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Epicardial adipocytes in the
pathogenesis of atrial fibrillation:
An update on basic and
translational studies

Brooks Willar, Khan-Van Tran and Timothy P. Fitzgibbons*

Department of Medicine, Cardiovascular Division, University of Massachusetts Chan Medical School,
Worcester, MA, United States
Epicardial adipose tissue (EAT) is an endocrine organ containing a host of cell

types and undoubtedly serving a multitude of important physiologic functions.

Aging and obesity cause hypertrophy of EAT. There is great interest in the

possible connection between EAT and cardiovascular disease, in particular,

atrial fibrillation (AF). Increased EAT is independently associated with AF and

adverse events after AF ablation (e.g., recurrence of AF, and stroke). In general,

the amount of EAT correlates with BMI or visceral adiposity. Yet on a molecular

level, there are similarities and differences between epicardial and abdominal

visceral adipocytes. In comparison to subcutaneous adipose tissue, both depots

are enriched in inflammatory cells and chemokines, even in normal conditions.

On the other hand, in comparison to visceral fat, epicardial adipocytes have an

increased rate of fatty acid release, decreased size, and increased vascularity.

Several studies have described an association between fibrosis of EAT and

fibrosis of the underlying atrial myocardium. Others have discovered paracrine

factors released from EAT that could possibly mediate this association. In

addition to the adjacent atrial cardiomyocytes, EAT contains a robust stromal-

vascular fraction and surrounds the ganglionic plexi of the cardiac autonomic

nervous system (cANS). The importance of the cANS in the pathogenesis of atrial

fibrillation is well known, and it is quite likely that there is feedback between EAT

and the cANS. This complex interplay may be crucial to the maintenance of

normal sinus rhythm or the development of atrial fibrillation. The extent the

adipocyte is a microcosm of metabolic health in the individual patient may

determine which is the predominant rhythm.
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Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia

in adults, affecting 37% of patients over the age of 55, hence the

importance of risk factor identification and modification (1).

Environmental factors including chronic disease, age, and acute

triggers have been implicated as risk factors for developing AF.

Coronary artery disease (CAD), hypertension, obesity, diabetes,

obstructive sleep apnea (2), chronic kidney disease (CKD), and

inflammatory diseases increase the risk for AF as do acute triggers

such as binge drinking and physical stressors (e.g., infection, surgery,

and metabolic derangements). AF has been associated with an

increased incidence of stroke, heart failure, dementia, as well as death

and globally, AF is associated with an increased risk for mortality and

morbidity and accounted for 6 million disability adjusted life years in

2017 (1, 3). Given this impact upon human health there is a great need

for interventions to prevent the development of AF and treat prevalent

cases. Epicardial adipose tissue (EAT) has garnered significant interest

as a direct connection between obesity and cardiovascular disease, and

AF in particular. To the extent that EAT may be modified by

behavioral, pharmacologic, or even surgical interventions it is an

attractive therapeutic target to combat AF. A PUBMED search for

“epicardial adipose tissue” returns 1,509 results, with 228 in 2022 alone

(Figure 1). Since 2003, commensurate with the publication of landmark

studies by Mazurek and Iacobellis, there has been a burgeoning interest

in the effects of EAT on cardiovascular pathophysiology (4, 5). There

have been numerous recent comprehensive reviews on this topic to

which the reader is referred (6–9). Herein we will aim to focus more on

the biology of epicardial adipocytes and how this might affect

neighboring cardiomyocytes and contribute to the pathogenesis of

AF. Our goal is to stimulate the readers interest and perhaps spark new

lines of inquiry in this fascinating and important field.
Pathophysiology of atrial fibrillation

The mechanism for developing AF is not clearly understood but

likely changes as a patient progresses from paroxysmal AF to long-
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standing persistent AF. With this progression the impetus

transitions from an arrhythmogenic trigger to an electro

pathology mediated trigger (3). Paroxysmal AF, an arrhythmia

that self-terminates within 7 days, is typically driven by the

cardiac muscle sleeve around the pulmonary veins (PVs) in 90%

of cases and is associated with rapid focal activity and local reentry.

