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Background: It has been suggested that lactate metabolism (LM) is crucial for the

development of cancer. Using integrated single-cell RNA sequencing (scRNA-

seq) analysis, we built predictive models based on LM-related genes (LMRGs) to

propose novel targets for the treatment of LUAD patients.

Methods: The most significant genes for LM were identified through the use of

the AUCell algorithm and correlation analysis in conjunction with scRNA-seq

analysis. To build risk models with superior predictive performance, cox- and

lasso-regression were utilized, and these models were validated on multiple

external independent datasets. We then explored the differences in the tumor

microenvironment (TME), immunotherapy, mutation landscape, and enriched

pathways between different risk groups. Finally, cell experiments were

conducted to verify the impact of AHSA1 in LUAD.

Results: A total of 590 genes that regulate LM were identified for subsequent

analysis. Using cox- and lasso-regression, we constructed a 5-gene signature

that can predict the prognosis of patients with LUAD. Notably, we observed

differences in TME, immune cell infiltration levels, immune checkpoint levels, and

mutation landscapes between different risk groups, which could have important

implications for the clinical treatment of LUAD patients.

Conclusion: Based on LMRGs, we constructed a prognostic model that can

predict the efficacy of immunotherapy and provide a new direction for treating

LUAD.
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1 Introduction

Lung cancer (LC) is a highly prevalent malignant tumor and the

leading cause of cancer-specific deaths worldwide, resulting in over

350 deaths per day in 2022 (1). In the past decade, significant

improvements have been made in the science of non-small cell lung

cancer (NSCLC), which occupies almost 80% of all LC cases. LUAD

is the most common histological subtype of NSCLC. In terms of

disease prevention, the wide application of low-dose chest

computed tomography has achieved the goal of early detection,

greatly reducing all-cause mortality (2, 3). The treatment of LC has

also evolved with the generation of several lines of tyrosine kinase

inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). Despite

that, the 5-year overall survival rate remains poor, ranging from

68% in patients with stage IB to less than 10% in patients with stage

IV (4). Thus, it is imperative to explore novel molecular markers for

LUAD to improve prognosis.

Since the Warburg effect was proposed in the 1920s, there has

been ample evidence that lactic acid plays a critical role in

malignant cell proliferation (5). As we know, glucose is the main

energy source of tumor cell metabolism. While, due to abnormal

metabolic activities, cancer cells desire an excessive quantity of

nutrients and oxygen. Based on the Warburg effect, tumor energy

metabolism is inclined to anaerobic glycolysis rather than oxidative

phosphorylation, even under an aerobic state, which leads to a

hypoxic tumor microenvironment (TME) (6). Lactate, the

byproduct of glycolysis, is found concentrated in tumor tissue 5-

20 times higher than in normal tissue (7). An increased

concentration of lactate in the TME is correlated with rapid

tumor growth, metastasis, and resurgence, also creating an

immunosuppressive TME favorable for a cancer cell to gain

immune escape potential (8). Tumor cells may produce lactate

and transfer it to surrounding cancer cells, immune cells, and

stromal cells, resulting in metabolic reprogramming (9). Thus,

lactate plays the role of a mediator between intrinsic metabolism

and immunosuppression. Recent studies have identified a number

of lactate-metabolizing enzymes that are dysregulated in LUAD,

including lactate dehydrogenase A (LDHA), monocarboxylate

transporters (MCTs), and lactate oxidase (LOX). Targeting these

enzymes with small molecule inhibitors has shown promise as a

therapeutic strategy for LUAD (10). Reducing the concentration of

lactate by blocking the production pathway of lactate or the

transport of lactate has proven to be a promising therapeutic

strategy, especially for drug-resistant malignant tumors (11).

Although the LMRGs have been proven to perform a critical

function in the progression of LUAD in recent years (12, 13),

comprehensive analyses of the relationship between LMRGs and

the diagnosis, risk stratification, and prognosis of LUAD are

urgently needed.

Hence, in the present study, we aimed to screen out the LMRGs

in LUAD and elaborate on the role of LMRGs in the TME and

prognosis of LUAD. Then, we will establish a signature capable of

predicting the prognosis of patients with LUAD on basis of LMRGs.

