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tumor and its association
with tumor immune
microenvironment and
metabolic remodeling
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Zumin Qu5, Dong Chi2, Zhubo Sun2, Jian Jiang1*,
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Liaoning, China, 2Department of General Surgery, Wafangdian Central Hospital, Dalian,
Liaoning, China, 3Graduate School of Dalian Medical University, Dalian, Liaoning, China, 4Department
of Digestive, Jinan City People’s Hospital, Jinan, Shandong, China, 5Department of Pathology,
Wafangdian Central Hospital, Dalian, Liaoning, China, 6Department of General Surgery, The Affiliated
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Background: Accumulating evidence suggests that anoikis plays a crucial role in

the onset and progression of pancreatic cancer (PC) and pancreatic

neuroendocrine tumors (PNETs); nevertheless, the prognostic value and

molecular characteristics of anoikis in cancers are yet to be determined.

Materials and methods: We gathered and collated the multi-omics data of

several humanmalignancies using the TCGA pan-cancer cohorts. We thoroughly

investigated the genomics and transcriptomics features of anoikis in pan-cancer.

We then categorized a total of 930 patients with PC and 226 patients with PNETs

into distinct clusters based on the anoikis scores computed through single-

sample gene set enrichment analysis. We then delved deeper into the variations

in drug sensitivity and immunological microenvironment between the various

clusters. We constructed and validated a prognostic model founded on anoikis-

related genes (ARGs). Finally, we conducted PCR experiments to explore and

verify the expression levels of the model genes.

Results: Initially, we identified 40 differentially expressed anoikis-related genes

(DE-ARGs) between pancreatic cancer (PC) and adjacent normal tissues based

on the TCGA, GSE28735, and GSE62452 datasets. We systematically explored the

pan-cancer landscape of DE-ARGs. Most DE-ARGs also displayed differential

expression trends in various tumors, which were strongly linked to favorable or

unfavorable prognoses of patients with cancer, especially PC. Cluster analysis

successfully identified three anoikis-associated subtypes for PC patients and two
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anoikis-associated subtypes for PNETs patients. The C1 subtype of PC patients

showed a higher anoikis score, poorer prognosis, elevated expression of

oncogenes, and lower level of immune cell infiltration, whereas the C2

subtype of PC patients had the exact opposite characteristics. We developed

and validated a novel and accurate prognostic model for PC patients based on

the expression traits of 13 DE-ARGs. In both training and test cohorts, the low-

risk subpopulations had significantly longer overall survival than the high-risk

subpopulations. Dysregulation of the tumor immune microenvironment could

be responsible for the differences in clinical outcomes between low- and high-

risk groups.

Conclusions: These findings provide fresh insights into the significance of anoikis

in PC and PNETs. The identification of subtypes and construction of models have

accelerated the progress of precision oncology.
KEYWORDS

pancreatic adenocarcinoma, pancreatic neuroendocrine tumors, anoikis, molecular
characteristics, metabolic remodelling, tumor immune microenvironment
Introduction

Globally, pancreatic cancer (PC) is regarded as a lethal

gastrointestinal malignancy with a mortality rate proportional to

its occurrence (1, 2). Exposure to risk factors such obesity, diabetes,

cigarette use, and alcohol intake is connected to the poor prognosis

and steady incidence rates of PC patients; however, early-stage

nonspecific symptoms also contribute to the diagnosis (3). In

addition to pancreatic cancer, neuroendocrine tumors are also

relatively common types of pancreatic tumors. The origin of

pancreatic neuroendocrine tumors (PNETs) is concealed, and

their biological activity is highly variable, being characterized by

passive growth, invasive development, and even early metastasis;

their biological characteristics may change as the disease progresses.

As a result of the tumor’s function in hormone release, PNETs may

produce hormone-related symptoms or syndromes, and there are

significant differences in prognosis between PNETs of different

grades and stages. In modern medicine, surgery remains the

therapeutic cornerstone of PC and PNETs, complemented by

other, more all-encompassing treatments like radiation and

chemotherapy (4). Despite extensive therapy, PC has a dismal 5-

year survival rate of around 7% at present (4). The urgent need to

establish the potential heterogeneity of PC and PNET patients is a

necessary step in addressing this issue. This would enable

physicians to generate more accurate prognoses on patient

outcomes and swiftly execute tailored treatment programs.

Anoikis was initially identified in 1994, indicating that normal

adhering cells would die of “homelessness” if they were suspended

for an extended period of time (5). Anoikis is a kind of programmed

cell death and is associated with “suicidal” cell activity (5). It is

caused by separation from extracellular matrix (6). It is essential for

maintaining the integrity of the body’s tissues, and its primary role

is to inhibit improper cell proliferation or attachment to abnormal
02
extracellular matrix (7). Loss of nested apoptosis resistance is the

basis of tumor spread, metastasis, and invasion, since it enables

tumor cells to migrate to distant new tissues or lymph nodes

through lymphatic or blood circulation and continue to grow (8).

