receptors are found on GnRH and kisspeptin neurons.

Blocking NMDA receptors suppresses GnRH pulses and the

preovulatory surge of LH (47). The excitatory effects of glutamate

on GnRH neurosecretion have been reported in all three major

models of puberty where antagonists of glutamate delay puberty

while agonists anticipate it. The concentration of glutamate in the

hypothalamus increases during the juvenile period and reaches a

maximum after puberty onset (53) and peaks can be observed

during the preovulatory LH surge.

Catecholamine noradrenaline has been extensively studied.

Norepinephrine is released centrally from three areas of the

brainstem and when it binds to alpha2- and beta-receptors it has

stimulatory effects on LH secretion (52). The pharmacological

depletion of central catecholamines in prepubertal rats resulted in

delayed vaginal opening (54, 55) and the oestrogen dependent role

of NE in the preovulatory surge of LH is well known in rats and

primates (56). Moreover, there seems to be a close positive

correlation between noradrenergic content in the hypothalamus

and pubertal development: noradrenaline levels are higher in the

hypothalamus of rats with precocious puberty and on the day of
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vaginal opening compared to prepubertal animals (57). Similar

results have been reported for rhesus macaques (58). A

metabolomic study reported a higher level of NE metabolites in

urine samples of girls with central precocious puberty compared to

controls (59). These data support the hypothesis that catecholamines

play a permissive role in the regulation of pubertal development.

Inhibitory regulation of GnRH occurs through direct or indirect

(kisspeptin suppression) innervation of GnRH neurons (52, 60).

GABA is the main inhibitory amino acid neurotransmitter that

derives from the conversion of glutamate through the activity of

glutamic acid decarboxylase (GAD). Experiments on monkeys by

the Terasawa’s group have clearly showed that GABA has inhibitory

effects on the GnRH pulse generator (48).

Treatment of monkeys with GABA or with the GABA antagonist

bicuculline resulted in precocious puberty and although mutations

within the GABA system do not affect puberty, the GABAergic

pathway has also been implicated in a recent GWAS study on early

menarche (61) (52). Terasawa’s in vivo studies on non-human

primates provided support for a model in which during the

prepubertal life stage the GnRH pulse generator is under tonic

GABA inhibition, possibly through the action of GABAergic

activity on kisspeptin neurons (62). This tonic inhibition decreases

throughout pubertal development leading to a higher glutamate/

GABA activity ratio and kisspeptin release onto GnRH neurons.
Nutrition dependent regulation of
pubertal onset

Environmental cues that convey information on energetic

resources and environmental risks must be processed and

integrated within a network of hypothalamic nuclei that modulate

reproductive development (27). Kisspeptin neurons of the arcuate

nucleus are targets of hypothalamic nuclei that convey information

about metabolic and psychosocial stressors. These neurons play a

key role in the integration of metabolism and reproduction as they

directly or indirectly receive inputs from hormone and peptides

linked to energetic homeostasis. Among these, the adipokine leptin

has been considered a key modulator of pubertal growth. Leptin is

released from adipocytes in the circulatory system to relay

information of fat mass and energy status to the hypothalamus

and, since its discovery, has been under scrutiny as a trigger for

puberty. By acting through GABA-ergic, POMC and AgRP/NPY

neurons that target kisspeptin neurons in the arcuate nucleus (63)

leptin may have an important role in pubertal development. A role

of leptin in puberty onset has been reported in mice and rats (52).

Leptin injected in prepubertal monkeys increases LH and oestradiol

and causes premature menarche (64) but data are controversial in

humans (for reviews see 52, 65). Leptin administration to human

subjects with leptin deficiency influenced the age of pubertal onset

(66). Indeed, leptin levels rise during the prepubertal period (67). It

can be hypothesised that by keeping track of overall energetic status,

leptin may convey information on the anabolic status of an

individual during mid childhood. This is supported by the

observation that in prepubertal children leptin correlates with

DHEA levels and that DHEA levels correlate with protein
Frontiers in Endocrinology 05
consumption and larger increases in body mass (68). Moreover,

the adiposity rebound observed during adrenarche correlates with

levels of leptin and insulin-like growth factor 1 (24). Since higher

BMI during childhood predicts early menarche, the current

consensus is that leptin has a permissive role in the activation of

the GnRH pulse generator.

Conditions leading to a negative energy balance suppress GnRH

outflow and produce lower expression of kisspeptin (69). Kisspeptin

neurons receive inputs from POMC and AgRP/NPY neurons.

