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Cardiometabolic diseases (CMD) are a direct consequence of modern living and

contribute to the development of multisystem diseases such as cardiovascular

diseases and diabetes mellitus (DM). CMD has reached epidemic proportions

worldwide. A sodium pump (Na+/K+-ATPase) is found in most eukaryotic cells’

membrane and controls many essential cellular functions directly or indirectly.

This ion transporter and its isoforms are important in the pathogenesis of some

pathological processes, including CMD. The structure and function of Na+/K+-

ATPase, its expression and distribution in tissues, and its interactions with known

ligands such as cardiotonic steroids and other suspected endogenous regulators

are discussed in this review. In addition, we reviewed recent literature data

related to the involvement of Na+/K+-ATPase activity dysfunction in CMD,

focusing on the Na+/K+-ATPase as a potential therapeutic target in CMD.
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1 Introduction

Cardiometabolic diseases (CMD) are a direct consequence of the modern lifestyle and

represent a step forward in the development of multisystem diseases such as cardiovascular

diseases (CVD) and diabetes mellitus (DM) (1, 2). The prevalence of CMD achieves

epidemic proportion, estimated at approximately 25% at the global level (3, 4). An

unhealthy diet combined with sedentary behaviour, smoking, alcohol use and

socioeconomic aspects is a substantial risk factor for the development of cluster

metabolic disorders, including obesity, hypertension, dyslipidaemia and impaired

glucose regulation (5, 6). Aside from prevention, there are numerous therapeutics for

CMD treatment on the market, most of which are designed to improve insulin action and

lipid-lowering. However, the dramatic increase in the prevalence of CMD and the

inadequacy of current therapy point to the need for new therapeutic targets.
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The sodium/potassium adenosine-triphosphatase (Na+/K+-

ATPase) is an essential plasma membrane enzyme that maintains

ion homeostasis, cell volume and contractility, electrical signaling,

membrane trafficking and vascular tone (7). The Na+/K+-ATPase is

the target of several controlling mechanisms. Hormones up-

regulate and downregulate Na+/K+-ATPase activity/expression,

which primarily comes to the fore in different CMD (8–12). Also,

Na+/K+-ATPase functions as a receptor for cardiotonic steroids

(CTS), with downstream molecular response affected by CTS

concentration. Higher concentrations of CTS (mM range) lead to

reverse the inhibition of Na+/K+-ATPase activity, causing a

transient cytotoxic effect and, most importantly positive inotropic

effect (13). Precisely for this reason, cardiac glycosides have been

used for a long time as a drug to strengthen the force of the

heartbeat in numerous heart disorders (14). In addition, CTS were

among the 200 most frequently prescribed drugs in 2018 year in the

USA (15). Particular mechanisms of Na+/K+-ATPase regulation

arise after CTS binding to the specific site at a subunit of Na+/K+-

ATPase, but at low CTS concentrations (≤ nM) which is insufficient

for ion transport inhibition (16). Cell signaling, intracellular Ca2+

oscillations, gene transcription, growth, and proliferation are all

activated as a result (17, 18). Since its discovery, Na+/K+-ATPase

has been the subject of numerous studies, but the regulation

mechanism remains unknown.

Given that CMD alters Na+/K+-ATPase activity and/or subunit

expression (8, 9, 13, 19), it represents a promising therapeutic target

(20, 21). Furthermore, basic and clinical studies show that

improving Na+/K+-ATPase function is directly related to

improving various pathological conditions of the cardiovascular

system (22). In this review, we discussed recent literature data on
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Na+/K+-ATPase regulation in CMD as a potential target for new

approaches to treating these pathologies.
2 Na+/K+-ATPase structure

The transmembrane protein, Na+/K+-ATPase transports K+

ions into the cell and Na+ ions out of the cell, and since the

process requires transporting ions against their concentration

gradients, Na+/K+-ATPase uses the energy derived from

hydrolysis of ATP. It is composed of a ∼100 kDa catalytic a
subunit, a heavily glycosylated ∼45 kDa b subunit, and a