Loss of tumor cells and resistance to apoptosis play a significant role

in the invasion and metastasis of pancreatic cancer.

In this study, we systemically summarized the pan-cancer

landscape of anoikis for the first time. Based on the anoikis

scores, 930 patients with PC were precisely stratified into three

subtypes accompanied by distinct prognoses and tumor immune

microenvironment. These three subtypes included anoikis-active,

anoikis-normal, anoikis-inactive subpopulations. The patients in

anoikis-active subtype had higher anoikis scores and worse

prognoses, indicating the carcinogenic effects of anoikis in PC.

226 patients with PNETs were also stratified into S1 and S2 subtypes

with distinct molecular characteristics. Finally, we also developed a

novel anoikis-based prognostic model for patients with PC, which

help promote the development of oncology precision.
Methods

Data collection and processing

A total of 794 anoikis-related genes (ARGs) were downloaded from

the GeneCard website (https://www.genecards.org/). Among them, 501

ARGs with gene scores > 0.4 were preserved for further analysis (Table

S1). Pan-cancer cohorts including gene expression profiles, mutation

information, methylation levels, and clinical data were obtained from

the Firehose (http://gdac.broadinstitute.org) and Xena Browser

(https://xenabrowser.net/datapages/) platforms (9). A total of 930 PC

and 171 para-cancerous tissues’ transcriptomics data and their

corresponding clinical data were acquired from the publicly free
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platforms, including ArrayExpress (https://www.ebi.ac.uk/

arrayexpress), The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov), International Cancer Genome Consortium

(ICGC, https://dcc.icgc.org/), Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), and Genotype-Tissue Expression

(GTEx) databases (10–14). Of note, patients without follow-up

information were excluded in this study.

In addition to these, the transcriptomics data of 226 patients

with PNETs were also collected and complied from the

public websites. The ICGC-PAEN-AU cohort provided the data

of 32 PNETs samples, GSE98894 cohort (15) provided the data of

113 PNETs samples, GSE73338 cohort (16) provided the data of 81

PNETs samples. A total of 171 normal pancreas samples consisting

of 4 samples from TCGA platform and 167 samples from GTEx

website were also collected as the control group. In order to

eliminate the batch effects derived from the different platforms, a

well-recognized bioinformatics algorithm, called ComBat, was

utilized. The ComBat function was developed on the basis of the

“sva” package in R (17).

The overall analysis strategies of this research are summarized

as follows: a) To filter ARGs significantly associated with the

occurrence of PC, the differentially expressed ARGs (DE-ARGs)

were determined with the help of limma package in R. In the

process of above analysis, three cohorts including GSE28735 (18,

19) (45 tumor samples vs 45 normal samples), GSE62452 (20) (69

tumor samples vs 61 normal samples), and TCGA+GTEx cohorts

(178 tumor samples vs 171 normal samples) were utilized, and DE-

ARGs were identified by taking the intersection of the results of

above three cohorts. Subsequently, pan-cancer analysis highlighted

the pivotal contributions of DE-ARGs in multiple human cancers.

The specific analytic methods were similar to the previous studies

(21, 22). b) The single sample gene set enrichment analysis

(ssGSEA) was performed to evaluate the relative activities of 930

PC patients’ anoikis signaling pathway. Cluster analysis was then

carried out to classify 930 PC patients into three distinct subtypes

with different anoikis activities. c) Considering the limitations for

the clinical application of cluster results, a novel anoikis-related

prognostic model (ARPM) was developed and validated. We

separated 930 PC patients into two cohorts (i.e. training dataset

and validation dataset). Among them, GSE57495 (23), GSE28735,

GSE62452, E-MTAB-6134 (24), and TCGA-PC datasets including a

total of 635 PC samples were compiled as a training cohort for

future research, while 295 PC patients in the ICGC-CA and ICGC-

AU datasets were defined as a validation cohort. d) 226 patients

with PNETs were also performed cluster analysis to determine the

possible heterogeneity.
Cluster analysis based on anoikis activities

Using single-sample gene set enrichment analysis (ssGSEA),

enrichment scores for the anoikis pathway in patients with PC and

PNETs were calculated. The “Gplots” and “pheatmap” R packages

were used to display heatmaps incorporating DE-ARGs expression,

anoikis scores, and clinical clusters for both PC and PNETs. Brown

indicated that the expression of the gene was larger in tumor
Frontiers in Endocrinology 03
samples than in normal samples, while dark blue indicated the

opposite. The status of mRNA expression in tumor tissues was

categorized into 3 clusters: high expression of the ARGs, normal

expression of the ARGs, and low expression of the ARGs. The violin

plots were depicted to compare the anoikis enrichment scores

between distinct clusters. Of note, those clusters with similar

enrichment scores were further consolidated into one cluster.

