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Control of tissue metabolism and growth involves interactions between organs,

tissues, and cell types, mediated by cytokines or direct communication through

cellular exchanges. Indeed, over the past decades, many peptides produced by

adipose tissue, skeletal muscle and bone named adipokines, myokines and

osteokines respectively, have been identified in mammals playing key roles in

organ/tissue development and function. Some of them are released into the

circulation acting as classical hormones, but they can also act locally showing

autocrine/paracrine effects. In recent years, some of these cytokines have been

identified in fish models of biomedical or agronomic interest. In this review, we

will present their state of the art focusing on local actions and inter-tissue effects.

Adipokines reported in fish adipocytes include adiponectin and leptin among

others. We will focus on their structure characteristics, gene expression,

receptors, and effects, in the adipose tissue itself, mainly regulating cell

differentiation and metabolism, but in muscle and bone as target tissues too.

Moreover, lipid metabolites, named lipokines, can also act as signaling molecules

regulating metabolic homeostasis. Regarding myokines, the best documented in

fish are myostatin and the insulin-like growth factors. This review summarizes

their characteristics at a molecular level, and describes both, autocrine effects

and interactions with adipose tissue and bone. Nonetheless, our understanding

of the functions and mechanisms of action of many of these cytokines is still

largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin),

whose potential cross talking roles remain to be elucidated. Furthermore, by

using selective breeding or genetic tools, the formation of a specific tissue can be

altered, highlighting the consequences on other tissues, and allowing the

identification of communication signals. The specific effects of identified

cytokines validated through in vitro models or in vivo trials will be described.

Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures,

organoids) for a better understanding of inter-organ crosstalk in fish will also be

presented. As a final consideration, further identification of molecules involved in

inter-tissue communication will open new avenues of knowledge in the control

of fish homeostasis, as well as possible strategies to be applied in aquaculture

or biomedicine.
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1 Introduction

Our understanding of the relationship and communication

between skeletal muscle, bone and adipose tissue has undergone a

major resurgence in the past decade, with an increasing number of

published papers on the subject, especially in mammalian models

(1). Nonetheless, a growing interest in fish species exists considering

they are the largest and most diverse group of vertebrates.

Nowadays, skeletal muscle, bone and adipose tissue are no longer

viewed from the simple mechanical and metabolic perspective.

These tissues can produce a high variety of molecules with

autocrine, paracrine, and endocrine functions that mediate a

complicated network of cross talking to communicate each other

their specific physiological status. Moreover, lipid metabolites,

either de novo synthesized or derived from dietary fats, named

lipokines, could also act as signaling molecules between organs to

coordinate energy substrates’ use (2).

Some of the earliest and current evidence for tissues crosstalk

comes out from the literature involving the role of cytokines in

different human pathologies and during physical activity (3, 4). The

use of zebrafish (Danio rerio) as an advantageous animal model in

biomedicine, together with the increasing interest in the integrative

knowledge of endocrine control of growth and metabolism in

cultured fish species, has focused the attention to the crosstalk

between bone, muscle, and adipose tissues in piscine models.

Nevertheless, the information in fish inter-tissue communication

is still limited compared with that of mammals.

Based on this background, the aim of this review is to give an

overview about the most up-to-date knowledge in the field of
Frontiers in Endocrinology 02
adipokines, myokines and osteokines in fish, and their possible