regulatory subunit, often referred to as g-subunit (∼10 kDa), that

belongs to an FXYD group of proteins (Figure 1) (13, 23). The

subunits display multiple isoforms, four a subunit isoforms and

three b subunit isoforms, which can assemble in 12 different Na+/

K+-ATPase isozymes with tissue-specific different functional

activities. Seven tissue and Na+/K+-ATPase isozymes are also

specific g-subunit isoforms (23). a-subunit has a large

intracellular domain with ATP-binding and phosphorylation site,

a transmembrane domain composed of ten segments responsible

for ion transport, and an extracellular domain with binding sites for

cardiac steroids (24). b-subunit has an essential role in the a-
subunit assembly, and additionally, it increases a-subunit stability
and modulates its affinity of ions (24). On the other hand, g-
subunits are tissue-specific and act as Na+/K+-ATPase modulatory

proteins. Whereas heart tissue specific g-subunit is phosholemman

(PLM), which disinhibits Na+/K+-ATPase in its phosphorylated

form, increasing Na+ efflux (25). The g-subunit influences the
A

B

FIGURE 1

The structure and function of Na+/K+-ATPase. (A) Position of Na+/K+-ATPase in the plasma membrane and maintenance of ion homeostasis;
(B) Subunits isoforms and specific function. ATP, adenosine triphosphate; CTS, cardiotonic steroids; ROS, reactive oxygen species.
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affinity of the Na+/K+-ATPase for ions and ATP, in addition to the

transport and stabilization properties (26).

Normal functioning Na+/K+-ATPase in the plasma membrane

is vital for mammalian cells since it maintains Na+ and K+

electrochemical gradients across the plasma membrane. Many ion

transporters and channels utilize these chemical gradients to

transport ions, minerals, sugar and amino acids (23). Therefore it

is involved in ion homeostasis regulation, intracellular pH

regulation, Ca2+ signaling, fluid and volume homeostasis

regulation and renal salt reabsorption (13). Additionally, the ion

gradient Na+/K+-ATPase creates across the plasma membrane is

essential for generating action potential that sustains cardiac muscle

contraction and neuronal communication. Finally, novel studies

confirm that Na+/K+-ATPase also acts as a signal transducer since it

is a cardiotonic steroids receptor and can activate intracellular

protein kinases (23, 27).
2.1 The molecular mechanism of
Na+/K+-ATPase regulation

In the cardiovascular system, Na+/K+-ATPase is important in

regulating vascular tone and cardiac remodelling (28). Animal

hearts express the a1 isoform dominantly or in combination with

the a2 and/or a3 isoform. Considering rodent adult

cardiomyocytes, they mainly express the a1 isoform and a2

isoform (<25%) (29), while human adult cardiomyocytes have all

three isoforms expressed (13). Since a1 and a2 isoforms are present
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in different ratios and with differential distribution in cardiac cells, it

has been suggested that they have different functions. Both a1 and

a2 isoforms in the heart have physical and functional associations

with Na+/Ca2+ exchangers, thus favouring Ca2+ influx rather than

Ca2+ efflux, which leads to increased contractility (29–31).

Moreover, the a2 isoform is approximately five times more

present in the T-tubules, where the Na+/Ca2+ exchanger is located

(32). At the same time, data indicate that the a1 isoform in the heart

regulates cell growth and survival via maintaining a global pool of

Na+ throughout the cell. On the other hand, the a2 isoform

regulates Ca2+ concentration in cells via regulating local Na+ and

Ca2+ concentrations in sarcolemma/sarcoplasmic reticulum

microdomains, thereby regulating contractility and hypertrophy

(29–31). Furthermore, a2 isoform overexpression has a protective

effect from pressure overload caused by cardiac dysfunction; thus,

this isoform probably regulates cardiac pathological hypertrophy

(29, 30). Numerous studies have also implicated aberrant Na+/K+-

ATPase and PLM expression, reduction in Na+/K+-ATPase activity

and subsequent increase in intracellular Na+ and Ca2+

concentrations in diseased heart (31, 33). Chronic increase in

intracellular Na+ and Ca2+ concentrations lead to maladaptive

cardiac hypertrophy and arrhytmogenesis (31). Additionally,

several pathophysiological conditions such as insulin resistance

(IR), obesity and hypertension are associated with defects in

normal Na+/K+-ATPase function (8, 9, 13, 19).