Higher scores indicated increased DE-ARG expression levels,

whereas lower scores indicated the reverse. More importantly, we

also evaluated the disparities in the distribution of immunological

and metabolic pathways among diverse clusters.
Drug sensitivity analysis for PC patients

The R package “pRRophetic” was used to predict chemotherapy

response in order to better comprehend the relationship between

anoikis pathway gene expression and malignancy medication

treatment. As one of the largest public repositories of information

on cancer drug sensitivity, drug responses, and molecular targets,

the “pRRophetic” package, which was based on the Cancer Genome

Project (CGP) and contained 138 anticancer drugs against 727 cell

lines, allowed for the identification of novel therapeutic targets to

improve cancer treatment (25). Meanwhile, the semi-maximum

inhibitory concentration (IC50) of the samples was calculated using

the ridge regression approach. A smaller IC50 was usually related to

a lower semi-inhibitory mass concentration of the drug in cancer

cells, suggesting that the cancer cells were more vulnerable to

the medication.
Associations of the anoikis scores with the
classical cancer-related genes and tumor
immune microenvironment in PC patients

The fundamental unit of genetic information is the gene. In

general, two types of genes (i.e. oncogenes and tumor suppressor

genes) in cells are intimately associated with the emergence and

growth of tumors. Oncogenes are usually genes with the functions

of promoting cell growth, activating cell cycle and inhibiting the

level of apoptosis. Tumor suppressor genes negatively control cell

development and cell cycle, induce apoptosis, and repair DNA

damage. Considering the important role of oncogenes and tumor

suppressor genes in tumorigenesis, we further analyzed the

correlation between anoikis scores and these genes. Using the

“pheatmap” and “gplots” packages in RStudio, we produced a

heatmap showing the expression levels of various oncogenes and

tumor suppressor genes in the three clusters in order to explore the

likely regulatory mechanism of the anoikis pathway in PC.

The tumor immune microenvironments of three PC subtypes

were then compared. We intensively examined the algorithms

MCPCOUNTER, XCELL, CIBERSORT, EPIC, CIBERSORT-ABS,

and TIMER for assessing cell immune responses or cellular

components across the three subtypes of PC. Several algorithms

were used to plot a heatmap to identify shifts in immune response.

Immune checkpoint functioned as the major manager of immune
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cell activity. Thus, we also investigated the expression features of

immune checkpoint-related genes among various clusters.

In addition, the 29 well-recognized immune-associated gene sets

were also quantified for assessing the scores of immune cells and

immune-related functions using ssGSEA (26). The scores of immune

cells and immune-related functions might partially represent the

quantity of immune cell infiltration and the activation of

immunological-related processes. Subsequently, the Spearman

correlation analysis was employed to explore the correlation between

ARG scores and immune scores. We created a scatter plot using the

“ggscatterstats” package to show the relationships between the four

immune-infiltrating components (macrophages, parainflammation,

TIL, and Th1 cells) and the anoikis pathway scores. Finally, using

Spearman’s correlation coefficient, the R Studio tools “ggplot2” and

“dplyr” were then applied to generate a heatmap illustrating the

relationship between ARGs and immune cell infiltration (ICI).
Development and validation of a
prognostic signature based on DE-ARGs

As a further step, we performed LASSO regression analysis on 40

DE-ARGs, with the minimal criteria determining the penalty

parameter (l). Risk score  =on
k=1expk  ∗ bk. Using the median

risk score, 930 individuals with PC from the training and validation

cohorts were classified into high- and low-risk categories. The

training cohort involved 635 PC patients from GSE57495,

GSE28735, GSE62452, MTAB-6134, and TCGA-PC datasets,

whereas, the validation cohort involved 295 PC patients from

ICGC-CA and ICGC-AU datasets. For both training and validation

cohorts, survival analyses using the KM technique were carried out to

determine whether the signature could be used to forecast survival.

ROC curves of 1-, 3-, 5-, and 7-years were also plotted to

quantitatively evaluate the predictive ability of our prognostic model.
Immune cell infiltration and immune
checkpoint gene expression differences
between low-risk and high-risk subgroups

Based on the previous results of ICI assessment, the heatmaps

were utilized to show the discrepancies in the tumor immune

microenvironment between low- and high-risk subgroups. Each

color represented different ICI prediction algorithms. The

differential expression of common immune checkpoint genes

(ICGs) in high-risk and low-risk categories was also examined,

with only statistically significant results (p< 0.05) being displayed.

The above analysis is performed in both the train and test cohorts.
Clinical significances of model genes in PC

We integrated the prognosis information, clinical stage, and

expression of model genes to highlight their clinical significances.