Our research may improve the existing lactate-dependent

therapeutic schedule, providing novel insights into prognostic

biomarkers and therapeutic targets for LUAD.
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2 Materials and methods

2.1 Data acquisition

In this study, LUAD scRNA-seq data were obtained from the

GSE150938 database (https://www.ncbi.nlm.nih.gov/geo/), which

consisted of 12 LUAD samples. The training cohort comprised

LUAD RNA expression patterns and relevant clinical information

from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). Additionally, the validation set was

obtained from the GSE29016, GSE30219, GSE31210, and

GSE42127 GEO expression profi les. To facilitate data

comparability, all expression data were converted to transcripts

per million (TPM) format. The “sva” R package was used to

eliminate the batch effect, and all data were transformed to log2

before analysis. A total of 247 lactate-related metabolic genes

(LMRGs) with correlation values greater than 15 were selected

from the GeneCards database (https://www.genecards.org/) for

further analysis.
2.2 scRNA-seq data processing and
cell annotation

We validated the scRNA-seq data using the “Seurat” R program.

Screening criteria included expressing genes in at least three cells,

expressing 200-7000 genes in each cell, and expressing no more

than 10% of mitochondrial genes. Finally, 46,286 appropriate cells

were identified. The top 3000 highly variable genes were screened

using the “FindVariableFeatures” program. The canonical

correlation analysis (CCA) function “findintegrationanchors” was

used to reduce batch effects that might interfere with downstream

analysis. We utilized the “IntegrateData” and “ScaleData” methods

to appropriately integrate and expand the data. Anchor points were

discovered using principal component analysis (PCA)

dimensionality reduction. To locate relevant clusters, the first 20

PC were tested using the t-distribution random neighborhood

embedding (t-SNE) technique. We obtained 20 cell clusters by

using the “FindNeighbors” and “FindClusters” functions

(resolution = 0.8). We assessed cell cycle heterogeneity along cell

clusters using cell cycle markers from the “seurat” package. The

“CellCycleScoring” program was used to generate cell cycle scores

based on the expression of G2/M and S-phase markers. The

“FindAllMarkers” program was used to identify differentially

expressed genes (DEGs) for each cluster. To select which genes

were employed as markers for each cluster, we used a cut-off

threshold and modified P< 0.01 and log2 (foldchange) > 0.25

criterion. Cell types were meticulously defined using common

marker genes for each cluster. The “AUCell” R program, which

analyzes the activity state of gene sets, was used to assign LM

activity ratings to each cell. The cells were separated into high- and

low-LM-AUC groups based on the median AUC score, and

visualization was done with the “ggplot2” R program. We next

performed differential analyses to discover DEGs in high- and low-

LM-AUC groups, and 440 DEGs were selected for further

investigation. Furthermore, we used correlation analysis to look at
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the genes most connected with LM activity, with the top 150 most

associated genes being included for future study. The DEGs and

genes discovered through association analysis were the ones that

had the greatest effect on LM activity (590 genes in total).
2.3 Construction and validation of
the risk scoring

We used univariate analysis on the 590 genes that regulated LM

activity to find genes that significantly related with patient survival

(P< 0.01). Following that, LASSO andmultivariate regression analysis

were used to further screen for genes and risk coefficients that were

highly linked with prognosis. Based on the coefficients revealed by the

multivariate analysis, each LUAD patient was assigned a risk score.

Patients from the TCGA-LUAD were separated into high- and low-

risk groups based on their median risk score. Meanwhile, survival

curves were plotted using the Kaplan-Meier technique for prognostic

reasons, and log-rank tests were used to establish statistical

significance. The prediction model’s effectiveness was evaluated

using receiver operating characteristic (ROC) curves; an AUC value

of >0.65 indicated outstanding performance. The signature’s

prediction capacity was verified in nine distinct GEO datasets using

survival analysis and AUC. PCA analysis was used to show the

distribution of patients in different risk groups. A similar method was

used to validation cohorts.
2.4 Nomogram construction

We created a nomogram that used the risk score, age, and

pathological stage as independent prognostic criteria to compute

the probability of OS at 1-, 3-, and 5- years (14). The receiver

operating characteristic (ROC) curve, calibration curve, and

concordance index curve were also utilized to evaluate the

prediction accuracy of the nomogram. The prognostic

significance of risk score clinical characteristics was assessed using

stratified analysis (age, pathological T, N stage, and clinical stage).
2.5 Mutation landscape