POMC neurons of the arcuate nucleus express receptors for

leptin, NPY and insulin (70). POMC is a precursor for a-
melanocyte stimulating hormone (a -MSH) and b-endorphin. a
-MSH stimulates LH secretion in humans (71) and blocks the two a
-MSH receptors (MC3R and MC4R) by AgRP causes infertility in

mice (72). Central melanocortin appears to be an important

mediating link between leptin and GnRH and kisspeptin neurons

(73, 74). In monkeys, hypothalamic NPY and its receptor NPY1 are

more expressed while kisspeptin and its receptor are less expressed

in prepubertal than in pubertal and adult males (75), providing

some support to the hypothesis that NPY may act as the break for

the GnRH pulse generator (20). AgRP/NPY neurons also coexpress

GABA and the action of these three peptides stimulate feeding

behavior by, in part, inhibiting the POMC pathway.
Stress dependent regulation of
pubertal onset

One of the strongest modulators of the HPG axis is the

hypothalamus-pituitary-adrenal (HPA) axis, that modulates the

stress response. The stress response begins within the central

nervous system with the synthesis and secretion of the

corticotropin releasing hormone (CRH), perhaps the strongest

inhibitor of the HPG axis (76, 77). Stressors convey different

information and require different responses. This is especially

evident in the way metabolic and psychological cues of stress

activate different central peptidergic pathways: immunological/

metabolic stressors inhibit the GnRH pulse through the binding

of urocortins to the CRHR2 receptors while psychological stressors

are mediated directly by CRH (77). The peripheral products of the

HPA axis, glucocorticoids (GC), administered in concentrations

that reflect those measured during stress suppress the HPG axis

(76). The effects of GC on GnRH appear to be indirect, through

kisspeptin neurons, as GnRH neurons do not express GC receptors

(60). CRH also innervates the locus coeruleus where it stimulates

the release of norepinephrine. Acute stressors also stimulate the

secretion of epinephrine from the adrenal medulla. In agreement

with an overall inhibitory effect of stress on reproduction,

sympathetic activation under stressful condition is inhibitory (76,

77). In short, stress has been shown to suppress reproduction in a

myriad of studies and species. However, these data are

representative of what happens in adults facing different kinds of

acute or chronic stressors. The effects of the activation of the stress

system during development may not be the same as those observed

in adults. Furthermore, stressful experiences have programming

effects on the HPG system during development. In rodents, the
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effects of an early life stress experience shapes reproductive

strategies: for example, female offspring of low caring mothers

show higher HPA activation to stressors and an earlier onset of

puberty (78). It remains to be understood if the opposite effects of

psychosocial stress on sexual maturation depend at least in part on

nutritional/health status and the extent to which the HPA axis and

the sympathetic adrenal medullary system exert different stress

mediating effects on the developing HPG axis.
Precocious puberty in adopted
children: current data and hypotheses

An increased occurrence of precocious puberty in international

adoptees was first described in 1981 in Sweden, in a case series of 7

girls adopted from India and Bangladesh. All these girls had Tanner

breast stage compatible with initial puberty by the age of 7 years and

advanced bone age, and they all progressed very fast into menarche

by the age of 7.6 years (rapidly progressing precocious puberty).

In 1991, Proos et al. analysed a Swedish cohort of 107 adopted

Indian girls who showed a median menarcheal age significantly

lower than both the Swedish and the Indian population (79).

Following these first two reports, other case reports and case-

control studies confirmed this phenomenon in other Western

European countries (2, 10, 80, 81).

Virdis et al. and Baron et al. described the onset of early

pubertal development respectively in 19 girls and 13 children (10

girls and 3 boys), presenting with a very rapid weight and height

catch-up growth after adoption (80). In addition, a French study

performed a survey on adoptive families, confirming that the

prevalence of CPP in adopted girls was much greater than in

adopted boys (44.9% vs 8.6%) (81). Teilmann et al. were the first

to calculate that the risk of CPP in internationally adopted children

increased 15- to 20-fold compared with Danish-born children (10).

This is consistent with a relative risk of CPP of 27.82 subsequently

reported in a Spanish cohort by Soriano-Guillén et al. (2). Both

studies confirmed that the increased relative risk was higher in girls

than in boys. Moreover, the Italian and the Danish authors

described that an older age at adoption was associated with an

earlier onset of pubertal development in girls (10, 80).

It has also been shown that, prior to clinical signs of puberty,

adopted girls showed pituitary-gonadal activation with increased

levels of FSH and oestradiol and decreased levels of sex hormone

binding globulin (SHBG) compared to a control group (82).