Both univariate Cox regression analysis and Kaplain-Meier analysis

were employed to explore and validate their prognostic values. The
Frontiers in Endocrinology 04
GEPIA2 platform (http://gepia2.cancer-pku.cn/#analysis) was

implemented to analyze their association with clinical stages. The

BEST platform (https://rookieutopia.com/app_direct/BEST/

#PageHomeAnalysisModuleSelection) was utilized to explore the

expression traits of ARGs with clinical significances. Only DE-ARGs

with prognostic significances and stage correlation were considered to

be closely related to the occurrence and progression of PC.
Quantitative real-time PCR,
immunohistochemistry and
immunofluorescence

The MiaPaca-2 cell line was procured from BeNa Culture

Collection, and Procell Life Science & Technology Co., Ltd.

supplied the HPDE6-C7, CF-PAC1, Panc-1, and BxPC-3 cell

lines. DMEM mixed with 10% FBS (Gibco, USA) was utilized to

culture HPDE6-C7 (a human pancreatic ductal epithelium cell

line), MiaPaca-2, and Panc-1 cell lines, while IMDM mixed with

10% FBS (Procell, China) was used for CF-PAC1, and BxPC-3 was

cultured with 1640 mixed with 10% FBS (Procell, China). All the

cell lines were incubated in a cell incubator maintained at a

temperature of 37°C and with a CO2 concentration of 5%.

By using TRIzol extraction tool provided by Accurate

Biotechnology, mRNAs associated with five different cell lines

were isolated. These mRNAs were then reversed transcribed into

cDNAs using the Reverse Transcription Reagent. The RT-PCR was

executed by utilizing the qPCR Kit from Accurate Biotechnology.

All reagents used in the experiment were provided by our

laboratory. b-actin was selected as the control standard for the

experiment, and the mRNA expression level analysis was calculated

using the DDCt method. The primer sequences were synthesized

from Sango Biotech (Shanghai, China) shown as follows: HK2: 5’-

TCCCCTCTCGCGTCTCC-3’(F), 5’- AGAGATACTGGTCAA

CCTTCTGC-3’(R); MMP11, 5’- GATCGACTTCGCCAGGTACT

-3’(F), 5’- CCCCGATAGTCCAGGTCTCA-3’(R); CDH3, 5’- GA

CACCCATGTACCGTCCTC-3’(F), 5’- TCTCTCCCCTCCCCTC

AATTA-3’(R); PDK4, 5’- CCAAGCCACATTGGAAGCAT-3’(F),

5’- TGAACACTCAAAGGCATCTTGG-3’(R); SERPINB5, 5’-

ATGCCAAGGTCAAACTCTCCATTCC-3’(F), 5’- CAGCCCTA

GATTTTCCAGACAAGCC-3’(R); SLC2A1, 5’- TGGCATCAAC

GCTGTCTTCT-3’(F), 5’- AGCCAATGGTGGCATACACA-3’(R);

b -ac t in : 5 ’ -CCTGGGCATGGAGTCCTGTG-3 ’ (F ) , 5 ’ -

TCTTCATTGTGCTGGGTGCC-3’(R).

Ultimately, the HPA platform was employed to investigate the

protein levels and cellular location of model genes in PC through

immunohistochemistry and immunofluorescence techniques.
Results

Identification of DE-ARGs between tumor
and normal tissues

The workflow of this study was displayed in Figure 1. In order

to explore the ARGs closely associated with occurrence of PC, the
frontiersin.org
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differential expression analyses of three public cohorts were carried

out through the limma package in R. The results of GSE28735,

GSE62452, and TCGA+GTEx cohorts identified 47, 41, and 295

DE-ARGs, respectively, which were further visualized via the

heatmap package (Figures 2A–C). After taking the intersection of

three cohorts, a total of 40 shared DE-ARGs were determined for

further analysis (Figure 2D; Table S2).
Pan-cancer analysis characterization of the
important roles of DE-ARGs

Up to now, the potential roles of DE-ARGs in the occurrence and

progression of human multiple cancers remained unclear. Thus, we

systematically summarized their pan-cancer characteristics through a

series of complex bioinformatics algorithms. Interestingly, differentially

expressed genes in pancreatic cancer and para-cancerous tissues
Frontiers in Endocrinology 05
showed a similar expression trend in other malignant tumors

(Figure 3A). The expression levels of SLC2A1, MMP11, HK2,

MMP7, and MMP13 in most tumors were significantly increased

compared to corresponding para-cancerous tissues, suggesting their

potential carcinogenesis. The expression levels of PDK4, LMO3 and

PAK3 in most tumors were significantly decreased compared to

corresponding para-cancerous tissues, suggesting their potentially

protective roles. More importantly, nearly all the DE-ARGs exerted

the pivotal parts in the clinical outcomes of patients with PAAD, LGG,

UVM, and KIRC, which further highlighted their crucial contributions

in the carcinogenesis (Figure 3B). Genomics data of pan-cancer

revealed their CNV and SNV landscape, which might be responsible

for their expression traits (Figures 3C–E). Specifically, SLCO1B3,

PAK3, NOX4, MUC4, MMP9, MET, LAMB3, LAMA3, ITGB4,

ITGA2, FN1, and EDIL3 genes exhibited obvious SNV traits.