As a patient transitions to persistent AF, requiring pharmacological

or electrical cardioversion, the driver evolves into electrical

remodeling of ion channels and irreversible structural changes to

the atria (10). We hypothesize that any primary effect of epicardial

adipocytes would be in the paroxysmal stage. However, to the extent

that cross talk between atrial myocytes, epicardial adipocytes, and

the cardiac autonomic nervous system (cANS) can occur,

adipocytes may play other roles in the persistent/permanent stage

of AF, by modulating the cANs afferent signals to the brain and

promoting efferent cANs discharge (11).
Molecular changes in atrial myocytes

In terms of the primary changes in the atrial myocardium,

electrical remodeling from altered expression and functioning of

cardiac ion channels favors the development of functional

reentry substrates (10). The molecular mechanism leading to

repolarization changes are not clearly understood, but are

thought to involve sodium, potassium, and calcium channels.

Atrial myocytes in patients with AF show unchanged or slightly

reduced sodium current amplitude. Reduced calcium channel

density is consistent in patients with AF and may be a

determinant of shortening refractoriness and arrhythmogenesis.

In addition, the sarcoplasmic reticulum’s handling of calcium,

which is affected by alterations in ryanodine receptor channels

(RyR2), can lead to calcium leak and thus modulation of RyR2,

which is a prevalent finding in this patient population. Patients

with AF have a more negative resting membrane potential

indicating that potassium channels may also play a role in the

development of AF. Remodeling of gap junction subunits such as

connexin may also be involved in a genetic predisposition to

AF (12).
Fibrosis, fibrofatty infiltration, and
ganglionic plexi

Structural changes, such as fibrosis, neural/autonomic

remodeling, and anatomic features also contribute to the

pathogenesis of AF. Fibrosis can separate muscle bundles, replace

dead myocytes, and can couple electrically to cardiomyocytes,

leading to reentry and ectopic activity. Fibrosis leads to

progression from paroxysmal to permanent forms of AF, which

in turn creates a positive feedback loop of increased fibrosis. In

addition to fibrosis, infiltration of the atrial myocardium by

epicardial fat can contribute to atrial conduction abnormalities

(13). Autonomic/neural remodeling through vagal discharge,

beta-adrenoceptor activation, and atrial sympathetic hyper-
FIGURE 1

PubMed Timeline Results for “Epicardial adipose tissue”. There has
been a dramatic increase in the number of publications regarding
epicardial adipose tissue since 2003.
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innervation can also contribute to positive feedback loops that

promote AF persistence and recurrence. The left and right atria

including PVs, LA posterior wall/roof, the ligament of Marshall, as

well as the vena cava have features that promote both focal and

reentrant triggers (10). The junction of the pulmonary veins and left

atrium has a constellation of ganglionic plexi that receive input

from both the sympathetic and parasympathetic autonomic

nervous system (Figure 2) (11). It is estimated that each plexus

contains 200-1000 neurons. AF can be induced by activation of

these GPs. On the other hand, ablation of these plexi and the ostia of

the pulmonary veins can cure or reduce arrythmia burden in

patients with AF (11). The interaction of epicardial adipocytes

with the GPs of the cANS has yet to be investigated. However, it

is well established that other adipose depots receive important input

from the autonomic nervous system, and feed back to the ANS to

provide metabolic signals to the CNS (14, 15). Recent studies have

shown that macrophages associated with sympathetic neurons

(SAMs) help to regulate this interaction. For example, in obesity,

SAMs in brown adipose tissue induce expression of solute carrier

family 6 member 2 (SLC6A2) and monoamine oxidase A(MAOA)

(2). SLC6A2 is a membrane transporter for norepinephrine (NE)

and MAOA is an enzyme responsible for enzymatic degradation of

NE. With obesity, the induction of these proteins in SAMS causes a

reduction in the sympathetic activation of brown adipose tissue,

thus reducing thermogenesis and energy expenditure (2). We
Frontiers in Endocrinology 03
hypothesize that macrophages in EAT may mediate interactions

with neurons in cardiac GPs in a similar fashion, allowing for

changes in metabolism to regulate afferent feedback from the cANs

to the brain.
Left atrial size and obesity

On a macroscopic scale, left atrial size, inflammation, and

obesity all seem to play important roles in the development of AF

and the progression from paroxysmal to permanent subtypes.