The TCGA database was used to generate gene mutation

profiles from LUAD patients, and the “ComplexHeatmap” R

package was used to visualize the mutation landscape and

immune infiltration scores (15). According to the median risk

score and tumor mutational load, TCGA-LUAD patients were

separated into four groups (H-TMB+high-risk, H-TMB+low-risk,

L-TMB+high-risk, and L-TMB+low-risk), and their survival

disparities were compared.
2.6 Assessment of immune infiltration

The timer 2.0 database was used to download data from seven

different methods that were utilized to determine the degree of
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immune infiltration in TCGA-LUAD patients. A heatmap graphic

was used to show differences in immune infiltration across various

risk categories. The “estimate” R program was used to quantify the

stromal and immune cell abundance and tumor purity in malignant

tumor tissues based on the expression patterns (16). A higher score

indicates that there is a greater percentage of TME components.
2.7 Immunotherapy comparisons

Immune checkpoints are a group of molecules that are

expressed on immunological cells that control the amount of

immune activation. They are critical in controlling excessive

immunological activation. We evaluated the levels of expression

of well-known immune checkpoint genes in both groups (ICGs).

Correlations between ICGs expression, model genes, and risk scores

were investigated further. The Immunophenoscores (IPS) for

LUAD were obtained from the Cancer Immunome Atlas (TCIA)

database (17).
2.8 Enrichment analysis

The GSVA used the MSigDB signature gene sets

“h.all.v7.5.1.symbols.gmt” (https://www.gseamsigdb.org/gsea/

msigdb/index.jsp). The GSEABase program was then used to

analyze the activity of each gene set in each sample. GSEA was

used to identify which signaling pathways and biological activities

were enriched in the high- and low-risk groups. ssGSEA was used to

determine the enrichment scores of infiltrating immune cells and

immunological function.
2.9 The Role of AHSA1 in LUAD

Using the timer database, researchers investigated the

expression of AHSA1 in pan-cancer. Patients were divided into

two groups based on AHSA1 expression to study changes in

survival: both high- and low- expression.
2.10 Cell lines culture

The Cell Resource Center at Shanghai Life Sciences Institute

provided BEAS-2B, A549, and H1299 human LUAD cell lines.

These cells were cultured in F12K or RPMI-1640 (Gibco BRL, USA)

with 10% FBS, 1% streptomycin, and penicillin (Gibco, Invitrogen,

Waltham, MA, USA). Cells were grown at 37°C, 5% CO2, and

95% humidity.
2.11 Cell transfection

SIRNAs knocked down AHSA1 (siRNAs). Supplementary

Table S1 included AHSA1 siRNA sequences. In a 6-well plate,

cells were plated at 50% confluence and infected with negative
frontiersin.org
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control (NC) and knockdown (siAHSA1). All transfections used

Lipofectamine 3000 (Invitrogen, USA).
2.12 Extraction of RNA and Real-Time PCR
(RT-PCR)

Cell lines were TRIzol-extracted for total RNA (15596018,

Thermo). Using PrimeScriptTMRT, cDNA was made (R232-01,

Vazyme). SYBR Green Master Mix (Q111-02, Vazyme) was used

for real-time polymerase chain reaction (RT-PCR), and each

mRNA was standardized to GAPDH. Expression levels were

counted using 2−-Ct. Supplementary Table S1 lists all primer

sequences from Beijing-based Tsingke Biotech.
2.13 Colony formation

We transfected 1x103 cells into each well of a 6-well dish and

cultured them for 14 days. The cells were fixed in 4%

paraformaldehyde for 15 minutes and then stained with Crystal

violet (Solarbio, China).
2.14 EdU

After the cells adhered to the side of the 96-well plate, the

experiment was performed. Then, the manufacturer’s 5-Ethynyl-2’-

deoxyuridine (EdU) test was carried out (Ribobio, China). Cells that

were actively dividing were tallied using an inverted microscope.
2.15 Wound-healing assay

A cell incubator was used to grow transfected cells in 6-well

plates to 95% confluence. Each cultured well was scraped along a

single straight line using a sterile 20-L plastic pipette tip, and the

scrapings and any loose cells or debris were rinsed away twice with

phosphate-buffered saline. Taking pictures of the scratches at 0h

and 48h, we next used the Image J program to quantify the breadth

of the wounds.
2.16 Transwell assay

The transwell test was used to examine the invading and

migrating cells. Incubation of treated A549 and H1299 cells

(2x105 per well) in 24-well plates began after 12 hours. The cells’

invading and migrating abilities were measured by precoating the

top of the plate with matrigel solution (BD Biosciences, USA) or

leaving it untreated. The cells on the top surface were removed,

while the remaining cells on the bottom were fixed in 4%

paraformaldehyde and stained with 0.1% crystal violet

(Solarbio, China).
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2.17 Statistical analysis