Furthermore, almost all of the DE-ARGs exhibited evident

mutational patterns in patients diagnosed with SKCM and UCEC
FIGURE 1

The study-flow of this research.
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(Figure 3C). Among the 40 DE-ARGs, the top three genes in the

proportion of mutations were MUC4, LAMA3 and FN1, respectively

(Figure 3D). Additionally, the methylation levels of DE-ARGs showed

a significant difference in pan-cancer tissues and para-cancerous tissues

(Figure 3F). CDH3, EDIL3, PDK4, and PLAT displayed relatively high

methylation levels, while SLPI, CEACAM5, PAK3, TRIM31, and

MMP13 displayed relatively low methylation levels (Figure 3F).

Ultimately, the results of ssGSEA uncovered the significant

correlation between DE-ARGs and several typical cancer-related

pathways (Figure 3G). In particular, DE-ARGs were significantly

correlated with the activities of typical cancer-related pathways.
Cluster analysis of 930 patients with PC
based on the anoikis scores

Initially, ssGSEA was utilised to compute the anoikis scores of each

PC patient. Subsequently, cluster analysis was conducted to classify 930

PC patients into three subtypes, namely C1, C2, and C3 (Figure 4A).
Frontiers in Endocrinology 06
The anoikis scores among the three subtypes demonstrated a

significant difference, with C1 having the highest score, followed by

C3, and C2 having the lowest score (Figure 4B). More significantly,

subtype C1 demonstrated the poorest prognosis while subtype C2

exhibited the most favourable prognosis (Figure 4C). Additionally, the

C1 subtype was observed to be accompanied by oncogene activation,

whereas the C2 subtype was characterised by oncogene inhibition

(Figure 4D). The aberrant expression of oncogenes may account for the

variation in clinical outcomes among PC subtypes. Furthermore, our

investigation revealed that immune and metabolic pathways were

differentially activated in PC patients with distinct anoikis scores,

which is of great significance (Figures 5A, B).
Tumor immune microenvironment analysis

As shown in Figure 6A, C2 subtype exhibited a higher proportion

of immune cell infiltration, while C1 subtype demonstrated a lower
B

C

D

A

FIGURE 2

Identification of differentially expressed anoikis-related genes (DE-ARGs). Differential expression analysis of DE-ARGs in (A) GSE28735, (B) GSE62452,
and (C) TCGA+GTEx cohorts. (D) Identification of 40 shared DE-ARGs.
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proportion of immune cell infiltration. It is widely acknowledged that

immune cells play a crucial role in anti-tumor biological processes. A

higher proportion of immune cells often indicate a stronger

anticancer activity in the tumor microenvironment, although the

regulatory role of ICGs cannot be ignored. Therefore, we conducted

additional analysis on the expression distributions of ICGs among the

three subtypes. The findings revealed that C1 subtype exhibited

higher expression levels of ICGs, whereas C2 subtype demonstrated

lower expression levels of ICGs (Figure 6B).

To examine the regulatory functions of anoikis in the tumor

immune microenvironment, Spearman correlation analysis was

conducted to explore the close relationship between anoikis scores

and the immunemicroenvironment (Figure 6C). The findings revealed

a positive correlation between anoikis scores and macrophage

infiltration and parainflammation (Figures 6D, E), but a negative

correlation with TIL and Th1 cell infiltration (Figures 6F, G).
Frontiers in Endocrinology 07
Ultimately, we also discovered that the majority of DE-ARGs

exhibited significant correlations with immune cell infiltration and

immune-related functions (Figure 6H). Specifically, MMP9, MMP13,

MMP11, and CEMIP were positively associated with the tumor

immune microenvironment, while SLPI, SLC2A1, SERPINB5, HK2,

CEACAM6, and CEACAM5were negatively associated with the tumor

immune microenvironment.
Cluster analysis of 226 patients with PNETs
based on the anoikis scores

According to the enrichment scores of each patient with PNETs,

226 samples were successfully classified into three clusters

(Figure 7A). The enrichment scores of clusters C2 and C3 were

significantly higher than that of cluster C1; however, there was no
B

C

D

E

F

G

A

FIGURE 3

Pan-cancer overview of DE-ARGs. (A) mRNA expression traits of DE-ARGs in pan-cancer. (B) Prognostic values of DE-ARGs in pan-cancer.
(C, D) SNV traits of DE-ARGs in pan-cancer. (E) CNV traits of DE-ARGs in pan-cancer. (F) Methylation levels of DE-ARGs in pan-cancer. (G) Pathway
regulation ability of DE-ARGs in pan-cancer.
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significant difference between clusters C2 and C3 (Figure 7B). Hence,

C1 cluster was redefined as S1 subtype with low enrichment scores,

while C2 and C3 clusters were merged and redefined as S2 subtype

with high enrichment scores (Figure 7C). Further investigation was

conducted to examine the differences in immune and metabolic

characteristics between the two subtypes. Notably, there was no

significant variation in the typical immune pathways between the

S1 and S2 subtypes (Figure 8A). However, the activities of cysteine

and methionine metabolism, propanoate metabolism, selenoamino

acid metabolism, and sulfur metabolism were found to be

significantly different between the S1 and S2 subtypes (Figure 8B).
Identification and verification of a novel
ARG-based prognostic model