Patients with paroxysmal AF have smaller LA diameter (4.3 vs

4.8cm) and fewer incidences of LA >5cm as compared to patients

with permanent AF (16). This is particularly important as LA

enlargement is a significant predictor of stroke in men and death

in both sexes (17). Regarding obesity, there is a strong association

between obesity (BMI >30) and AF. The Framingham heart study

showed that for every 1 unit of increased BMI above 25, there was a

4% increase in AF risk. This conclusion was supported by a large

meta-analysis showing that for every 5 unit increase in BMI, AF

incidence increased by 29% (18). The mechanism of obesity

increasing the incidence of AF may be related to epicardial and

abdominal adiposity. A large meta-analysis by Wong showed that

epicardial fat, waist circumference, and waist to hip ratio were all

associated with a higher incidence of AF. However, the strength of
A

B

FIGURE 2

The Microenvironment of the Posterior Left Atrial Wall. (A) The posterior left atrial wall has variable amounts of EAT, which includes the four major
ganglionic plexi and confluence of the pulmonary veins. (B) EAT covers portions of the left atrial wall and includes the ganglionic plexi. In obesity
(left), EAT may promote infiltration of macrophages (blue) via secretion of MCP1 and other pro-inflammatory cytokines. Macrophages and or
myofibroblasts then promote atrial fibrosis (blue lines) with stimulation of pro-fibrotic factors such as TGFB, Angptl2, and Activin A. This causes
fibrosis of the atrial myocardium which creates a substrate for reentry leading to the development of atrial fibrillation. In normal conditions (right),
EAT secretes anti-inflammatory and anti-fibrotic paracrine factors (adiponectin, apelin, omentin-1) that help maintain normal electrophysiologic
properties of the atrial myocardium leading to normal sinus rhythm (NSR). In both obese and normal conditions epicardial adipocytes may secrete
other factors such as extracellular vesicles (EVS) or free fatty acids (FFAs) which may have protective or adverse effects depending upon the EV
contents and particular fatty acid species. MCP1 (macrophage chemoattractant protein-1), IL6 (Interleukin 6), TGFB (transforming growth factor
beta), TNF (tumor necrosis factor), Angptl2 (Angiopoietin Like 2), LSPV (left superior pulmonary vein), LIPV (left inferior pulmonary vein), RSPV (right
superior pulmonary vein), RIPV (right inferior pulmonary vein).
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association was highest for epicardial fat (19). Epicardial fat, given

its proximity to the myocardial cells may confer structural

remodeling like the substrates described above.
Epicardial adipocytes; the same,
but different

It is now well understood that adipose tissue is an active organ

vital to human health (20). Any given adipose depot is comprised of

a multitude of cell types, and it is easiest to consider it in terms of

the adipocyte and stromal vascular fraction (SVF). The SVF is

comprised of all the non-adipocyte cells within a certain fat pad.

These may include, but are not limited to, fibroblasts, stem cells,

neurons, vascular cells, and a broad array of immune cells. Broadly

speaking, there are three different types of adipocytes; white, beige

and brown (20). Brown adipocytes are adipocytes that generate heat

by uncoupling the respiratory chain via the protein uncoupling

protein 1 (UCP1). Brown adipose is present in babies and in smaller

quantities in metabolically healthy adults. It is activated by the

sympathetic nervous system in response to cold exposure, by NE

binding to the b3 adrenergic receptor. Brown adipocytes express

UCP1 constitutively and expression is reduced in chronic

thermoneutral conditions (20). In contrast, beige adipocytes are

adipocytes within subcutaneous fat that induce UCP1 expression

rapidly upon cold exposure. Beige and brown adipocytes generate

heat and contribute to metabolic health by increasing energy

expenditure and releasing “BATokines” which have salutary

effects of peripheral tissues. The amount of brown and beige

adipocytes decreases with aging and obesity (20).

In contrast to brown adipocytes, the principal role of white

adipocytes is to sequester lipid by lipogenesis or regulating lipolysis.