Many hypotheses have been put forward on the causes of

precocious puberty in these girls but the underlying mechanisms

remain unclear. Both central and peripheral mechanisms have been

investigated with conflicting results. The first report on an

association between CPP and international adoption, mentioned

above, identified the extremely rapid catch-up growth as the most

likely trigger for puberty (83).

In the following years, much credence was given to this

hypothesis and improved socio-economic and nutritional

conditions were thought to be the most likely underlying causes.

This same hypothesis was put forward to explain the secular trend

observed in the general population (25).
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It was also speculated that increased levels of circulating insulin-

like growth factor 1 (IGF-1) which have a facilitating effect on the

gonads and downregulate neuropeptide Y expression following

refeeding, could be key mechanisms implicated in the onset of

precocious puberty, triggered by a rapid increase in height and

adiposity following adoption (80). Studies in vivo have proved that

NPY levels are implicated in triggering puberty (84).

In the following years, as knowledge advanced, increased levels

of leptin and ghrelin, subsequent to an increased calorie intake,

associated with changes in body composition and adipose tissue

were advocated as important contributors (85, 86).

In 2012, Proos and Gustafsson reviewed the consequences of

undernutrition and nutritional rehabilitation on the timing of

pubertal onset and concluded that catch-up growth was very

likely implicated in early pubertal development in cases of

undernutrition in the prenatal and early postnatal period, whereas

isolated late post-natal undernutrition alone did not seem to affect

pubertal onset (87).

Prenatal and perinatal complications, such as low birth weight

and intra-uterine growth retardation, are frequent in internationally

adopted children (88), although data relative to pregnancy, and early

life are often missing. Some variability depending on the country of

origin should also be considered. Children from different developing

countries present different relative risks of CPP, with a higher risk for

adopted children from Africa and Latin America; no rise in the

relative risk of CPP has been described instead for girls adopted from

South Korea moving to Denmark and from China moving to North

America (2, 10, 89). These differences may be explained by yet to be

understood genetic factors and by environmental factors, e.g.

different living conditions and dietary habits before adoption.

Among the environmental factors, endocrine disrupting chemicals

(EDCs) with estrogenic effects may play a role. In the last two

decades, increasing attention has been given to the possible effects

of exposure to EDCs during pre-natal and early post-natal life, and

puberty (90). EDCs seem to be involved in changes in pubertal

timing, although the complexity of exposure in real life makes it

difficult to establish a direct causality (13, 14, 91–95). In a Belgian

retrospective study on 145 patients, detectable concentrations of

organochloride pesticides were found in foreign children, both

adoptees and immigrants who were referred for CPP, whereas

native Belgian children had undetectable serum levels (12).

However, whereas it is easy to hypothesize an effect of these EDCs

in the children who arrived in Belgium at a very early age, it is difficult

to think of a significant effect on girls adopted at a later age who

developed CPP within a few months of arrival.

Finally, emotional neglect and affective deprivation must be

carefully considered when analysing plausible causes for CPP (31,

32, 96). Interestingly, an increased risk of CPP has been reported in

adopted children but not in children migrating with their families

from the same country of origin (2, 91–102). Genetic factors,

intrauterine growth retardation, pre-adoption nutritional status,

pre- and post-adoption growth patterns, as well as environmental

exposures and psychological stress have been all put forward as

possible triggers for precocious puberty in this population (100).

Prior to adoption, significant stressors such as abuse and neglect that

are known to affect brain structures are commonly found but may not
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always be communicated to the child’s doctor. Stressful nurturing

conditions and insecure attachment to parents have also been

commonly experienced by these children (26).

Frontline clinicians tend to focus on post-adoptive family

experiences rather than on the adversities experienced prior to

adoption, such as orphanage life, multiple foster care placements,

and sexual abuse. However, several studies have investigated the

connection between pre-adoption adversity and trauma and early

onset puberty (101). A study by Noll et al. (102) found an

association between childhood sexual abuse and early puberty.

The research highlighted how survivors of sexual abuse may be at

greater risk for psychosocial difficulties.

Interestingly, a high risk of CPP has been described for

domestically adopted girls also. These observations refer to

children being exposed to similar genetic and environmental

factors, but with differences in living conditions before and after

adoption that may have an effect. Therefore, emotional factors

could be relevant for the early activation of the HPG axis and thus

the onset of puberty, and possibly have a greater effect than other

factors hypothesized so far.
Adoption and exposure to trauma

The mechanisms that trigger precocious puberty in adopted

children are still unknown (98). A high frequency of precocious

puberty has been reported, as detailed above, in internationally

adopted girls; this has led some authors to hypothesize a link with

variables related to the country of origin and age of adoption (99).