Taking into account the pathogenic impact of anoikis on PC, we

postulated that DE-ARGs could facilitate the development of a new
Frontiers in Endocrinology 08
and robust prognostic model. The 40 DE-ARGs were inputted into a

LASSO regression model in both the training and test datasets,

resulting in the identification of 13 genes (Figures S1A, B). The risk

score of prognostic model was computed as following: risk score = 0.19

0969310613421 * HK2 + 0.0519064867507077 *MMP11 + 0.04894081

94769506 * MMP9 + (-0.0210122866868812) * CEACAM5 + (-0.0168

359640064986) * MMP13 + 0.100798963932116 * BNIP3 + 0.0774100

41091489 * SLCO1B3 + (-0.0694892084881754) * EDIL3 + 0.059

818949860188 * CDH3 + (-0.00847433457654591) * PDK4 +

0.028246530675805 * SERPINB5 + (-0.052088581916376) * CEMIP

+ 0.0833490721065633 * SLC2A1. The patients in both the training

and test cohorts were classified into high-risk and low-risk PC

subgroups. In both cohorts, there was a significant survival

advantage in the low-risk group compared to the high-risk group

(P< 0.05) (Figures S2A, B). The risk scores were computed, and the

median threshold of the risk score was set at 2.364683 to differentiate

between high- and low-risk groups (Figures S2C, D). Survival scatter

plots of the two cohorts demonstrated a negative association between
B

C

D

A

FIGURE 4

Cluster analysis help identify molecular heterogeneity of patents with PC. (A) Cluster analysis based on the anoikis scores obtained from the ssGSEA
algorithms. (B) Distribution of anoikis enrichment scores among three subtypes (Score: C1 > C3 > C2). (C) Cluster-based survival analysis. The overall
survival time is C2 > C3 > C1. (D) Expression traits of cancer-related genes among three subtypes. *p<0.05, ***p<0.001,****p<0.0001.
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survival time and the risk score, suggesting that patients in the high-risk

group had poorer prognosis (Figures S2E, F). The time-dependent

ROC curves for overall survival at 1, 3, 5, and 7 years in the training and

test groups demonstrated excellent predictive performance using this

model (Figures S2G, H). Ultimately, we also investigated the differences

in ICI between the high- and low-risk subgroups. As shown in

Figures 9A, B, low-risk PC patients exhibited a higher proportion of

ICI than the high-risk subgroup, consistent with the finding that the

low-risk subgroup had a significant survival advantage.
Clinical significances of model genes in PC

To emphasise the clinical significance of the 13 model genes in

PC, we investigated the relationship between these genes and

clinical outcomes, as well as clinical stages. The outcomes of

univariate Cox regression analysis and KM survival analyses

indicated that HK2, MMP11, MMP9, SLCO1B3, CDH3, PDK4,

SERPINB5, and SLC2A1 were significantly associated with the

survival time of PC patients (Figures 10A, B). In addition to

PDK4, high expression levels of the other seven genes are

unfavourable for the clinical outcomes of PC patients

(Figures 10A, B). Moreover, HK2, MMP11, CDH3, PDK4,

SERPINB5, and SLC2A1 expression were closely associated with

tumour stages (Figure 10C).

After compiling a series of public PC cohorts, we also observed

significant differences in the expression trends of HK2, MMP11,

CDH3, PDK4, SERPINB5, and SLC2A1 between PC and para-

cancerous tissues (Figure 11). It should be noted that HK2, MMP11,

CDH3, SERPINB5, and SLC2A1 exhibited increased expression

levels in PC tissues, while PDK4 showed decreased expression levels

in PC compared to para-cancerous tissues (Figure 11).
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Furthermore, the qPCR results from cell lines confirmed the

aforementioned expression trends of HK2, MMP11, CDH3,

PDK4, SERPINB5, and SLC2A1 (Figure 12). More significantly,

the IHC results were in line with the previous transcriptomics

findings. The protein expression levels of HK2, CDH3, SERPINB5,

and SLC2A1 were significantly higher in PC samples compared to

para-cancerous samples. In contrast, the translational level of PDK4

was significantly lower in PC samples (Figure 13).
Discussion

The severity and progression of PC and PNETs pose a

challenging clinical problem. Multi-omics has refined our

understanding of the rudimentary genetics of PC and PNETs.

Although multimodal therapy, including surgery, chemotherapy,

radiation, targeted therapy, and immunotherapy, has extended the

survival time of pancreatic tumor patients, treatment outcomes

remain inadequate. Varied prognoses and clinical responses are

observed among individuals with distinct subtypes of PC and

PNETs. Prognostic models may accurately identify patients who

would benefit from more aggressive treatment, such as extensive

surgery, radiation therapy, neoadjuvant chemotherapy, or

immunotherapy. Therefore, the development of molecular

diagnostic biomarkers and therapeutic targets for PC and PNETs

should be given priority.