They also secrete bioactive molecules (e.g., extracellular vesicles,

lipokines, and adipokines) that target systemic organs. The mean

volume of a white adipocyte is proportional to the rate of

lipogenesis, the rate of lipolysis, and the nutrient supply/blood

flow (21). EAT and visceral adipose are both predominantly white

adipose depots and similar in many respects. Generally, EAT

volume correlates with visceral adiposity, as measured by

echocardiogram and CT. Epicardial adipocytes and adipocytes

from visceral fat depots are smaller than subcutaneous adipocytes

(22). EAT has a greater concentration of capillaries and increased

expression of a broad array of inflammatory markers (21, 22). On

the other hand, there are subtle differences between epicardial and

adipocytes from fat within the abdominal cavity (21). Ovine

epicardial adipocytes have a greater ratio of oleic acid (18:1) to

stearic acid (18:0) than peri-renal or omental adipocytes. Although

stearoyl-CoA desaturase (SCD) expression was lowest in epicardial

fat compared to all other depots, there was a high correlation

between SCD expression and oleic acid content in epicardial

adipocytes, whereas there was no correlation in visceral

adipocytes (21). Like visceral adipose tissue, EAT has a greater

expression of inflammatory genes than subcutaneous adipose tissue

(22, 23). This is true even in the absence of cardiovascular disease or

obesity. In humans with obesity and in animal models of high fat
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feeding visceral adipose becomes inflamed which leads to

dysfunctional adipocyte biology, lipotoxicity, and insulin

resistance in remote tissues. This vast field of research

(immunometabolism) has ushered in a new era of discovery,

investigation, and therapeutic opportunity that is beyond the

scope of this review (20, 24). However, whether epicardial adipose

tissue responds in the same way to high fat feeding/obesity has yet

to be shown. White perivascular adipose tissue surrounding the

abdominal aorta in mice becomes severely inflamed with HFD (25).

Given the similarities between VAT and EAT, it is reasonable to

consider the possibility that epicardial fat does too.

The predominant stimulus for adipose inflammation in

response to obesity remains elusive. Adipocyte hypertrophy is

likely a primary event, followed by immune cell infiltration,

apoptosis, revascularization, and fibrosis (9, 26). In obese

conditions macrophages account for 40-50% of cells in visceral

adipose tissue (27). There are many different populations of

macrophages in adipose tissue. Adipose tissue resident

macrophages are present even in lean conditions to help maintain

tissue homeostasis. With the onset of obesity and adipocyte

hypertrophy, chemokines such as monocyte chemoattractant

protein-1 (MCP-1) stimulate infiltration of monocyte derived

macrophages (CD11b+, CD11c+, F4/80+). These macrophages

are pro-inflammatory and express factors such as TNFa, IL-1b,
IL6 and NO (26). Thus, a chronic inflammatory state is established

in visceral adipose tissue, leading to failure to effective store TG,

lipotoxicity, and subsequent insulin resistance in skeletal muscle

and liver. Whether or not these processes occur in EAT has yet to

be established.
Basic and translational studies of EAT

For purposes of this section, EAT will be considered to be

adjacent to the atrial myocardium of interest unless noted

otherwise. It should be mentioned that the amount of EAT

adjacent to the right atrium, left atrium and pulmonary veins is

highly variable. Studying EAT in small animal models is

problematic, because rats and mice do not have epicardial

adipose, except after prolonged high fat diet (28). Furthermore,

AF is not common in mice except in only a few genetic strains.

Therefore, atrial fibrillation and EAT are both usually studied in

large animal models (i.e., sheep, dogs, or rabbits), often using the

artificial rapid atrial pacing(RAP) (18) model to induce AF.

Li et al. studied the effect of RAP on EAT. 6 weeks of RAP

induced AF and lowered the effective refractory periods in the left

and right atria (29). This was associated with increased reactive

oxygenated species (ROS) production and phosphorylation of NF-

kB. Concentrations of inflammatory cytokines such as TNFa, IL6,
and TGFb were increased in the left atrial myocytes and EAT (29).