Data and statistics were processed in R (version 4.1.3). The

experimental data were analyzed using Graphpad and Image J

(1.8.0) (version 9.4.0). Kaplan-Meier curves and a log-rank test

were used to evaluate the differences in survival times between the

two groups (18). The “survminer” R program was used to generate

all survival curves. Cox and lasso regression analysis were used to

assess risk factors. For visualization, we utilized “ggplot2” program,

and for analysis, the R package “survival” was used to calculate both

OS and risk scores. It was made using “Pheatmap”, an online

heatmap generator. Significant quantitative differences for normally

distributed variables were identified using a two-tailed t-test or a

one-way analysis of variance. For non-normally distributed data,

the significance of any differences was determined using either the

Wilcoxon test or the Kruskal-Wallis test. All statistical testing was

performed in R. If the number is less than 0.05, it is considered to be

statistically significant.
3 Results

3.1 Analysis process of scRNA-seq

Figure 1 depicted the flowchart for the study. A total of 46286

high-quality cells were deemed suitable for future study. The

expression characteristics of each sample were shown in

Supplementary Figure S1A. There was a statistically significant

positive connection between sequencing depth and total

intracellular sequences (R=0.94, Supplementary Figure S1B). The

PCA reduction plot indicated no discernible differences in cell cycles

(Supplementary Figure S1C). The study included 12 samples, and the

cell distribution within each sample was mostly identical, indicating

that there was no discernible batch impact between samples, which

might be useful for future research (Supplementary Figure S1D).

Following that, the dimensionality reductionmethods, namely t-SNE,

classified all cells into 22 clusters (Figure 2A). Bubble plots depicted

the typical marker genes (19) of various cell types as well as the

connection of distinct groups (Figure 2B). In Figure 2C, an t-SNE plot

was used to depict the distribution of each cell population. Each cell’s

LM activity was evaluated. AUC values were higher in cells that

expressed more LMRGs, which were mostly orange-colored myeloid

cells (Figure 2D). Based on the AUC score median values, all cells

were assigned an AUC score for the LMRGs and divided into high-

and low-LM-AUC groups (Figure 2E). Correlation study revealed

that the genes most closely associated with LM activity (Figure 2F).

The single-cell study yielded the 590 genes most linked with

LM activity.
3.2 Construction and validation of the
risk scoring

We eliminated the batch effect from the GEO-obtained data for

improved data consistency, and Figures 3A, B displayed the PCA
frontiersin.org
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plots before and after the batch effect was removed from the TCGA

data, respectively. Following that, TCGA was separated into 6:4

training and validation sets, and univariate COX analysis was done,

with the findings indicated by a forest plot (Figure 3C, P< 0.01),

before lasso (Figure 3D) and multivariate COX regression analysis

were used to create the risk model consisting of 5 genes. Figure 3E

displayed the coefficients associated with each model gene from
Frontiers in Endocrinology 05
which the risk score was computed. The following was the formula:

risk   score =o
k

n=i
(CoefiExpi)

The coefficient and expression of each model gene were represented

by Coefi and Expi, respectively, and the risk score for each sample
FIGURE 1

The workflow of the present study.
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was determined using the above method. The circle diagram

depicted the predictive HR value of five model genes, and it was

obvious that AHSA1, SERBP1, RHOF, and CCL20 are at high risk.

CD3D, on the other hand, had been demonstrated to be a low-risk

gene (Figure 3F).
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3.3 Survival analysis and model evaluation

Based on median risk values, patients were split into high- and

low-risk groups, and a survival analysis revealed a substantial OS

difference for TCGA-LUAD patients (train set, test set, and all set,
A B

D

E

FC

FIGURE 2

Annotation of single-cell data. (A) The t-SNE plot showed that all the cells in 22 clusters. (B) A bubble plot exhibited typical marker genes for each
cell cluster. (C) The t-SNE map indicates that LUAD samples can be annotated as 8 cell types in the TME (different colors represent different cell
types). (D, E) AUCell score and groups of LM activity in each cell. (F) Correlation analysis between LM-AUCell score and genes.
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Figures 4A–C). Similarly, four GEO datasets also had statistically

significant survival differences (P< 0.05; Figures 4G–I; 5A).