Genetic factors, intrauterine growth retardation, pre-adoption

nutritional status, pre- and post-adoption growth patterns, as well

as environmental exposures and psychological stress have been all put

forward as possible triggers for precocious puberty in this population

(100). Prior to adoption, significant stressors such as abuse and

neglect that are known to affect brain structures are commonly found

but may not always be communicated to the child’s doctor. Stressful

nurturing conditions and insecure attachment to parents have also

been commonly experienced by these children (26).

Frontline clinicians tend to focus on post-adoptive family

experiences rather than on the adversities experienced prior to

adoption, such as orphanage life, multiple foster care placements,

and sexual abuse. However, several studies have investigated the

connection between pre-adoption adversity and trauma and early

onset puberty (101). A study by Noll et al. (102) found an

association between childhood sexual abuse and early puberty.

The research highlighted how survivors of sexual abuse may be at

greater risk for psychosocial difficulties.
Precocious puberty during the
covid-19 pandemic: current data
and hypotheses

In 2020, within a few months, the severe acute respiratory

syndrome-Coronavirus-2 (SARS-CoV-2) virus responsible for

coronavirus disease 2019 (COVID-19) caused a global pandemic,
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resulting in serious challenges for the health services of all countries

(103). Most governments chose to introduce home quarantining

(lockdowns) leading to sudden and radical changes in social

interactions and in studying and working conditions (103). Many

people’s diet and exercise patterns were disrupted and access to

medical treatment was restricted (103, 104). Most children stopped

going to school or doing leisure activities and attended online

classes at home for several weeks. Many countries had more than

one lockdown during which children stayed at home for long

periods (103). Outdoor physical activity was prohibited or

severely restricted (104, 105).

The repercussions of lockdowns on the physical and mental

health of individuals appears to have been huge, and as yet has not

been fully investigated (106, 107). In previous health crises such as

SARS, Ebola and H1N1, the adverse effects observed in health

workers, survivors and affected populations included depression,

isolation, fear of being infected or infecting family members, post-

traumatic stress, irritability, insomnia, anger and anxiety. Changes

in nutritional habits and physical activity correlated to a marked

deterioration in mental health (107).

Although children and adolescents infected by SARS-CoV-2

have a low risk of developing serious symptoms or critical illness,

changes in lifestyle caused an increase in some endocrine diseases

(108). For example, in Italy, outpatient treatment for suspected

symptoms of CPP and EP increased dramatically in 2020 compared

to the same time period in 2019 (105, 109) and the incidence of

rapidly progressive precocious puberty (RPPP)/rapidly progressive

early puberty (RPEP) also increased (109).

This phenomenon appears to be global (4, 110, 111) with cases

of precocious puberty increasing dramatically in every country after

lockdown restrictions were lifted (103, 105, 108, 109, 112–126). The

first report of an increase in the number of outpatients with new-

onset CPP from January to May 2020 was from the Meyer

Children’s University Hospital in Florence, Italy, which reported a

2 fold increase compared with the same period in previous years. In

addition, RPPP/RPEP were described more frequently than in

previous years (109). In these patients, there were no significant

differences regarding time between appearance of the breast bud

and the diagnosis of CPP, with respect to previous years, but the age

at presentation was lower with a more advanced Tanner stage at

diagnosis, higher basal LH and E2 levels, higher peak LH after

LHRH test and increased uterine length and ovarian volumes (109).

Some of the girls showed a significantly accelerated progression rate

of uterine length, and ovarian volumes. In both the CPP and CPP/

RPPP groups, BMI increased significantly, and patients’ families

reported an increased use of electronic devices (109). After a few

months from this first report, the Bambino Gesù University

Hospital of Rome (105) reported an increase of 108% in the

number of consultations for suspected CPP with 215 diagnoses in

2020 compared to 87 in 2019 in females, whereas no difference was

observed in male patients (105). This study did not find any

differences in anthropometric parameters (105). Subsequently,

other Italian groups (108, 118, 119, 122–124) reported similar

results. Turriziani Colonna A et al. reported a high rate (48.9%)

of RPPP in females with CPP during the COVID-19 outbreak, with

an increased number of children at Tanner stages 3 and 4-5 at
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diagnosis (118). Interestingly, another Italian group described, in

subjects with CPP, a later bedtime with higher rates of sleep

disturbances, such as excessive somnolence, sleep breathing

disorders, and sleep–wake transition disorders (119). The

collaborative Italian study by Chioma et al. on a large study

population of 490 children with CPP, transient thelarche, non-

progressive PP, or early puberty, confirmed the higher number of

CPP in females in 2020 compared to 2019 (p < 0.01), and whereas

anthropometric and hormonal parameters were similar, a more

prolonged use of electronic devices and a more sedentary lifestyle

were reported (122). Interestingly, another Italian group did not

find any differences in BMI SDS in females diagnosed with CPP in

2020 (median BMI SDS 0.11), who actually had a lower BMI

compared to the girls who were diagnosed in 2019 (median BMI

SDS 0.93) (108).