Na+/K+-ATPase regulation is a crucial and highly complex

process on various levels (Figure 2). Concerning tissue-specific

mechanisms of Na+/K+-ATPase regulation, there are local and
FIGURE 2

Molecular mechanisms of Na+/K+-ATPase regulation. AMP - adenosine monophosphate, AMPK – AMP-activated protein kinase, ATP - adenosine
triphosphate, CTS – cardiotonic steroids, ERK1/2 – extracellular signal-regulated kinases 1 and 2, IP3 – inositol triphosphate, MAPK – mitogen-
activated protein kinase, PKA, protein kinase A; PKC, protein kinase C; PKG, cGMP-activated protein kinase; PLC, phospholipase C; ROS, reactive
oxygen species.
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systemic regulatory mechanisms. Intracellular and extracellular Na+

and K+ concentrations are the most important local regulatory

mechanism, along with hypoxia, purines, oxidative stress, pH, nitric

oxide and ATP, that influence activity of Na+/K+-ATPase (34, 35).

On the other hand, hormones are major factors in the systemic

regulation of Na+/K+-ATPase. Hormones regulate Na+/K+-ATPase

cell surface expression and activity, provoking protein kinase

phosphorylation (35–41). Nonetheless, translocation from

intracellular compartments to the plasma membrane is controlled

by a-subunit phosphorylation, a type of posttranslational

modification (12, 42, 43). Furthermore, the a subunit contains

several serine, threonine, and tyrosine residues that can be

phosphorylated by various kinases, influencing Na+/K+-ATPase

activity (44). Besides phosphorylation, Na+/K+-ATPase can be

modified via glutathionylation, which causes its inactivation (35).

Additionally, except for regulating Na+/K+-ATPase cell surface

expression, hormones can up-regulate a and b gene transcription,

which determines the total cell content of Na+/K+-ATPase subunits

along with the degradation rate [9]. Insulin, as one of the most

potent regulators of Na+/K+-ATPase, increased its activity

and translocation of subunits to the cell membrane via

phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC),

and extracellular signal-regulated kinases 1 and 2 (ERK1/2) (42,

43, 45). In contrast, leptin decreased Na+/K+ATPase activity in the

rat kidney via the PI3K pathway (46). Angiotensin II (Ang II),

insulin-like growth factor 1 (IGF-1) and estradiol stimulate Na+/K+-

ATPase activity and gene expression in primary cultured rat

vascular smooth muscle cells via PI3K, protein kinase B (Akt),

and ERK1/2 (9, 37, 38). Estradiol also increased Na+/K+-ATPase

activity and expression in the heart of rats via signaling pathways

that involve stimulation of insulin receptor substrate 1 (IRS-1)/

PI3K/Akt/ERK1/2 and suppression of Ang II receptor type 1, Rho

A, and Rho-associated kinase cascade (8, 47). Furthermore, Ang II

inhibits IGF-1-stimulated Na+/K+-ATPase activity in VSMC via

PI3K/Akt signaling (37), whereas IGF-1 overexpression reduced

Ang II production and oxidative stress in mouse cardiomyocytes

(48). Several studies have shown that the signaling pathways that

regulate IGF-1 and estradiol are crosslinked, implying that these

hormones may have a combined effect on the regulation of Na+/K+-

ATPase (49). This interactive effect of hormones indicates a

complex mechanism of Na+/K+-ATPase regulation in vivo where

tonic hormone release simultaneously influences Na+/K+-ATPase

and balances its activity.