According to the expression levels of the model genes, PCA

analysis was performed on all the samples from TCGA and GEO,

and the results showed that the samples of the high- and low- risk
Frontiers in Endocrinology 07
groups could be clearly distributed into two clusters Figures 4D–F,

J–L and Figure 5B. ROC analysis measured the discrimination of

this signature, with 1-, 3-, 5-,7-, and10-year AUCs of 0.0.734, 0.721,

0.695, 0.710, and 0.682 in TCGA-train set; 0.711, 0.707, 0.602,

0.615, and 0.597 in TCGA-test set; 0.724, 0.719, 0.647, 0.658, and
A B

D

E F

C

FIGURE 3

Construction of the signature. (A, B) PCA plots before and after removal of batch effects for 5 datasets. (C) A forest plot presents prognostic
associated LMRGs. (D) Eleven prognostic LMRGs were included in the LASSO regression analysis to screen the most important model genes.
(E, F) Coefficients for model genes as well as HR values for model genes.
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0.632 in TCGA-all set; 0.626, 0.728, 0.687, 0.616, and 0.607 in

GSE29016; 0.690, 0.715, 0.737, 0.709, and 0.654 in GSE30219; 0.725,

0.645, 0.650, and 0.666 in GSE31210 (LUAD-patients on survival

less than 1 year were lacking); and 0.764, 0.608, 0.596, 0.576, and

0.6606 in GSE42127 (Figures 5C-I).
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3.4 Construction and validation of
nomogram

A heatmap was constructed to highlight the correlations

between model genes and clinical characteristics. Some clinical
A B

D E F

G IH

J K L

C

FIGURE 4

Assessment of risk models. (A-C) Kaplan-Meier survival analysis of signatures in the TCGA (train, test, and all set) datasets. (D-F) The PCA analysis was
used to evaluate the distribution of the samples in the TCGA (train, test, and all set) datasets. (G-I) Kaplan-Meier survival analysis of signatures in the
GEO (GSE29016, GSE30219, and GSE31210) datasets. (J-L) PCA analysis showed the distribution of samples in the GEO (GSE29016, GSE30219, and
GSE31210) cohorts.
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factors (T stage, N stage, clinical stage, and survival status) differed

significantly between the high- and low-risk groups (P< 0.05,

Supplementary Figure S2A). The prevalence of different phases

across groups was then compared and shown as a percentage bar

plot. We observed that the high-risk group had worse T stage, N

stage, and clinical stage (Figures 6A-D). Based on the TCGA-LUAD

dataset, a predictive nomogram comprising risk score and

clinicopathological parameters (age and clinical stage) was built to

better predict prognosis (Figure 6E). Survival statuses at 1, 2, and 3

years were used as clinical outcome measures. The calibration plot

revealed that this signature had outstanding prediction ability for 1-

, 2-, and 3-year survival rates (Figure 6F). The C-index curves

revealed that the nomogram outperforms the risk score and any

other clinical measure in predicting prognosis (Figure 6G). The

predictive ability of the nomogram score, risk score, and other
Frontiers in Endocrinology 09
clinical characteristics was also evaluated using ROC analysis. The

AUC value of the nomogram score over one, three, five, and seven

years was 0.760, 0.7749, 0.711, and 0.734, which were greater than

risk scores and other clinical indicators (Figures 6H–K).
3.5 Mutational landscape

This was especially true for personalized cancer therapy, where

mutations in certain genes play a crucial role. We studied the

somatic mutation profiles of various risk categories. Statistics

indicated that the high-risk group had a higher mutation

frequency for the top 20 high-frequency mutated genes

(Figure 7A), which included TP53, TTN, and CSMD3. Figure 7B

indicated a significant difference in TMB between the high- and
A B

D E F

G IH

C

FIGURE 5

Evaluation of model. (A, B) Survival analysis revealed the survival significance of high and low risk scores in the GSE42127 cohort, and the sample
distribution of high and low risk groups was shown in the PCA plot. (C-I) The ROC curve showed the survival accuracy of the model in TCGA (train,
test, and all set) and GEO (GSE29016, GSE30219, GSE31210 and GSE42127) cohorts.
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low-risk groups, with greater TMB in the high-risk group.

Spearman correlation analysis was utilized to study the

association between risk score and TMB, and a significant

positive correlation was obtained (R = 0.12, P< 0.001, Figure 7C).