More recently an Italian group retrospectively evaluated

clinical, biochemical and radiological data for 154 girls referred

for disorders of precocious puberty, Early Puberty, isolated

thelarche and isolated pubarche from January 2019 to April 2021

(123). The authors subdivided the observation periods into period 1

(before the lockdown: 1st January 2019 – 8th March 2020), and

period 2 (the lockdown and the following months: 9th March 2020

– 30th April 2021). Period 2 was further subdivided into “restrictive

lockdown period” (period 2.1: 9th March 2020 – 14th June 2020, in

which schools were closed) and “less restrictive lockdown period”

(period 2.2: 15th June 2020 – 30th April 2021) (123). Compared to

period 1, the diagnoses of CPP increased significantly in period 2,

without significant differences in auxological and hormonal data at

diagnosis and rate of pubertal progression (123). The comparative

analysis of sub-period 2.1 and 2.2 did not show any differences in

auxological, laboratory and radiologic data, probably due to the

reduced sample size (123). Interestingly, these authors showed that

the percentage of girls who used personal computers and

smartphones for more than 2 hours a day during lockdown was

significantly higher in girls with CPP compared with the control

group (123).

Finally, another Italian group, observing an increased

proportion of consultations for suspected precocious puberty

during the COVID-19 pandemic, showed a younger age at

diagnosis and a lower bone age advancement than observed in

pre-lockdown, suggesting a fast evolution of puberty (124).

Worldwide many research groups (103, 112–117, 120, 121, 125,

126) have reported similar results. For example, Acar et al. reported

than double incidence of CPP in Turkish girls during the pandemic

compared to the previous three-years; no significant increase in

BMI SDS compared to the pre-pandemic period was reported (112),

suggesting that factors other than increased BMI played a role in the

development of CPP. Similar data have been reported in Korean

(103), Turkish (115, 117), Indian (116), Chinese (113, 121), Spanish

(114), Brazilian (120), Lebanese (125) and American girls

(126) (Table 1).

An interesting paper by Fu et al. analysed the incidence and

possible risk factors of female CPP during the COVID-19 Pandemic

in China (113); 4281 girls were diagnosed with CPP between

February and May 2020 (respectively 5.01 and 3.14 times more

with respect to the same period in 2018 and 2019), and the authors
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concluded that the COVID-19 pandemic per se was a contributing

factor for the general increase in the incidence of CPP (113).

Interestingly, the authors reported a significant increase in CPP

already in 2019 when the pandemic officially started in China and

they highlighted that the BMI values of these girls were significantly

higher than those in the control group. These data are reported also

by the Lebanese group (125). Based on a questionnaire, the Chinese

authors identified as high-risk factors for CPP the use of electronic

devices for prolonged periods, less exercise time, higher BMI,

vitamin D deficiency, frequent use of a night light, frequent use of

adult cosmetics, consumption of fried food and processed meat, and

exposure to second-hand smoke (113).

Sadly, there are scarce data on gender differences in the increase

in cases of precocious puberty. However, males, unlike females,

have an unclear onset of secondary sex characteristics, making it

easy to miss signs of precocious puberty (127).

As previously stated, the timing of puberty is controlled by

many environmental and nutritional triggers. It could be that

infection with SARS-CoV-2 is capable of inducing puberty. The

SARS-CoV-2 virus binds to the angiotensin-converting enzyme-2

receptor in the cranial nerves system especially around the olfactory

bulb, where the concentration of GnRH neurons and GABAergic

neurons is elevated (117) SARS-CoV-2 may also promote puberty

onset by disrupting the blood-brain barrier or by direct interaction

with neural pathways. NMDA receptors for example are stimulated

by inflammatory cytokines and may be responsible for increased

GnRH secretion (117, 128). However, many of the studies reported

above did not involve patients who had been infected by SARS-

CoV-2. Thus, it can be hypothesised that it was the chronic and

prolonged stress related to living in during the pandemic that

induced puberty in many of these patients. Stress may lead to the

release of GnRH through certain neurotransmitters and neurons.

Indeed, some data suggest that prolonged stress may accelerate

puberty through NMDA, growth regulating factor 1 (GRF1),

corticotropin releasing hormone (CRF), and g-amino-butyric

acid-A (GABA-A) receptors) in rats, and increased cortisol and

catecholamines in mice (10, 129, 130) findings that are in part

although not entirely in line with current knowledge in

humans (77).