roles in tissues crosstalk.
2 Adipokines

The main function of vertebrate adipose tissue is the storage of

triglycerides under conditions of excess of calories and their release

during periods of energy demand. In addition, adipose tissue is now

recognized as a complex endocrine organ. Adipose tissue is

primarily composed of adipocytes, as well as pre-adipocytes, stem

cells, endothelial cells, or macrophages, which contribute to the

release of metabolites, lipids, and bioactive peptides, so-called

adipokines. These secreted factors can regulate the tissue locally,

but also many other tissues, thus controlling the whole organism’s

physiology. In this section, we will focus on the best-known

adipokines in teleost fish, keeping in mind their described effects

in the adipose tissue itself, but also at a systemic level, including the

regulation of different biological processes especially in muscle and

bone as target organs (Figure 1; Table 1). Nevertheless, it is

important to note that our understanding of the function and

mechanisms of action of many of these adipokines is still largely

incomplete in fish.
2.1 Adiponectin

Adiponectin is a cytokine-like peptide produced primarily by

adipose tissue in mammals, which plays a crucial role in lipid and
FIGURE 1

Crosstalk between adipose tissue, muscle, and bone in fish through cytokines secreted by the adipose tissue, also known as adipokines. Adiponectin,
that can also be secreted by skeletal muscle, can positively influence in muscle fatty acid (FA) and glucose uptake, FA oxidation and activate the
PI3K/AKT pathway. Studies suggest a role for adiponectin inducing bone formation. Adiponectin has also autocrine functions in the adipose tissue,
where it can promote glucose uptake. Leptin in muscle can presumably influence energy balance. In the adipose tissue, leptin induces lipolysis and
inhibits FA uptake. Tumor necrosis factor a (TNFa) can stimulate glucose uptake in muscle and has an important autocrine role in adipose tissue.
There, TNFa stimulates glucose uptake and lipolysis, and probably adipocyte proliferation, whereas it inhibits differentiation and FA uptake. Other
potential adipokines are resistin, apelin, adipsin and visfatin. Positive proved effects: green solid line; Positive suggested effects; green dotted line;
Negative proved effects: purple solid line.
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TABLE 1 List of reported adipokines and myokines in fish with summarized function in the crosstalk between tissues.

Factor Approach Target
tissue

Species Function Reference

Adiponectin Recombinant human
globular adiponectin.
Expressed in adipose
tissue and muscle

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Activated the PI3K/Akt pathway, which was inhibited by pre-incubation with
wortmannin in myotubes (day 11 of culture)
Increased FA oxidation, reported as CO2 production
Reduction in the FA in the medium in myotubes (day 11 of culture)

(5)

Recombinant human
globular adiponectin

Primary
adipocytes

Rainbow trout
(Onchorynchus
mykiss)

Increased glucose uptake in adipocytes at day 15 of culture (6)

Changes in plasma Bone
tissue

Zebrafish
(Danio rerio)

Diet-induced obese model presented decreased adiponectin levels parallel to
an osteoporotic-like phenotype, characterized by reduced scales mineralized
area and ALP activity, and increased TRAP activity

(7)

Recombinant large
yellow croaker
adiponectin

Primary
myocytes

Large yellow
croaker
(Larimichthys
crocea)

In cell suspensions: Increased gene expression of adipor1, adipor2, appl1,
lkb1 and ampka, transcription factors (rxr, pparg and srebp1) and genes
related to FA oxidation (cpta, cptb and aco), synthesis (scd1, elovl4 and
elovl5) and uptake (cd36, fabp10 and fabp11)
Increased protein levels of APPL1, p-AMPKa and PPARg
Promoting effects were blocked by knockdown of appl1 and adipors

(8)

Leptin Recombinant trout
leptin

Primary
adipocytes

Rainbow trout
(Onchorynchus
mykiss)

Downregulated expression of lpl and fatp1 and increased lipolysis, measured
by glycerol release in mature isolated adipocytes

(9)

Leptin expression and
secretion

Primary
adipocytes

Rainbow trout
(Onchorynchus
mykiss)

Leptin expression and release increased from pre-adipocytes to mature
adipocytes in culture (day 7 to day 16)

(9)

Knockout lepr Skeletal
muscle

Zebrafish
(Danio rerio)

Knockout of leptin receptor gene (lepr) in a hepatocellular carcinoma model
induced a higher survival rate and lower muscle-wasting level

(10)

Recombinant trout
leptin

Primary
adipocytes

Gilthead sea
bream (Sparus
aurata)

Inhibited lipid accumulation
Decreased gene expression of pparg and cd36 at early (day 8) and late (day
12) stages of cell differentiation

(11)