New researches also confirm that g-subunits or FXYD proteins

can modulate Na+/K+-ATPase binding and function via protein-

protein interactions and consequent post-translational

modifications (50). These effects, along with the FXYD proteins

expression, are also regulated by hormones (35). Since FXYD

proteins are tissue-specific, post-translational modifications fine-

tune Na+/K+-ATPase binding and function according to tissue-

specific needs (32). In addition, FXYD proteins can also be

substrates for post-translational modulation, which modifies their

regulatory function (32). Finally, cardiac steroids bind to the

extracellular domain of a- subunit and stabilize and modify Na+/

K+-ATPase to support its different functions. Therefore, cardiac

steroids can have a positive inotropic effect through Na+/K+-
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ATPase inhibition and the effect of activation of different signal

transduction pathways mediated by Na+/K+-ATPase. In

comparison, higher cardiac steroids concentrations induce Na+/

K+-ATPase inhibition, while sub-inhibitory concentrations induce

activation of mitogen-activated protein kinase signal cascades,

mitochondrial reactive oxygen species (ROS) production, and the

phospholipase C signaling pathway (23). In addition, cardiac

steroids can modulate Na+/K+-ATPase sensitivity to different

regulatory proteins (51).
3 CMD

The emergence of CMD risk factors is unpredictable and

dynamic. Cardiovascular and metabolic disruptions most often

cause CMD, and a long-lasting CMD, including DM and different

cardiovascular pathologies, are the main causes of death worldwide.

The incidence and prevalence of CMD have increased in parallel

with the rise in obesity, DM and hypertension (52). Since mortality

has reduced during the past few years in high-income nations but

increased in low- and middle-income countries, increases in the

prevalence of CMD, such as hypertension, obesity, dyslipidaemia

and DM, and their major risk factors have not been uniform (53).

Cardiometabolic disorders can occur substantially before

the clinical appearance of diseases. CMD-related complications

are complex and multifactorial disorders, but in most

cases, preventable. Many factors, such as changes in living

environments, unhealthy diets, specific lifestyles, physical

inactivity, and genetic and epigenetic factors, may be involved in

CMD development (52). Early and accurate predictors of CMD are

of great importance since the delay or prevention of morbidity is

achievable via pharmacological treatments and lifestyle modulation

(54–56). Timely treatment of these detrimental factors is important

in their progressive and ultimate transformation into more

complicated CMD. Novel mechanisms implicated in the

development of CMD may open up new prognostic and

therapeutic avenues.

Over the last decade, it has been generally recognized that

genetic mutations are engaged in different CMD (52), including

hypertension (57), impaired lipid metabolism and lipotoxicity (58).

In addition to defective genes, frequent inflammation is also one of

the pathological driving forces involved in various CMD (59).

Pathophysiological factors, such as proinflammatory cytokines:

resistin, interleukin (IL)-6, tumour necrosis, factor-alpha (TNF-

a), and IL1b, as well as interactions among them and also with the

molecules of the insulin signaling cascade, are involved in IR

occurrence (52, 59). In addition to dysfunctional insulin signaling,

proinflammatory cytokines are implicated in impaired endothelial

function and dyslipidemia (52), both involved in CMD.

Many cardiometabolic complications, including obesity,

DMT2, hyperlipidemia, dyslipidemia, nephropathy, hypertension,

and nonalcoholic fatty liver disease, are closely interrelated (52).

Among the major causes of CMD and related complications is DM.

Obesity usually predisposes to DM, especially central obesity per se,

and is associated with severe comorbidities, influencing every

system of organs, particularly affecting cardiometabolic
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comorbidities (60). Moreover, obesity is associated with an

increased risk for CVD independently from other CVD risk

factors and is also considered a modulator of other CVD risk

factors. Thus, treating obesity should be the most important

management strategy to reduce cardiometabolic risk (60, 61).

Furthermore, it is considered a chronic metabolic disorder

associated with chronic low-grade inflammation and results in

marked alterations of proinflammatory cytokines, adipokines, and

other molecules affecting CVS function and CMD development. In

an observational cohort study in which 1.3 million overweight or

obese adults participated, four commonly observed cardiac risk

factors were found: the prevalence of hypertension, prediabetes,

decreased HDL and elevated TG. An earlier study by National

Health and Nutrition Examination Survey (NHANES), which

included individuals with diabetes, showed that 52% of adults

overweight and 32% of adults with obesity had no cardiac risk

factors or only one, suggesting that different phenotypes of obesity,

such as subcutaneous versus abdominal fat, may pose various health

risks (62, 63). The authors concluded that being overweight or obese

increases cardiometabolic risk, but the quantity and developed

cardiac risk factors differed substantially by age, even among

participants with morbid obesity (62, 63).