Histology showed atrial and adipose tissue fibrosis, in addition to

adipocyte infiltration into the atrial myocardium. PPARg and

Adiponectin expression was reduced in EAT. Metformin reversed

these alterations. These findings are analogous to prior studies of

perivascular fat in high fat diet fed mice; obese mice had reduced
frontiersin.org

https://doi.org/10.3389/fendo.2023.1154824
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Willar et al. 10.3389/fendo.2023.1154824
Adiponectin expression in perivascular fat surrounding the femoral

artery (30). Loss of adiponectin resulted in decreased nitric oxide

synthase activation and vasoconstriction. With the onset of obesity

expression of beneficial paracrine factors in perivascular adipocytes

is lost; this may also be true of aging adipocytes. In addition to the

loss of beneficial factors, expression of pathologic paracrine factors

is increased, for example TNFa, which promotes neointimal

hyperplasia (31). Therefore, it seems that like perivascular

adipocytes, peri-atrial epicardial adipocytes may signal via

paracrine mechanisms to the underlying atrial cardiomyocytes. In

this case, loss of adiponectin may result in reduced SERCA2a

expression and abnormal calcium handling. Many other studies

have shown putative adverse effects of factors secreted by EAT

(32–35).

Venteclef et al. showed that the EAT secretome stimulated

fibrosis in rat atria in vitro. This fibrosis was associated with

associated with high Activin A concentrations in EAT; in contrast

SAT had low Activin A concentrations (32). The fibrotic effects of

Activin A in vitro were blocked with an antibody targeting

activin A.

Nalliah et al. conducted an elegant study of the right atrial

appendage of humans without AF who were having heart surgery

(13). Greater amounts of EAT around the right atrial appendage

correlated with slow conduction, electrogram fractionation, and

fibrosis of the underlying atrial myocardium. It was also noted that

the gap junction protein connexin-40 migrated laterally in subjects

with increased EAT, becoming dissociated from cadherin (13).

Conditioned media from sheep EAT altered the electrophysiologic

properties of human induced pluripotent stem cell derived

cardiomyocytes (hiPSC-CMS), resulting in a decreased spontaneous

beating rate and prolonged field potential duration in comparison to

non-conditioned media. Proteomic analysis of murine pericardial fat

and inguinal fat was then performed. Pericardial fat was enriched in

proteins that regulate cell metabolism (e.g., ATP-citate synthase,

alcohol dehydrogenase class 3, Long-chain enoyl-COA hydratase).

The top enriched cellular component pathway was “focal adhesion”

(GO:0005925). Interestingly, the top two GO biological processes

were “fatty acid beta oxidation” (GO:0006635) and “cellular response

to interleukin12” (GO:0070671) (13). It should be noted that this

proteomic analysis was done using secreted proteins from murine

pericardial fat, which is likely quite different from EAT (36).

Abe et al. studied the resected left atrial appendages and

associated EAT from 59 consecutive cardiac surgery patients with

AF (35). Fibrosis of EAT was associated with left atrial fibrosis. The

collagen content of left atrial myocardium correlated with

inflammatory proteins in EAT (TNFa, MCP-1, IL6, VEGF,

MMP2, and MMP9). Expression of HIF-1a and Angptl2 was

associated with inflammation in EAT. In a second study, the

same group showed that treatment of rat atria in vitro with

Angptl2 caused fibrosis; this effect was reversed with an anti-

Angptl2 antibody (33). Angptl2 caused an increase in expression

of a-smooth muscle actin, TGFb1, and stimulated phosphorylation

of ERK, inhibitor of kBa, and p38 MAPK. The authors concluded

that antagonism of Angptl2 in EAT may be a therapeutic option for

the prevention of AF (33).
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In addition to aging and obesity/insulin resistance, a third

mechanism that may contribute to EAT inflammation is hypoxia.

Obstructive sleep apnea (2) is a known risk factor for the

development of AF and untreated OSA leads to recurrence after

AF ablation or cardioversion (37–39). In canine models of OSA

induced AF there is evidence of cANS hyperactivity in ganglionic

plexi of the left atrium (40). The ganglionic plexi are surrounded by

EAT and form a ring around the confluence of the pulmonary veins

(Figure 2). Dai et al. studied the effects of chronic OSA on EAT in

canines (41). Chronic OSA resulted in a dramatic fibrosis of EAT and

the adjacent atrial myocardium. OSA resulted in increased expression

of inflammatory markers in EAT, including Activin A, TGFb1,
MMP9, TNFa, and IL-6. Treatment with metoprolol reversed

fibrosis and lowered inflammatory marker expression. The authors

hypothesized that hypoxia may trigger activation of beta-adrenergic

receptors on epicardial adipocytes, and this stimulation was

prevented by treatment with the non-selective beta blocker

metoprolol. This hypothesis is supported by experiments showing

that isoproterenol, a non-selective beta-adrenergic agonist, was

previously noted to stimulate IL6 and TNFa production in 3T3L1

adipocytes (42). Furthermore, exposing adipocytes to hypoxia in vitro

results in decreased adiponectin secretion and increased b1 and b2
adrenergic receptor expression (43).