We then divided patients into four groups (H-TMB+high-risk, H-
Frontiers in Endocrinology 10
TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk) based on

median TMB values and median risk values; the results showed that

LUAD patients with H-TMB+low-risk had the best prognosis, and

LUAD patients with L-TMB+high-risk had the worst

prognosis (Figure 7D).
A B D

E F

G

IH J K

C

FIGURE 6

Building a more accurate nomogram. (A-D) The proportion of clinical characters (age, N stage, T stage, and clinical stage) in different risk groups.
(E) Nomogram was constructed by combining clinical features with risk score. (F) The calibration plots test consistency between the actual OS rates
and the predicted survival rates, with the 45°line representing the best prediction. (G) The C-index curves were used to evaluate the predictive
performance of different clinical characteristics, nomogram scores and risk scores. (H-K) ROC curves for 1, 3, 5, and 7 years showed AUC values for
various clinical factors, risk scores, and nomogram scores.
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3.6 Differences in the immune
microenvironment and immunotherapy
response

Seven separate algorithms indicated that tumors at low risk had

greater immune cell infiltration, such as T cells, B cells, NK cells,
Frontiers in Endocrinology 11
and activated Mast cells as illustrated in Figure 8A. The ESTIMATE

approach was used to analyze the amount of immune infiltration in

the various risk groups, and Figure 8B similarly confirmed the prior

study, with the low-risk group having greater stromal,

immunological, and ESTIMATE scores than the other groups

(stromal score combined with immune score). Spearman
A

B DC

FIGURE 7

Landscape of LUAD sample mutation profiles. (A) Mutation landscape of the top 20 genes with mutation frequency in differential risk subgroups.
(B) Comparison of tumor mutation burden (TMB) between different risk groups. (C) Correlation analysis between risk score and TMB. (D) Survival
differences for four different subgroups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk).
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correlation analysis was utilized to evaluate the link between risk

score and the score of immune infiltration. The risk scores were

favorably connected with stromal (R = -0.22, FDR< 0.001), immune

(R = -0.28, FDR< 0.001), and ESTIMATE (R = -0.27, FDR< 0.001)

scores, and negatively correlated with tumor purity (R = -0.28,

FDR< 0.001, Figure 8C). The risk score was correlated with the

degree of immune cell infiltration and the quantity of each

component in the TME, according to the data. Depending on the

degree of immune infiltration, disease progression and

immunotherapeutic efficacy may differ. Given the above results,
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we investigated whether the prognostic model might predict LUAD

patients’ reaction to ICIs. First, we examined the relation between

risk score and commonly identified immunotherapy biomarkers in

the TCGA-LUAD cohort. It demonstrated that practically all ICGs,

including as PD-1, TIGIT, and CTLA4, were all substantially

expressed in the high-risk group (Figure 9A). The correlations

between modeling genes, risk scores, and ICGs were further

analyzed and shown in the bubble plot (Figure 9B), with blue

representing negative correlations and orange representing positive

correlations, with bigger bubbles and deeper hues suggesting a
A B

C

FIGURE 8

Analysis of immune infiltration. (A) Seven algorithms assess differences in immune infiltration status between different risk groups. (B) The violin plot
demonstrated the difference in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the ESTIMATE algorithm between
the two risk subgroups. (C) The correlations in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the ESTIMATE
algorithm between the two risk subgroups.
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stronger link. The IPS can help you locate persons who possibly

benefit from immunotherapy. It was hypothesized that tumor

samples from these individuals would have a positive immune

response to PD-1/PD-L1 or CTLA4 inhibitors, or both

(Figures 9C-F). Patients in the group with the lowest risk had

much higher IPS scores, indicating that they would benefit the most

from this kind of immunotherapy.
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3.7 Functional enrichment analysis

In order to investigate the underlying process that may lead to a

poor prognosis for high-risk LUAD patients, an analysis of

hallmark pathway gene profiles was conducted, revealing distinct

characteristics between high- and low-risk groups. A direct

comparison between the Risk-High and Risk-Low groups showed
A

B

D E FC

FIGURE 9

Immune checkpoint and TCIA analysis. (A) A box plot showed that differences in immune checkpoint gene expression between high- and low-risk
groups. (B) Correlation between model genes and immune checkpoint. (C-F) The low-risk group has significantly greater IPS, IPS-CTLA4-neg-PD-1-
neg, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-neg-PD-1-pos, and IPS-CTLA4-pos-PD-1-pos. Note: *P< 0.05, **P< 0.01, ***P< 0.001.
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that the top five enriched signatures in the high-risk group were