Resistin Expression in liver Siberian
sturgeon
(Acipenser
baerii)

Hepatic resistin expression is affected by nutritional status (12)

TNFa Recombinant human
TNFa

Primary
adipocytes

Rainbow trout
(Onchorynchus
mykiss)

Lipolytic effect via protein kinases, upregulated lxr expression and
downregulated adipor2 expression in isolated adipocytes. Enhanced
proliferation at low dose and inhibited adipocyte differentiation (days 5 and
7). Inhibited insulin-induced increase in adiponectin mRNA levels (day15)

(5, 6, 13–15)

Recombinant human
TNFa

Primary
adipocytes
and
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Stimulated glucose uptake in myoblasts (day 2) and myotubes (day 10).
Downregulated adipor1 and adiponectin expression in myotubes (day 11 of
culture)

(5, 16)

Recombinant human
TNFa

Primary
adipocytes

Large yellow
croaker
(Larimichthys
crocea)

Decreased atgl expression in pre-adipocytes. Decreased FA uptake and fat
content downregulating lpl expression and increased ppara and pparg
expression during lipolysis in differentiated adipocytes. At high
concentrations, inhibited adipocyte proliferation along the culture

(17)

Recombinant
seabream TNFa

Primary
adipocytes

Gilthead sea
bream (Sparus
aurata)

Downregulated pparg and pparb expression and promoted lipolysis in
mature isolated adipocytes

(18, 19)

Myostatin Expression in muscle Barramundi
(Lates
calcarifer)

A fasting period upregulated mstn-1 but not mstn-2 expression in muscle
and liver but decreased mstn-1 expression in brain and gills

(20)

Recombinant human
MSTN

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Inhibited myoblast (day 1) proliferation and induced myotube atrophy. Did
not decreased MyoD and Myogenin protein levels, so had no effect on
myoblast (day 2) differentiation

(21, 22)

Inactivation of mstn
gene

Muscle
tissue

Medaka
(Oryzias
latipes)

Inactivation of mstn gene increased 25-30% of muscle mass with some
alterations in the immune system

(23, 24)

(Continued)
F
rontiers in End
ocrinology
 f03
 rontiersin.org

https://doi.org/10.3389/fendo.2023.1155202
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hue et al. 10.3389/fendo.2023.1155202
TABLE 1 Continued

Factor Approach Target
tissue

Species Function Reference

Knockout of mstnb
gene

Muscle
and
adipose
tissue

Zebrafish
(Danio rerio)

Inactivation of mstnb but not mstna, increased muscle mass after 80 days
post fertilization associated to muscle hyperplasia. Increased fat accumulation
in muscle of mstnb -/- and the energy supply from an amino acid-dependent
source is exchanged for a lipid-dependent source

(25, 26)

IGF-1 and
IGF-2

Recombinant trout
IGF-1

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Stimulated glucose and L-alanine uptake, and cell proliferation ([3H]-
thymidine uptake) at day 4 and 10 of culture development

(27)

Recombinant human
IGF-1 and IGF-2

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Enhanced glucose uptake by both IGFs at days 4, 7 and 10 of culture
Increased cell proliferation by IGF-2, reported as [3H]-thymidine
incorporation
Activation of the MAPK pathway by phosphorylation of the ERK1/2 protein
by both IGF-1 and IGF-2 at days 4 and/or 11
Stimulated Akt phosphorylation by IGF-1 and IGF-2 at days 4 and 11 of
culture

(28)

Recombinant salmon
IGF-1 and IGF-2

Primary
myocytes

Atlantic
salmon (Salmo
salar)

Stimulated igf-1 and igfbp6 mRNA levels by both IGFs (29)

Recombinant rat IGF-
1 and IGF-2

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Stimulated cell proliferation (BrdU labeling) by both IGF-1 and IGF-2 at day
4 of culture development

(30)

Recombinant human
IGF-1

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Increased protein synthesis rate at day 4 and decreased protein degradation
rate at days 4 and 7 of culture development

(31)