Wang et al. studied the atria and EAT of subjects with (n=28)

and without AF (n=36) having coronary artery bypass surgery

(34). They found that YKL-40(CHI3L1) mRNA and protein was

significantly higher in the EAT of subjects with AF than of those

without. There was no difference in the serum levels of YKL-40.

There was a positive association between YKL-40 expression in

EAT and the collagen fraction of the atrial myocardium. Obesity

was an independent risk factor for YKL-40 expression in EAT

(34). YKL-40 is a secreted glycoprotein highly expressed in

neutrophils, activated macrophages, and other cell types. YKL-

40 may act in fibroblast proliferation and matrix deposition, and

it’s expression by macrophages in adipose tissue inhibits type I

collagen breakdown (44). Interestingly, the expression of YKL-40

is increased in the visceral fat of obese patients and decreases with

weight loss (45).

Recently, a provocative study by Shaihov-Taper et al. showed

that EAT also releases extracellular vesicles (EVs) (46). EVs are

membrane bound vesicles released from all cell types, containing a

variety of molecules (e.g. proteins, nucleic acids, and lipids), that

can transmit a molecular signal from the releasing cell to a recipient

cell (47). EAT from subjects with AF secreted a greater number of

EVs than EAT from subjects without AF. The EVs from subjects

with AF had higher concentrations of inflammatory and pro-

fibrotic cytokines, and lower concentrations of IL-10, VEGF, and

sFLT-1 (46). Subsequent proteomic analysis revealed that the EVs

from those with AF were related to distinct molecular pathways,

including cardiomyopathy, apoptosis, angiogenesis, and fibrosis.

Furthermore, these enriched EVs triggered fibrosis, angiogenesis,

and facilitated re-entry when co-incubated with mesenchymal,

endothelial, and pluripotent stem cells in vitro (46).

In summary, fibrosis, and inflammation of EAT is associated

with fibrosis of the underlying atrial myocardium. There are many
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bioactive factors released from EAT that could potentially cause

fibrosis of the atria; this causative effect has yet to be clearly

demonstrated (Table 1). Nonetheless, it is clear that EAT is

responsive to changes in metabolic health and could signal this

change to neighboring and possibly even remote systems.
Implications for treatment and
future directions

Weight loss

With the recognition that EAT is associated with increased

cardiovascular risk there have been several studies examining non-

pharmacologic interventions that can reduce the amount of

epicardial fat. In general, epicardial fat is a marker of visceral fat,

and weight loss strategies tend to impact both depots. Diet and

bariatric surgery both result in a significant reduction in epicardial

fat (48). A meta-analysis by Saco-Ledo et al. included 10 studies and

521 subjects (49). They found that endurance training also resulted

in a significant reduction in EAT. It seems that any method of

weight loss can result in a decrease in epicardial fat. Moderate

exercise and weight loss have known effects on reducing AF burden

(18). Whether or not this is effect is dependent on a reduction in

EAT, or simply a reduction in weight, is unknown. For example, in

an echocardiographic study of subjects before and after bariatric

surgery, weight loss was associated with a 30% reduction in visceral

fat area and a 14% reduction in EAT thickness (50). However,

despite these reductions, left atrial function remained impaired and

left atrial volume and pressure increased (50). Therefore there may

be a threshold of obesity or exposure to EAT beyond which

remodeling of the left atrium is irreversible. More studies are
Frontiers in Endocrinology 06
needed to determine if weight loss results in a reduction in EAT