MYC target v1, MYC target v2, mTORC1 signaling, G2M

checkpoint, and Glycolysis (Figure 10A). GSEA enrichment

analysis also indicated that the high-risk group had significantly

enriched Cell Cycle (NES = 1.93, p< 0.001) and DNA Replication

(NES = 1.78, p = 0.000) (Figure 10B). The ssGSEA algorithm was

employed to examine differences in immune status across distinct

risk groups. Low-risk LUAD patients showed increased infiltration

of various immune cells, including Active dendritic cells (aDCs), B

cells, CD8+ T cells, Dendritic cells (DCs), Immature dendritic cells

(iDCs), Mast cells, neutrophils, T helper cell, Tumor-infiltrating

lymphocytes (TILs), and Regulatory T cells (Treg), in their tumor

microenvironment (TME). Furthermore, almost all immune-

related pathways were significantly expressed in the low-risk

group (Figures 10C, D).
3.8 Experimental verification

A pan-cancer study of AHSA1 expression levels demonstrated

that AHSA1 was substantially expressed in LUAD compared to

normal tissue (Figure 11A). Figures 11B, C demonstrated that

AHSA1 was substantially expressed in tumor groups and that

patients with high AHSA1 expression in the TCGA database had

a worse prognosis. In accordance with our earlier findings, AHSA1

was expressed at a greater level in LUAD cell lines (Figure 11D).

Then, five days after transfection, we quantified the amount of

AHSA1 expression in A549 and H1299 cell lines by qRT-PCR to

determine the efficiency of siRNA-mediated AHSA1 knockdown

(Figure 11E). According to research on clonal formation, AHSA1

knockdown inhibits the capacity of LUAD cells to produce clones

(Figure 11F). Then, EdU tests were conducted to investigate

whether knockdown of AHSA1 affected the proliferative capacity

of LUAD cells. Lower AHSA1 expression decreased the

proliferation of A549 and H1299 cells relative to the control

group (Figure 12A), indicating that AHSA1 may play a role in

the proliferation of LUAD cell lines. According to these results,

AHSA1 knockdown inhibited the proliferation of LUAD cells. The

investigation on wound healing demonstrated that AHSA1

knockdown dramatically decreased LUAD cell migration and

invasion (Figure 12B). The trans-well experiment demonstrated

that LUAD cells transfected with si- AHSA1 exhibited a reduced

capacity for migration and invasion, which was consistent with the

wound healing assay outcomes (Figure 12C). All experimental

investigations demonstrated that AHSA1 was a tumor-promoting

oncogene in tumor development and progression and acted as a

pro-oncogenic regulator in LUAD.
4 Discussion

LC remains one of the most prevalent malignant tumors and the

greatest contributor to cancer-specific death worldwide. Despite

significant improvements have been made in diagnostic techniques
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and treatment schedules of NSCLC, the 5-year overall survival rate

remains poor. At present, lactic acid, the byproduct of glycolysis,

was repeatedly confirmed could promote malignant cell

proliferation and induce immunosuppressive microenvironment.

It acts as a mediator between intrinsic metabolism and

immunosuppression. In recent years, researchers found that

reducing the concentration of lactate might be a promising

therapeutic strategy. Hence, lactate-related genes have the

potential to act as novel molecular biomarkers and therapeutic

targets. In the present study, we explored an original diagnostic

signature and prognostic scoring system based on LRMGs, bringing

prospect for reversing immune resistance and improving prognosis

of patients. Numerous groundbreaking research demonstrated the

potential of the lactic acid-induced immunosuppressive milieu and

its role in the promotion of tumors. As far as we are aware, LUAD

does not have a lactate-related prognostic grading system.

We conducted scRNA-seq on 12 LUAD samples in this study

and identified eight distinct cell types. LM activity was evaluated

using the LM gene set obtained from the GeneCards database, and

myeloid and epithelial cells were found to exhibit the highest levels

of LM activity, suggesting that LM may play a role in regulating

these cells and influencing carcinogenesis and development. Key

genes that regulate LM activity were then investigated, and

prognostic models were constructed using Cox and lasso

regression. The high-risk group was found to have a worse

prognosis, and a signature derived from this analysis

demonstrated good accuracy and stable performance across four

public GEO datasets. We also integrated clinical information to

develop a nomogram, which showed better performance in

predicting survival than risk scores and other clinical

characteristics. While previous studies have suggested a link

between genetic modifications and the generation of neoantigens

and potential immunotherapeutic advantages (20), our findings

showed that patients in the low-risk group had fewer TMB, while

patients in the high-risk group had more mutations in high-

frequency genes. We further categorized the patients into four

groups based on TMB and risk status, and the H-TMB+low-risk

group had the best prognosis, providing potential clinical

implications for prognostic assessment.