Recombinant human
IGF-1 and IGF-2

Primary
myocytes

Gilthead sea
bream (Sparus
aurata)

Stimulated cell proliferation (percentage of PCNA positive cells) by both
IGF-1 and IGF-2 at day 4 of culture development

(32)

Recombinant salmon/
trout IGF-1

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Stimulated phosphorylation of Akt at Ser473, FoxO1 at Ser319 and FoxO4 at
Ser262 at day 7 of culture
Prevented the nuclear translocation of FoxO1

(33)

Recombinant human
IGF-1 and IGF-2

Primary
myocytes

Gilthead sea
bream (Sparus
aurata)

Stimulated L-alanine and glucose uptake by IGF-1 and IGF-2 at days 4 and 9
Increased GLUT4 protein levels by IGF-1 and IGF-2 at day 9
Stimulated phosphorylation of Akt and MAPK proteins by IGF-1 and IGF-2
at day 4

(34)

Recombinant human
IGF-1

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Stimulated cell proliferation in a dose-dependent manner
Increased gene expression of markers for early (myf5 and myod1) and mid
(myogenin) differentiation at day 7 of culture
Reduced mstn-1a (day 7) and mstn-1b (day 3) mRNA levels and increased
mstn-2a mRNA levels (days 3 and 7)
Stimulated the processing of MSTN-2a mature transcript

(35)

Recombinant human
IGF-1

Primary
myocytes

Rainbow trout
(Onchorynchus
mykiss)

Upregulated expression of the late marker of differentiation mlc at days 5, 10
and 14
Reduced myod1 (day 5) and myogenin (days 5 and 10) mRNA levels
Reduced mstn-1a and mstn-1b mRNA levels at days 5 and 10 and increased
mstn-2a mRNA levels at days 5, 10 and 14 of culture

(29)

Recombinant human
IGF-1 and IGF-2

Primary
myocytes

Gilthead sea
bream (Sparus
aurata)

IGF-1 upregulated markers of muscle differentiation (mrf4 and myogenin),
while IGF-2 upregulated markers of early muscle cell proliferation (myod2
and myf5)
Increased igf-1 gene expression by IGF-2

(36)

Overexpression of the
zebrafish IGF-1
cDNA in skeletal
muscle

Skeletal
muscle

Transgenic
crucian carp
(Carassius
auratus)

Decreased body weight
Shift in the myofiber type toward a more oxidative slow muscle type
IGF-1 signaling, aerobic metabolism, and protein degradation pathways were
activated
Higher oxygen consumption rates

(37)

Recombinant gilthead
sea bream IGF-1

Primary
myoblasts

Pacu (Piaractus
mesopotamicus)

Modulated IGF/PI3K signaling, amino acids metabolism and matrix
organization
High hybridization in mmp14b/miR-338-5p interaction
Decreased gene expression of the muscle miRNA miR-29b, mmp14b, fbxo25

(38)

(Continued)
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glucose metabolism regulation. The first identification of

adiponectin in fish was reported in zebrafish (44). Since then, this

adipokine has been identified in other fish species, such as rainbow

trout (Oncorhynchus mykiss), ayu (Plecoglossus altivelis), large

yellow croaker (Larimichthys crocea) and common carp (Cyprinus

carpio) (8, 45–47). The main regions of mammalian adiponectin

have been analyzed in fish, and the globular domain, which is

involved in receptor binding, is the most conserved one. However,

although mammalian adiponectin can be found in monomeric or

multimeric forms, until now there is no evidence on multimer

formation in teleost species (reviewed by Ji et al. (8)).

Yet, the adiponectin gene might have been lost in some fish

species throughout evolution since it was not found in some

published genome databases. This is the case of Nile tilapia

(Oreochromis niloticus), black carp (Mylopharyngodon piceus),

Japanese puffer (Takifugu rubripes), medaka (Oryzias latipes),

three-spined stickleback (Gasterosteus aculeatus) and green

spotted puffer (Tetraodon nigroviridis) (8). On the other hand,

there are two isoforms of adiponectin genes, namely adipoqa and

adipoqb, in cyprinid fishes, including grass carp (Ctenopharyngodon

idella) (48) and zebrafish (44). For perciform fishes, only one

adiponectin gene has been reported in the literature.