thickness and whether this translates into cl inical ly

meaningful results.
GLP-1 agonists/SGLT2 inhibitors

Liraglutide and other glucagon-like peptide-1 (GLP-1) receptor

agonists are indicated for the treatment of diabetes mellitus. GLP-1

receptor agonists also have weight loss effects. Treatment of diabetic

patients with GLP-1 receptor agonists lowers cardiovascular events

(51). The mechanism by which these drugs exert their beneficial

effects is not clear. Iacobellis et al. found that treatment with

liraglutide for 6 months causes a rapid and significant decrease in

the thickness of EAT as measured by echocardiogram (52). 95

subjects with DM2 were randomized to metformin or metformin

plus liraglutide 1.8 mg SC daily. Subjects in the liraglutide and

metformin group had a 36% reduction in their EAT thickness at 6

months. Interestingly, the GLP-1 receptor is expressed in EAT (52).

Others have shown similar albeit less dramatic results on EAT

thickness with GLP-1 receptor agonists exenatide and dulaglutide

(53, 54). Potential mechanisms by which GLP1 receptor agonists

work in EAT include but are not limited to, reduction in fat mass,

improved differentiation of pre-adipocytes, reduced lipogenesis, or

browning of EAT (55).

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) reduce blood

glucose and cause weight loss in diabetic patients. This class of drugs

has revolutionized the treatment of heart failure and are now

recommended as one of the four pillars of goal directed medical

therapy (56). Apart from weight loss and the natriuretic effects of

SGLT2 inhibitors, they are thought to have salutary effects on

myocardial metabolism, including a shift in fuel utilization from free

fatty acids to b-hydroxybutyrate (55). However, SGLT2 inhibitors have
TABLE 1 Factors Released from EAT with Possible Paracrine Effects.

Protective
Factors

Mechanism Pathologic
Factors

Mechanism

Adiponectin
(29)

Downregulated in EAT of subjects with AF MCP-1, IL6,
TNF-a (41, 46)

Profibrotic and proinflammatory

Apelin May reduce fibrosis by inhibiting TGFb1
signaling in atrial myofibroblasts (75)

TGF-b1 (76) Upregulated in the EAT of subjects with AF. Promotes fibrosis and ENdMT.

Omentin (76) Downregulated in EAT of subjects with AF.
May inhibit TGF signaling.

HIF-1a,
Angptl2 (35)

Proinflammatory and profibrotic

MMP2, MMP9
(41)

Remodeling of adipose tissue stroma

Activin A (32) Profibrotic

Resistin (77) Proinflammatory

Visfatin Proinflammatory

cTGF (78) Increased in EAT from subjects with AF. Correlates with atrial fibrosis.

Leptin

YKL-40/
CHI3LI (34)

Secreted glycoprotein expressed by activated macrophages, neutrophils, and other
cells. Correlates with atrial collagen fraction and increased in EAT of AF subjects.
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also been shown to reduce EAT thickness by up 20% (55). It is thought

that these compounds may reduce foster adipocyte differentiation and

reduce the secretion of pro-inflammatory cytokines in EAT (57).

Whether or not treatment with SLGT2 inhibitors or GLP-1 receptor

agonists reduce incident AF is unknown.
Statins

Systemic inflammation is a characteristic of chronic obesity. It is

known that obese patients are at increased risk of AF and heart failure

with preserved ejection fraction. Increased epicardial fat thickness

and EAT inflammation may contribute to the development of both

AF and HFpEF in obese patients (58). HMG-coa reductase inhibitors

or “statins” are known to have anti-inflammatory effects separate

from their lipid lowering effects. EAT is known to a greater degree of

inflammation on than subcutaneous adipose tissue (SAT). This

correlates with a higher average contrast attenuation on CT scan in

EAT (-89 HU) than SAT (-129 HU) (59). In a study of 420 women

who had serial CT scans to measure coronary artery calcification, the

use of statins for one year was found to reduce the attenuation of EAT

(-89 HU at baseline vs. -94 HU at follow up, p<0.001). There was no

change in the attenuation of SAT of the same subjects suggesting that

the anti-inflammatory effect was specific to EAT. Furthermore, this

effect was independent of changes in EAT volume, total cholesterol,

or coronary calcium (59). The same group had previously shown that

statin use was also associated with a reduction in EAT volume over

time (60). In 145 patients who had serial coronary angiography,

atorvastatin showed a greater effect of reducing EAT thickness than

simvastatin/ezetimibe(0.47 mm vs. 0.12 mm, p<0.001) (61). Others

have shown that statin use is associated with lower EAT thickness and

decreased inflammation in patient having cardiac surgery (62).