The immune microenvironment is composed of a variety of

cellular components including extracellular matrix, epithelial cells,

blood vessels and tumor-infiltrating lymphocytes, which may

accelerate tumor destruction, enhance tumor invasiveness, and

improve antitherapeutic response (21). To further understand

how TME effects tumor prognosis, we examined immune cell

infiltration in high- and low-risk LUAD patients. Seven

algorithms were used to quantify immune cell infiltration in

various risk categories, and the results revealed that tumors in the

low-risk group had more immune cell infiltration. The ESTIMATE

approach also revealed that low-risk samples had more immune cell

infiltration, and the risk score was inversely connected to the

stromal, immune, and ESTIMATE scores (FDR< 0.001).

Furthermore, we discovered that the majority of the known ICGs

were expressed at a greater level in the low-risk group, and the
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correlation analysis revealed that the risk scores were strongly

negatively linked with the majority of the immunological

checkpoint genes. TCIA was utilized to investigate the effects of

PD-1 and CTLA-4 treatment in order to better understand the

variations in immunotherapy effectiveness among risk groups.

Because their IPS score was substantially higher than that of the
Frontiers in Endocrinology 15
high-risk group, the findings suggested that LUAD patients in the

low-risk group would benefit more from immunotherapy.

GSEA results show that Cell Cycle and DNA Replication were

mainly enriched in the high-risk group. Tumor is a kind of disease

in which cell cycle regulation mechanism is destroyed. In the whole

monitoring system of cell cycle progression, cell cycle detection sites
A B

DC

FIGURE 10

Enrichment analysis. (A) GSVA analysis revealed pathways enriched in the 50 hallmark gene sets for the high- and low- risk groups. (B) GSEA showed
pathway differences between high- and low-risk groups. (C, D) The ssGSEA algorithm was employed to quantify the immune cell infiltration and
immune function between the high-risk and low-risk groups. Note: **P < 0.01, ***P < 0.001.
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play a core role function. DNA replication is an important part of

the cell cycle, dysregulation of which is also one of the significant

factors leading to tumorigenesis and tumor proliferation. Currently,

cell cycle checkpoint kinase inhibitors are utilized therapeutically

and are successful in LC. These inhibitors induce cell death and cell
Frontiers in Endocrinology 16
cycle arrest, therefore reversing the acquired drug resistance

induced by cell cycle disorder (22).

Interestingly, in TCGA database, AHSA1 was highly expressed

in tumor groups, and LUAD patients with high-expression AHSA1

had poor prognosis. In order to understand the underlying
A

B
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F

C

FIGURE 11

Cell Experiment. (A) The expression of AHSA1 in pan-cancer tissues was analyzed using the TIMER database. (B) Prognosis was evaluated by
performing survival analysis on the effect of AHSA1 expression. (C) TCGA database analysis revealed a difference in AHSA1 expression between
normal samples and tumor samples. (D) To assess AHSA1 expression, qRT-PCR was performed on both normal cells and LUAD cell lines. (E) The
level of AHSA1 expression was evaluated 5 days after transfection using qRT-PCR, and significant reduction in AHSA1 expression (P< 0.001) was
observed with siRNA sequences. (F) The number of colonies was significantly reduced in cells with reduced AHSA1 expression compared to the NC
group, as shown by the colony formation assay. Note: *P < 0.05, **P < 0.01, ***P < 0.001.
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mechanism, we conducted a series of experiments. According to the

results, knocking down AHSA1 significantly decreased cell

invasion, migration, and proliferation in LUAD cell lines.

The current research has certain problems. To begin, this

signature was built utilizing publicly accessible datasets. Large-
Frontiers in Endocrinology 17
scale prospective clinical investigations are required to verify the

prognostic potential. In conclusion, we constructed an LM-related

signature, which can predict the prognosis and immunotherapy of

LUAD patients, and our findings can provide help for the clinical

treatment of LUAD.
A
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FIGURE 12

Related experiments for AHSA1. (A) EdU staining assay indicated that downregulation of AHSA1 expression repressed cell proliferation in LUAD cell
lines. (B) Scratch-wound healing assay depicted that a significantly slower wound healing rate was observed in cells with a decreased expression of
AHSA1. (C) Transwell assay showed that downregulation of AHSA1 expression inhibited the migration and invasion capacity of LUAD cells. To
demonstrate the accuracy and reproducibility of the results, all experiments were repeated in two LUAD (A549, H1299) cell lines and all data were
presented as the means ± SD of three independent experiments. Note: ***P < 0.001.
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