Furthermore, in some reports early puberty is associated with

the use of methylphenidate that increases dopamine and

norepinephrine, through transporter blockage, possibly triggering

puberty, as the concentration in synaptic gaps increases (129).

Previous studies have shown that CPP may be related to the

environment (121), nutrition (131), and genetics (132).

Several studies have shown that CPP may be related to

excess weight or obesity (111, 133, 134), possibly due to the

influence of adipokines (particularly leptin and adiponectin) on

the HPG axis (135, 136). High levels of leptin associated with an

increase in BMI may stimulate the secretion of kisspeptin (137,

138). During the pandemic, long-term home quarantine, less time

for outdoor exercise, and frequent fried food consumption

caused rapid growth in children, often correlated with an

increased BMI. However, few studies have reported an increase in

BMI in the girls with CPP and RPPP compared to previous

years (Table 1).
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TABLE 1 Studies evaluating the disorders of puberty development in females during and after COVID-19 pandemic.

Country Age at
diagnosis
(years)

Pubertal
disorders
reported

Progression
by B2

BMI
SDS

Electronic
devices
use

Exercise
time

Other findings
(pandemic vs pre-pan-

demic)

Authors and ref-
erences

Italy 6.86 ± 0.61
(CPP)*(↓)
7.41 ± 0.61
(RPPP)

37 CPP
12 RPPP

↑ =
(CPP)
↑

(RPPP)

↑ – ↑ basal and LH peak, ↑
estradiol, ↑ uterine length and
↑ ovary volume

Stagi S et al.,
2020

(109)

Italy 7.33 ± 0.86 215° – = – – No other data. Verzani M
et al., 2021

(105)

Italy 7.39 ± 0.84
(CPP)

7.19 ± 0.85
(NPPP)

7.03 ± 0.94
(TT)

8.64 ± 0.44
(EP)*

135 CPP
97 NPPP
64 TT
12 EP

– =
(CPP)
=

(NPPP)
↓ (TT)
= (EP)

↑ ↓ No differences in basal and LH
peak, estradiol, uterine length
and ovary volume

Chioma L
et al., 2022

(122)

Turkey 7.80 ± 0.80 58 CPP ↑ = – – 23.4% showed menarche at
diagnosis

Acar S et al.,
2021

(112)

China 7.95 ± 0.77 191 CPP – = ↑ ↓ No differences in basal and LH
peak, estradiol. ↓ MKRN3,
Ghrelin, GnRH, FSH

Chen Y
et al., 2022

(121)

Brazil 7.70 ± 0.62 22 CPP ↑ = – – ↓ ovary volume Oliveira
Neto CP
et al., 2022

(120)

Italy 7.59 ± 0.67 35 CPP – = – – ↑ basal LH and FSH, ↑
estradiol, ↑ sleep disorders

Umano GR
et al., 2022

(119)

Italy 6.33 [1.16 -
7.10]

26 CPP ↑ =
(CPP);
↑ at T1

– – BMI increased significantly at
T1 with respect to T0

Turriziani
Colonna A
et al., 2022

(118)

India 8.20 ± 1.20 146 CPP ↑ = – – No other data. Mondkar SA
et al., 2022

(116)

Turkey 7.70 ± 1.00*
(↓)

145 CPP – = ↑ = No differences in basal and LH
peak, estradiol, uterine length
and ovary volume

Yesiltepe
Mutlu G
et al., 2022

(115)

Turkey 7.50 ± 0.90
(CPP)

8.90 ± 1.10
(RPEP)

28 CPP
61 RPEP

↑ =^ – – No differences in basal and LH
peak, estradiol, uterine length
and ovary volume.
↑ early menarche cases.

Acinikli KY
et al., 2022

(117)

Korea – – – – – – Only epidemiological data. ↑
significative both male and
female CPP

Choi KH
et al., 2022

(103)

China 7.31 ± 1.00 58 CPP – ↑ ↑ ↓ ↓ vitamin D, ↓ serotonin, ↑
melatonin, ↑ leptin

Fu D et al.,
2022

(113)

Italy 6.43 ± 1.50 17 CPP = – ↑ – No differences in basal and LH
peak, estradiol, uterine length
and ovary volume.