Furthermore, vitamin D effects on insulin sensitivity may be

compromised in obese individuals (64), and in these individuals,

hyperinsulinemia and/or IR may be responsible for reduced vitamin

D concentration, which underscores this paradigm (52). In

addition, alterations at a hormonal, inflammatory and endothelial

level associated with obesity induce stimulation of several factors

contributing to the hypertensive state and development of CVD and

cardiovascular morbidity. The most recognized factors connecting

obesity and hypertension are impaired sodium homeostasis,

endocrine alterations, altered hemodynamics, autonomic nervous

system imbalance, renal dysfunction, oxidative stress and

inflammation, and vascular injury (65).

The development of complications and increased mortality

influenced by obesity indirectly affect other risk factors such as

IR, dyslipidemia, and hypertension (66). In addition, an important

link between obesity and CVD development is dyslipidemia (67).

Dyslipidemia occurs when the levels of triglyceride (TG), small

dense LDL (sdLDL) particles, very low-density lipoprotein (VLDL)

cholesterol and total cholesterol are increased, while high-density

lipoprotein (HDL) cholesterol levels are decreased (68, 69). Persons

with visceral adiposity usually have indicators for CVD

development, such as an increased ratio of apolipoprotein (Apo)

B to Apo A1 (70), a rise in sdLDL particles (71), and low HDL

cholesterol level (72). In the last decade, dyslipidemia occurring due

to IR and obesity has been recognized as “metabolic dyslipidemia”

(73). Its main features are increased levels of TG accompanied by

decreased HDL cholesterol level, while LDL cholesterol level could

be mildly increased or optimal, even though the number of LDL

particles (LDL-P) can also be elevated. Also, atherogenic

lipoproteins, such as lipoprotein(a) (Lp (a)), are critical in the

development of various CVD (74), leading to CMD (52). In

addition, endothelial and vascular dysfunction caused by obesity

leads to CVD (75). Furthermore, obesity predisposes to heart

disease through various mechanisms, including causing structural
Frontiers in Endocrinology 05
and functional changes in the heart, affecting heart morphology and

leading to pathological heart hypertrophy, characterized by

cardiomyocyte enhancement and increased protein synthesis (76,

77). However, it is not accompanied by a rise in capillaries

supplying the myocardium, finally leading to ischemic changes in

the myocardium (78).

Among others, in patients with CMD, response to ischemic

insults may also be impaired. Patients with cardiovascular risk,

especially patients with hypertension and diabetes, exhibited an

abnormal reactive hyperemic response to ischemic insults, which

are associated with myocardial infarction (52, 59).

Many difficult problems must be solved to improve CMD

diagnosis, prognosis, therapy, and management. Cardiometabolic

risks are a complex group of disease entities, and risk assessment,

prediction, and management are also difficult because the

underlying causes that promote or precipitate cardiac risk factors

in these metabolic diseases are unknown.
4 Na+/K+-ATPase and CMD

Altered Na+/K+-ATPase activity/expression is the basis for

vascular complication and cardiac dysfunction in different CMD

(Figure 3) (8, 9, 19, 79–82). Decreased Na+/K+-ATPase activity and

high concentrations of Na+ in cytosol lead to impaired myocardial

contractility in advanced heart failure (83). The link between CMD

and altered Na+/K+-ATPase activity is somewhat predictable given

that CMD causes changes in hormone levels, most notably insulin,

insulin-like growth factor 1, angiotensin II (Ang II), estradiol, and

leptin, all of which are potent regulators of the Na+/K+-ATPase (12,

49). The function of Na+/K+-ATPase is impaired at different levels
FIGURE 3

The relationships between CMD and Na+/K+-ATPase. CMD,
cardiometabolic diseases; CVD, cardiovascular diseases; DM,
diabetes mellitus.
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of regulation in hearts, aorta and erythrocytes in human and animal