Anoikis, a specialized kind of programmed cell death, plays a

crucial role in body development, tissue homeostasis, disease

manifestation, and tumor spread. In-depth research on anoikis

has progressively identified the underlying molecular process.

Anoikis triggers cell death, integrins sense and transduce

extracellular matrix signals, and classical apoptotic pathways
B

A

FIGURE 5

The discrepancies in the activities of (A) immune and (B) metabolism pathways among three PC clusters. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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regulate cell adherence and survival. Bcl2 and its associated proteins

play a significant role in the control of apoptosis, and several protein

kinase signal molecules serve as regulatory hubs. Previous

researches have highlighted the crucial role of anoikis in multiple

human diseases, such as cancers.

Firstly, a pan-cancer analysis summarised and emphasised the

essential role of ARGs in the onset and development of cancers.

Significant differences in expression of certain ARGs were detected

between cancers and para-cancerous tissues. These DE-ARGs were

also closely associated with the clinical prognosis of patients with

cancer, particularly PC. The aberrant expression patterns may be

caused by genomic alterations. Therefore, we investigated the CNV

and SNV patterns of DE-ARGs in pan-cancer, which further

validated the above aberrant expression patterns. Additionally, we

explored the methylation levels and pathway regulation relationship

of DE-ARGs in pan-cancer. Most ARGs acted as high-methylation

genes in PC. Furthermore, the tumour necrosis factor signalling,

interferon signalling, inflammatory signalling, endothelial-to-

mesenchymal transition signalling, and IL-6/JAK/STAT3
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signalling pathways exhibited obvious correlations with the

anoikis pathways in PC. Overall, this research was the first to

systematically elaborate on the cancer landscape of anoikis,

providing a foundation for future studies.

Bioinformatics technology helped to establish molecular

classifiers associated with anoikis for patients with PC and

PNETs. The classifier successfully stratified a total of 930 patients

with PC into three clusters. Significant differences were observed in

the activities of anoikis among different subtypes. Patients with high

anoikis scores (C1 cluster) had worse clinical outcomes, while those

with low anoikis scores (C2 cluster) had favorable prognoses.

Moreover, the expression of most oncogenes varied among the

three clusters. Specifically, CMYA5, HMCN1, GLI3, PCDHB7,

ADAMTS12, CCND1, ROCK1, CSMD2, RNF43, ECT2, CENPJ,

FAT3, ZFHX4, ABCA13, and COL24A1 exhibited significant

overexpression trends in the C1 cluster.

To investigate the potential mechanisms underlying clinical

outcome differences among patients with distinct anoikis scores,

we conducted an intensive analysis of the components of the
B

C

D E F G

A

H

FIGURE 6

Analysis of tumor immune microenvironment. (A) Discrepancies in the immunocyte infiltration among three clusters. (B) Discrepancies in the
immune checkpoint expression among three clusters. (C) Correlation among anoikis scores, immune cell infiltration and immune-related functions.
Correlation between anoikis scores and (D) macrophages, (E) parainflammation, (F) TIL, and (G) Th1 cells. (H) Correlation among DE-ARGs
expression and immune cell infiltration and immune-related functions. *p < 0.05; **p < 0.01; ***p < 0.001.
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immune microenvironment and expression of ICGs. Increasing

evidence suggests that the immunocompetent cell response plays a

crucial role in anti-tumour processes. The C2 subtype was

associated with a higher proportion of many anti-tumour

immune cells and lower expression levels of ICGs. Previous

research has demonstrated a correlation between tumour-

infiltrating B lymphocytes and favourable prognoses in cancer

patients (27–29). The potential mechanisms underlying B-cell-

mediated antitumor immunity may involve the secretion of

effector cytokines, such as IFN-g, by B cells, which can polarise

T cells towards a Th1 or Th2 response or enhance T-cell responses

through their antigen-presenting cell function (30). This

distinctive ability of B cells to directly induce cytotoxicity in

cancer is demonstrated by CpG-activated B cells, which can

eliminate tumour cells through TRAIL/Apo-2L-dependent

pathways (31). Similarly, the C2 subtype with favourable

prognoses exhibited higher infiltration of B cells. It has been

reported that NK cells recognized most tumor cells through two

mechanisms: “missing-self recognition” and “stress-induced

recognition” (32–34). After recognition, NK cells primarily exert

anti-tumor effects through both direct and indirect pathways (35).
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Additionally, our findings revealed a higher proportion of NK cells

in the C2 subtype. Overall, the dysregulation of the immune

microenvironment among different anoikis subtypes may

account for the differences in clinical outcomes.

In addition, we also explored the potential regulatory

association between ARGs and ICI. Anoikis scores were positively

correlated with macrophage levels and para-inflammation, and

negatively correlated with TIL and Th1 levels, which were

consistent with our previous cluster results. Patients with low

anoikis scores (i.e. C2 subtype) had a higher infiltration level of

TIL and CD4+T cells. This strong anti-tumor immune response

might partly explain why the prognosis of these patients was

relatively good. We then systematically investigated the

correlation between each ARG and ICI. Interestingly, different

genes possessed varying immunomodulatory properties. PDK4,

MMP9, MMP13, MMP11, and EDIL3 were positively correlated

with ICI and immune-related functions, while SLPI, SLC2A1,

SERPINB5, HK2, CEACAM6, and CEACAM5 were negatively

correlated with ICI and immune-related functions.