Barberi C
et al., 2022

(123)

Italy 8.20 45 CPP – – Younger age at diagnosis; less
bone age advancement at
diagnosis

Goffredo M
et al., 2023

(124)

Lebanon 7.27 ± 0.73 19 CPP – ↑ – – Higher weight and more
advanced bone age

Itali A et al.,
2022

(125)

United
States

7.6 ± 1.43 57 CPP – – – – No differences in age at
diagnosis, bone age, BMI SDS

Trujillo MV
et al., 2022

(126)
F
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F, females; CPP, Central Precocious Puberty; RPPP, Rapidly Progressive Precocious Puberty; NPPP, Non Progressive Precocious Puberty; TT, Transient Telarche; EP, Early Puberty; RPEP, Rapid
Progressive Early Puberty. *Statistically significant respect to the prepandemic time; °referred for suspected precocious or early puberty; ^Increase of percentage of obese patients; ↑, increase/
progression; ↓, reduction/decreas; =, no change.
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The use of electronic devices during the COVID-19 pandemic

with reduced outdoor activity could also be implicated. Prolonged

exposure to artificial light sources (blue light), including

smartphones, tablets, and laptops, causes an inhibition of the

secretion of melatonin (MT) (139–141); this hormone regulates

the sleep-wake cycle and is inhibited by light (142–144). MT

receptors are expressed in the hypothalamus, pituitary gland, and

ovaries (145–147) and have a regulatory effect on the HPG axis,

inhibiting the secretion of GnRH and thereby the initiation of

puberty (148). Low melatonin levels affect the HPG axis, thereby

accelerating the onset of puberty (149). In an observational study in

schools in Cavriglia, Italy, the circulating levels of MT were 30%

lower in children exposed daily to a television screen for one week

compared to levels measured after a week of abstaining from TV

(139). In another unpublished study conducted between October

2020 and March 2021, the salivary melatonin levels of 39 females

diagnosed with CPP were significantly lower than those of the

control group, and the effect was ascribed to the effects of light

stimulation and electromagnetic fields (EMF) generated by

electronic devices (150). Furthermore, serotonin, the precursor of

MT, but not MT, was found to be significantly lower in girls with

CPP compared with a control group in a Chinese study (113). These

results may be related to a possible increase in the time spent on

electronic devices. The same authors (113) investigated the possible

effect of other factors, such as the exposure to exogenous oestrogen

and reported a higher incidence of CPP in rural areas than in urban

areas of China (113). According to a Korean study (103, 151), the

rate of overweight and obese children who presented with

precocious puberty in 2020 was significantly higher than in 2019,

even if more prevalent in males leading the authors to speculate that

obesity, fast food consumption, and the consumption of growth-

related health functional foods could be factors accelerating the

onset of puberty (152). Endocrine-disrupting chemicals may be

another factor. Since social distancing and hygiene precautions led

to a rapid increase in the use of disposable items such as plastic,

vinyl and CPP (153). These chemicals are known to be factors

facilitating puberty.

Finally, stressful life events may play an important role in

determining menarcheal age (154, 155). The SARS-CoV-2

pandemic may have acted as a major stressor especially among

children and adolescents (156, 157). Lockdowns, school closures

and the need for social distancing were certainly stressful for

children and led to less exercise, less healthy eating and longer

periods of time at home in front of screens (158). In addition, the

anxiety and financial concerns of parents, along with fears of

becoming ill and higher exposure to family violence during the

lockdown may have caused stress in children (159–161).
COVID-19 as an environmental
stressful factor

Lockdowns associated with the Covid-19 pandemic may have

enhanced the impact of factors that interfere with the timing and
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rhythms of puberty. As mentioned above the incidence of

precocious puberty, precocious menarche and accelerated puberty

noticeably increased during the lockdown period (105, 109, 112,

122). In general, a higher incidence of depression, anxiety and stress

was also reported (162, 163). The authors hypothesize that higher

stress levels and changes in behaviour such as an increased use of

electronic devices may have contributed to the rise in the incidence

of CPP (109, 122). Certainly, children and adolescents experienced

a stressful period during a very sensitive and vulnerable period of

their lives. However, these aspects have not been well defined and

documented in the Literature. Furthermore, in countries, such as

Italy, disruption to daily life continued well after the

initial lockdown.
The psychological consequences of
precocious puberty

Puberty is a crucial and sensitive phase of human development

that leads to sexual maturity. The complex processes of biological

transformations related to physical and sexual maturation triggers a

series of physical and biological changes that throughout

adolescence affect psychological and social development. The

effects of physical changes on the adolescent body are evident and

exceptional, and affect social behaviour (164), perception of the self

and how an individual is viewed and treated by their peers

and adults.

In addition to genetic and hormonal factors, the timing and

speed of physical maturation are strongly influenced by factors

related to the context in which development takes place. Such

factors include the specific geographical setting, socio-economic

status, the ethnic group to which a person belongs, and also the

person’s physical health (165).