Statins were also shown to have an inhibitory effect on a broad

array of inflammatory cytokines released from EAT in vitro (62). It

appears clear that statins demonstrate salutary anti-inflammatory

properties that are beneficial in metabolic disorders such as obesity,

and these effects may be mediated by a reduction in EAT thickness or

inflammation (58).
Ablation

Increased EAT thickness has been associated with recurrence of

AF after ablation (63). Larger peri atrial EAT volume is also related

to the occurrence of embolic stroke after catheter ablation of AF

(64). Some studies have failed to find an association between EAT

and AF recurrence after catheter ablation, and it may depend on the

stage of AF (paroxysmal vs. persistent) (65). Traditionally AF

ablation has used an endocardial approach to isolate the

pulmonary veins. Recently, a clinical trial evaluated the efficacy of

a hybrid procedure utilizing endocardial and epicardial ablation of

the posterior left atrial wall (66). Compared to endocardial ablation

alone, those who underwent the hybrid procedure had increased

primary effectiveness at 12 months. It is not known whether

incidental modification of EAT at the time of this procedure

plays is instrumental to its efficacy.
Frontiers in Endocrinology 07
Modulation of ganglionic plexi within EAT

Activation of both the sympathetic and parasympathetic

nervous system is thought to play a role in the initiation of atrial

fibrillation (67, 68). Stimulation of the pulmonary veins in dogs

does not induce AF unless the adjacent ganglionic plexi are also

stimulated (69). A clinical trial of botulinum toxin injection into the

epicardial fat pad at the time of cardiac surgery showed a reduction

in the incidence of both early and late post-operative AF (70).

Interestingly, acetylcholine (Ach) has been found to have acute and

chronic effects on epicardial adipocytes in vitro (71). In comparison

to subcutaneous adipocytes, epicardial adipocytes have greater

increases in calcium flux in response to Ach. Ach also induces

MCP-1 expression in epicardial, but not subcutaneous adipocytes,

and Epicardial adipocytes have increased expression of the g protein

linked muscarinic receptors (mAChR2, mAchR3) (71). Finally,

chronic treatment of cells with Ach caused increased lipid

accumulation in both subcutaneous and epicardial adipocytes

(71). Therefore it seems that Ach may stimulate inflammation

and lipid accumulation in epicardial adipocytes, an effect that

cut putatively be inhibited by botulinum toxin or other methods.

In dogs, ablation of ganglionic plexi with a neurotoxin

(resiniferatoxin) decreased sympathetic and GP activity and

reduced AF inducibility. Resiniferatoxin is a transient receptor

potential vanilloid 1 (TRPV1) agonist (72). These studies

highlight the potential utility of chemical modification of

ganglionic plexi as an adjunct to hybrid or surgical procedures.
Browning

“Browning” refers to the possibility of inducing UCP-1

expression in white adipose via a pharmacologic or alternative

intervention. This would cause increased energy expenditure and

insulin sensitivity; a concept with great promise for treatment of

metabolic disorders and the induction of weight loss. An

additional beneficial aspect of brown adipose tissue is that it is

relatively resistant to inflammation induced by high fat diet (25).

Two early studies in the field detected increased expression of

brown adipose tissue associated genes in EAT (23, 73). However,

on a histological basis, EAT appears more like white adipose

tissue. Nonetheless, the induction of UCP1 in EAT is an intriguing

concept to combat the development of cardiovascular disease

associated with EAT (74).
Conclusion

EAT is a unique fat depot with distinct biochemical

and metabolic properties. The exact function of EAT in

cardiovascular physiology is unknown. The amount of EAT has

been shown to correlate with the development of atrial fibrillation

and adverse outcomes after atrial fibrillation ablation. As in other

fat depots, it is highly likely that EAT interacts with the

autonomic nervous system, and this is a topic that merits
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further investigation. There are many questions that remain to be

answered about this fat depot, but the potential for therapeutic

opportunities is intriguing.
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