models of induced obesity, insulin resistance and hypertension

(Table 1) (8, 19, 84–92, 94–101, 104–107). It has been

demonstrated that leptin reduces Na+/K+-ATPase activity in

fibroblasts (108), which may be important in the obese state

frequently associated with hyperleptinemia. Evidence suggests

that long-term activation of Na+/K+-ATPase signaling may

promote cardiac fibrosis and the development of heart

dysfunction (109–113). Furthermore, using Na+/K+-ATPase

signaling antagonists, such as pNaKtide, has shown promise in

reducing organ fibrosis (109, 113). We also found that a high-fat

diet induces obesity and IR in rats, resulting in decreased activity

and a1 and a2 subunits of expression of Na+/K+-ATPase in cardiac

tissue, which is accompanied by heart hypertrophy (8, 76). In

addition, decreased Na+/K+-ATPase activity is detected in

erythrocytes of obese, IR and DM patients (19, 102, 103, 114).

Increased Ang II and (ROS) inhibit Na+/K+-ATPase by

glutathionylation of b1 subunit that may have pathophysiological

effects in the cardiovascular system of obese and DM patients (115–
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117). The activity of cardiac Na+/K+-ATPase is decreased in

hypertensive male rats (91). Also, earlier studies reported altered

expression of a1 and a2 subunits of Na
+/K+-ATPase in the aorta

and heart of hypertensive rats (118, 119). Mice with an

ouabain-res is tant a2 subunit of Na+/K+-ATPase are

protected from hypertension development after treatment with

adrenocorticotropic hormone (120, 121). Genetic silencing of the

a2 subunit of the Na+/K+-ATPase decreased pathological heart

hypertrophy and cardiac remodeling (93, 122). The Na+/K+-

ATPase signaling is activated with ROS and CTS (33, 123).

However, in pathophysiological conditions such as obesity and

related disorders, increased ROS and CTS promote Na+/K+-

ATPase signaling, leading to the overproduction of ROS and

inflammatory markers creating an oxidant amplification loop that

consequently alters the metabolic profile (124). Recent research

reveals an important role of Na+/K+-ATPase in autosis, that is

characterized as an autophagy-dependent non-apoptotic form of

cell death in different (125, 126). The increased interaction of Na+/

K+-ATPase with the autophagy protein Beclin 1 was detected in
TABLE 1 The link between cardiometabolic diseases and Na+/K+-ATPase activity/expression.

Cardiometabolic diseases Study group Effect on Na+/K+ ATPase Organ/tissue Ref.

Obesity

Rat ↓expression and activity Heart (8)

Human ↓activity Erythrocytes (84)

Mice and human ↓activity Liver and kidney (19)

Rat ↑cortical a1 subunit abundance Kidney (85)

Rat ↓a1 subunit expression and ↑a1 subunit content in plasma membrane Heart (86)

Hypertension Rat ↓affinity for Na+ Heart (87)

Mice ↑a2 subunit expression Aorta (88)

Rat ↓expression and activity Kidney (89)

Rat ↑activity Kidney (90)

Rat ↓affinity for Na+ Heart (91)

Human ↓activity Erythrocytes (92)

Mice ↑a2 subunit expression Heart (93)

Insulin resistance and diabetes Rat ↓expression and activity Heart (94)

Rat ↓expression and activity Heart (95, 96)

Rat ↓a1 subunit expression
↑a1 subunit content in the plasma membrane

Heart (86)

Rat ↑ a1 subunit content and
↓ Na+/K+ ATPase activity in the plasma membrane

Skeletal muscle (97)

Rat ↓a1 and b1 subunit expression and
↓Na+/K+ ATPase activity

Kidney
(98)

Rat ↓ activity Heart (99)

Rat ↓expression and activity Heart (100)

Rat ↓expression and activity Aorta (101)

Human ↓ activity Erythrocytes (102)

Human ↓ activity Erythrocytes (103)
front
↑ - increase; ↓ - decrease.
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ischemic conditions of hearts (127). Further studies are needed to

enhance our knowledge of Na+/K+-ATPase in oxidant amplification

and autosis, which may be a target option for CMD treatment.
5 Therapeutic target

Because of its critical role in numerous cellular processes that

extrapolate to overall body function, the Na+/K+-ATPase is a

promising drug target. Even though Na+/K+-ATPase was studied

decades ago, the mechanism of Na+/K+-ATPase regulation is very

complex and is still not fully understood. An important issue in

Na+/K+-ATPase regulation is balancing its activity and its function

as a receptor through which signaling pathways are activated.