Subsequently, we classified a total of 226 PNET patients into

three clusters; however, there was no significant difference between
B C

A

FIGURE 7

The cluster results of 226 patients with PNETs. (A) The unsupervised cluster of 226 patients with PNETs based on anoikis scores. (B) The enrichment
scores of three clusters of PNETs. (C) The enrichment scores of two subtypes of PNETs.
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C2 and C3 PNET patients. Therefore, we combined C2 and C3 PNET

patients into one subtype. As we did not have follow-up information,

we were unable to compare the survival time of patients with different

PNET subtypes. While there were no significant differences in

immune pathways among different PNET subtypes, differences in

several metabolic pathways were notable.
Frontiers in Endocrinology 12
Despite the fact that molecular typing is tremendously

important for functional mining of anoikis, we must acknowledge

that clustering is, to some extent, a black box. It cannot precisely

predict the anoikis scores and clinical outcomes for individual

patients. Therefore, we have developed a unique and robust

prognostic model related to anoikis using the LASSO regression
B

A

FIGURE 8

The activities of (A) immune and (B) metabolism pathways in S1 and S2 subtypes with PNETs. *p < 0.05, **p < 0.01.
BA

FIGURE 9

Tumor immune microenvironment analysis in (A) training and (B) test cohorts.
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technique. This model includes 13 genes associated with anoikis,

including HK2, MMP11, MMP9, CEACAM5, MMP13, BNIP3,

SLCO1B3, EDIL3, CDH3, PDK4, SERPINB5, CEMIP, and

SLC2A1. There was a significant difference in survival outcomes

between high-risk and low-risk pancreatic cancer patients in both

the training and validation cohorts. More importantly, ROC curves

further validated the prediction accuracy of the model and

demonstrated its ability to predict the survival outcome of 930

patients with pancreatic cancer, which could have wide applications

in the future and provide a reference value for individual

patient intervention.

Hexokinase 2 (HK2) catalyzes the phosphorylation of glucose, a

step required for glucose metabolism (36, 37). Anderson et al. have

reported that HK2 had the potential to enhance tumor proliferation,

growth, invasion, andmetastasis via regulation of lactate metabolism in

PC (38). In individuals with PC, HK2 also prevented cell apoptosis

mediated by gemcitabine through voltage-dependent anion channel

(39). Remodeling of the extracellular matrix (ECM) by matrix

metalloproteinases (MMPs) was a crucial stage in the invasion and

metastasis of solid malignant tumors as it enabled tumor cells to

modify ECM components and release cytokines, thus promoting

protease-dependent tumor progression (40). Cell adhesion,

intracellular and intercellular signal transduction, cancer

development, inflammation, angiogenesis, and metastasis are just a
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few of the activities of carcinoembryonic antigen-related cell adhesion

molecules (CEACAMs) in complex biological processes. CEACAM5 is

now considered a reliable clinical biomarker and a promising

therapeutic target for melanoma, lung cancer, colorectal cancer, and

pancreatic cancer (41).

However, there are some limitations associated with our research.

Our signature was constructed using retrospective data from public

datasets. To further establish the predictive significance of our

prognostic signature, extensive prospective clinical research is

necessary. Furthermore, as the signature was developed using

bioinformatics research, additional fundamental research is required

to validate our findings. Despite these limitations, our study still holds

unique clinical significance. The pan-cancer comprehensive analysis of

anoikis is particularly useful for the advancement of further

fundamental research in the future. The molecular classifier and

prognostic model based on anoikis score aid in identifying the

inherent heterogeneity of pancreatic cancer patients, thus promoting

the development of personalised intervention therapy for tumors.
Conclusion

This is the first study to systematically investigate anoikis in

pan-cancer, categorize patients with PC and PNETs into unique
B

C

A

FIGURE 10

Clinical significances of model genes in PC. (A) Uninariate Cox regression analysis. (B) Kaplan-Meier survival analysis. (C) Correlation between clinical
stage and gene expression.
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FIGURE 11

The transcriptomic levels of model genes in tumor and normal tissues. *p < 0.05.
FIGURE 12

PCR experiments validated the expression levels of model genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, no significance.
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molecular subtypes according to their levels of anoikis, and create a

dependable predictive model for PC based on anoikis. The

functional status, tumor immune microenvironment, and clinical

outcomes of patients with PC displayed considerable diversity. The

survival rate of PC patients could be accurately anticipated by the

risk model based on anoikis. Our findings hold the potential to

enhance anoikis research and the targeted therapy of patients with

pancreatic tumors.
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FIGURE 13

Immunocytochemistry and immunofluorescence results of model genes.
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