During this sensitive developmental phase, the onset of a

disease or a significant physical change represents additional

stress which may have a significant impact on many areas of an

adolescent’s life (166). An individual’s ability to adjust to the

changes brought about by puberty can be compromised if

pubertal changes are not in accordance with maturational norms

at a given age within their peer group. Adolescents who experience

earlier pubertal maturation are at a heightened risk for

psychopathology in adolescence (167).

For successful adaptation, it is important that the adolescent has

sufficient personal and family resources to help him or her navigate

the transitional period to adulthood.

The psychosocial consequences of early puberty have a strong

correlation with the environment. Environments that are stressful,

for example because of conflictual relationships with peers and

family or because of socio-economic problems such as delinquency

and scarce educational opportunities, increase the risk of mental

health problems (168).

Adolescents with CPP have a greater need of parental support

during pubertal transition to guide and prepare them to cope with

the changes and different experiences associated with these
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transformations. Although early maturation appears to be

associated with a greater emotional distance between adolescents

and their parents (46), parent-adolescent secure attachment appears

to be a protective factor that plays a crucial role in preventing

distress and maladjustment. In addition, perceived parental

attachment moderates the relationship between early maturation

and behaviour in adolescents (169). An adolescent who perceives

parents as a source of psychological security, is able to share and

communicate better his/her difficulties, and to seek advice from

parents. Thus, if adolescents with precocious pubertal development

do not perceive their parents as available and responsive, they are

more likely to exhibit problematic behaviour. It has also been shown

that early experience influences age at reproduction more in females

than males (5).
Lessons from the COVID-19
pandemic, change of paradigm
and conclusions

It is reasonable to hypothesise that in adopted and “covid-19

pandemic” children with precocious puberty a common trigger is

present. Until recently, it was thought that the cause of CPP in

adopted children was mainly improved nutrition leading to a rapid

weight and height catch-up growth, coupled with improved

psychological wellbeing following adoption. During the pandemic

several factors came into play that may have contributed to

inducing or accelerating pubertal development such as increased

weight, reduced opportunity for exercise, increased use of

technology, and changes in diet and sleeping habits.

It is our belief, however, that the main driver behind the

increased incidence of CPP during the lockdown period was the

environment of “fear and stress” in which many children lived at

this time. Normal social contact was impossible (even when

children returned to school, masks and other PPE were often

required) and many of the adults in daily contact with children

suffered from anxiety about becoming ill, money and other

problems. Furthermore, problems within families might have

exacerbated due to the close contact of family members.

Stress related to a new environment may also be a factor in the

high incidence of CPP in adopted children. Like children in

lockdown, children adopted after infancy have recent memories

of their previous lives. Despite their new and loving parents,

adopted children may recall more than currently understood;

learning to trust a new family and adapt to life in a country with

different nutritional habits, culture, and lifestyle is likely to be

stressful. This phenomenon requires further attention and

understanding and has not been thoroughly studied. In fact,

specific references are missing from the Literature.

While the Literature suggests that early life psychosocial stress

correlates with early sexual maturation there are some caveats. It is

important to highlight that these data are from WEIRD (Western,

Educated, Industrialized, Rich and Democratic) populations. Data

from traditional societies call into question the strong link between
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paternal investment and child wellbeing: in fact, it is very unlikely

that the so called nuclear family is representative of the kind of

family most often present throughout human evolutionary history

(170). This does not mean that paternal or maternal attachment are

not important factors in reducing a child’s mortality and morbidity

risks, rather, it underscores the extraordinary complexity of the

social environment that has characterized childhood throughout

human evolution and that is still represented cross-culturally, with

mothers, fathers, grand-parents and access to supportive kin’s

networks influencing the extent to which children are exposed to

threat and deprivation and how the stress system has evolved in

adaptive ways (171). In fact, from an evolutionary neuro-biological

point of view, variations in the timing of sexual maturation within a

species are part of a strategy that depends on internal and external

environmental conditions (5). We hypothesize that in a society

where there are good living conditions, a general threat to life, such

as that presented by the SARS-CoV-2 pandemic, may trigger early

pubertal maturation to favour early reproduction.

Finally, we would recommend families, in order to reduce the

risk of precocious puberty, to maintain an appropriate lifestyle

including healthy eating and sufficient movement, to reduce as

much as possible the time spent in front of electronic devices for

their children, to be cautious bringing worries and money problems

to their children, to be careful and respectful of any fears, to leave

time to adopted children to adapt to new families and lives, to

interact with teachers and the school environment if any

concern arises.
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