Since the discovery of Na+-K+-ATPase, it has been evident that

modulation of its activity could serve as a pharmacology and

therapeutic target (128). According to this, Na+/K+-ATPase

activity inhibition can be promoted by various agents (i.e.

endogenous and exogenous cardiac steroids), but it can also be

seen in different pathologies, such as heart failure, with a significant

decrease (40%) in myocardial Na+/K+-ATPase concentration (14,

129–131). Insulin and b adrenergic agonists are important in

increasing the amount of Na+/K+-ATPase, which promotes K+

transport into cells (131, 132). Because Na+/K+-ATPase is a non-

specific receptor for ROS, the Na+/K+-ATPase-Src oxidant

amplification loop is important in the ageing process, obesity, and

atherosclerotic CVD (123, 133).

The pharmacological mechanism of CTS cardiovascular effects

is based on the inhibition of Na+/K+-ATPase, followed by an

increase in intracellular Ca2+ concentration, and then the

promotion of positive inotropic and negative chronotropic effects

(134, 135). CTS are classified as endogenous or exogenous (cardiac

glycoside) based on their source. Endogenous CTS functions in

mammals as endogenous digitalis-like factors (135). Among the

most extensively studied endogenous CTS are cardenolides

(ouabain and digoxin) and bufadienolides (marinobufagenin,

telocinobufagin, and 19-Norbufalin) (14, 136). Marinobufagenin

and its reduced form, telocinobufagin, were found in the bodily

fluids of patients suffering from myocardial infarction, acute renal

failure, end-stage renal disease, and heart failure (137–141). Patients

with hypertension and pregnant women with preeclampsia had

higher ouabain levels (142, 143). Digitalis lanata and Digitalis

purpurea are the primary sources of cardiac glycosides (134).

Digitoxin, digoxin, lantoside C, and strophanthin K are clinical

preparations in use (135).

A disturbed transarcolemmal Na+ gradient characterizes

ventricular wall hypertrophy and dilation (144, 145). Increased

intracellular Na+ content inhibits Ca2+ mitochondrial uniporter/

exchanger function, causing the mitochondria to become

metabolically exhausted due to an ATP supply-demand mismatch

(146). Furthermore, mitochondrial dysfunction promotes the

production of ROS (147). Ouabain, a cardiotonic glycoside, binds

to the subunit and inhibits Na+/K+-ATPase (148). Digoxin and

digitoxin inhibit the Na+/K+-ATPase directly (149). Such Na+/K+-

ATPase inhibition in the myocardium causes an increase in K+

efflux at the same time as intracellular Na+ accumulation, resulting
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in decreased Na+/Ca2+ channel exchanger activity and an increase

in the sarcoplasmic reticulum and cytosolic Ca2+ content in

cardiomyocytes (150). Furthermore, digitalis glycosides attenuate

Ca2+ influx in cells (13). The net effect is increased intracellular Ca2

+, which strengthen heart contractility (129). Furthermore, cardiac

glycosides favour a longer atrioventricular node refractory period

and sinoatrial depression (both beneficial in atrial fibrillation), an

increase in cardiomyocyte automatism (which promotes ventricular

arrhythmogenic foci), and a decrease in atrioventricular impulse

conduction (151). Digitalis additionally slows heart rate through

vagal activation (152). Digoxin is now used to treat persistent heart

failure symptoms in patients already receiving modern therapy and

control heart rate in patients with atrial fibrillation and heart failure,

but it does not affect mortality rates (151–153). Other

pharmacological agents, in addition to cardiotonic glycosides,

influence Na+/K+-ATPase activity. Diuretic-induced K+ loss and

secondary hyperaldosteronism associated with heart failure reduce

myocardial Na+/K+-ATPase activity (154), whereas angiotensin-

converting enzyme inhibitors (ACEi) and spironolactone may

stimulate myocardial Na+/K+-ATPase activity (130, 155). Aside

from plant-derived cardiotonic glycosides, endogenous vertebrate-

derived aglycones such as bufalin and marinobufagenin, whose

production in the adrenals and possibly hypothalamus is primarily

under humoral control (ACTH, Ang II) are also detected as Na+/

K+-ATPase inhibitors (156–158). Subnanomolar concentrations of

plant- and vertebrate-derived glycosides have been found in various

diseases such as hypertension (142), renal failure (159), and

atherosclerotic CVD (160, 161). In addition to the beneficial roles

of endogenous cardiotonic steroids in heart contractility, heart rate

control, natriuresis, and blood pressure regulation, chronic

exposure causes deleterious effects such as ventricular and

vascular wall remodelling, myocardial fibrosis, and arrhythmia

risks (14). Exogenous CTS (digoxin, digitoxin) is intended for

patients with heart failure with reduced ejection fraction and AF

with rapid ventricular rate, especially if previously approved therapy

(diuretics, angiotensin-converting enzyme inhibitors (ACEI)/

angiotensin receptor blockers, -blockers, and aldosterone receptor

antagonists) fails (162–167). Digoxin improves cardiac function

and prognosis, and lowers hospitalization rates in HF patients but

has no effect on all-cause mortality (168, 169). In contrast, the

cardiovascular remodeling caused by long-term CTS exposure

promotes the development of cardiac fibrosis pro-arrhythmic foci

(170). Because of digoxin’s narrow therapeutic range should be used

with caution in elderly, malnourished, and hypokalemic patients

(167). The possibility of a deleterious effect of concomitantly

administered digoxin, the most common type of CTS in clinical

use, arises in patients with already elevated levels of endogenous

CTS (14, 135). Digitoxin could be used in patients with impaired

renal function (167, 171).

Reduced Na+/K+-ATPase activity and expression are detected

in chronic kidney-related heart injury (172). Zheng et al. show that

targeting the DR extracel lular region (897DVEDSYG

QQWTYEQR911) of a1 subunit’s Na+/K+-ATPase with DRm217

antibody stimulates Na+/K+-ATPase activities and protects

ischemic injury and cardiac remodeling injury in rats (20). b3
adrenoceptor agonist increased Na+/K+-ATPase activity and
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reduced indices of organ congestion in a rabbit model, suggesting

that decreased Na+/K+-ATPase activity may serve as a treatment

target in a state of congestive heart failure (21).

The modulation of myocardial Na+/K+-ATPase activity and

expression by different exogenous and endogenous cardiac steroids

in animal models helps unravel all the molecular mechanisms in

which Na+/K+-ATPase are involved. The interventional and dose-

tapering studies in humans are necessary to elucidate the beneficial

effects and mechanisms of selected cardiac steroids on

human hearts.
6 Conclusion

Because of the specific modulation of Na+/K+-ATPase activity,

Na+/K+-ATPase is a very intriguing drug target. The site of Na+/K+-

ATPase modulation could be either Na+/K+-ATPase itself or

downstream cascade pathways. The identification of pNaKtide as

an antagonist of Na+/K+-ATPase signalling was the first step in this

direction (123). Further cardiovascular damage could be avoided by

inhibiting the Na+/K+-ATPase-Src oxidant amplification cascade

(173). Additionally, it is important to assess the activity and

expression of Na+/K+-ATPase and post-receptor cascades in

distinctive specific and conjoint diseases, such as CMD, and

further, evaluate the effects of different associated molecular

targets’ inhibition or stimulation in such patients. The

relationship between endogenous and exogenous CTS must be

thoroughly investigated. Despite the restricted use of glycosides

according to current guidelines recommended by specific

cardiology associations, detecting some new CTS or elucidating

some unknown effects recognizes the CTS as the focus of

translational medicine trials.
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