The highest expression level of adiponectin in ayu is found in

the adipose tissue, as reported in mammals (49). In zebrafish,

rainbow trout, large yellow croaker, common carp, and grass

carp, the expression in the muscle is higher than that in the

adipose tissue (5, 8, 44, 45, 47, 48), but still remains to be

evaluated whether this peptide could be also considered a

myokine in these species. adiponectin is also expressed in other

tissues, such as brain, liver, kidney or heart with variable levels

depending on the species (8). In fish, there are almost no studies on

adiponectin plasma levels (7), neither on peptide secretion, nor on

peptide release into the circulation, which makes difficult to

understand its role in inter-organ communication.

Regarding adiponectin receptors, and similarly to mammals,

some fish species have two forms (AdipoR1 and AdipoR2), while

zebrafish, grass carp and common carp have two isoforms of

AdipoR1 besides AdipoR2 (44, 47, 48). The homologies with

mammalian sequences are between 70 and 80%. AdipoR1 is
Frontiers in Endocrinology 05
mainly located in muscle and AdipoR2 in liver of humans or

mice, but a wider distribution is observed in fish. In particular, in

zebrafish and rainbow trout, they are widely distributed and can be

considered as ubiquitous (5, 44). AdipoRs are also widespread in

other teleosts, although the pattern of expression varies among

species, suggesting this scenario possible inter-species differences in

the function of adiponectin in the communication between tissues.

Concerning the factors regulating gene expression, insulin was

able to stimulate adiponectin, and to decrease adipor1 mRNA levels

in rainbow trout cultured adipocytes (6) and in vivo in adipose

tissue (5), in agreement with reports in various mammalian models

(46, 50–52).

In mammals, adiponectin stimulates fatty acid oxidation,

decreases plasma triglycerides and improves glucose metabolism

by increasing insulin sensitivity (53, 54). Considering that many of

its beneficial effects in mammals occur through the interaction with

the skeletal muscle, it is not surprising that some physiological

studies have focused on the role of adiponectin in fish muscle,

specifically in trout cultured myocytes (5). In this in vitromodel, no

changes in glucose or fatty acids uptake were observed after a short

period of incubation with adiponectin. Nevertheless, after 2 days of

treatment, the reduced presence of fatty acids in the culture

medium, and the increase in intracellular triglycerides, suggested

an increase in fatty acid uptake. These effects were not accompanied

by an increase in fatty acid transporters’ expression in trout, but in

large yellow croaker myocytes, adiponectin upregulated the gene

expression of the fatty acid transporters cd36, fabp10 and fabp11 (8).

Adiponectin also increased fatty acid oxidation in trout

myocytes measured as CO2 production (5), one of the main

actions of this adipokine in mammalian models, that helps to

maintain lipid homeostasis and insulin sensitivity. Moreover, in

trout myocytes, adiponectin activated the PI3K/AKT pathway but

not the signaling through p44/42 mitogen-activated protein kinases

(MAPK), similarly as it occurs in mouse myocytes (55). Indeed, in

that study, wortmannin blocked the stimulatory effect of

adiponectin demonstrating the specificity of the pathway.

Activation of PI3K/AKT has been associated to increases in

glucose and fatty acid uptake and beta-oxidation in mammals

(56). The relevance of this molecular pathway in fatty acid
TABLE 1 Continued

Factor Approach Target
tissue

Species Function Reference

and tgfbr2
Increased gene expression of the muscle miRNA miR-338-5p

TGF-b Inactivation of TGFr/
overexpression
follistatin

Muscle
tissue

Rainbow trout
(Onchorynchus
mykiss)

TGF-b2, TGF-b3 and inhbA1 are involved in muscle growth or regeneration (39–41)

Morpholino Smad4 Cardiac
and
skeletal
tissue

Zebrafish
(Danio rerio)

TGF-b and Smad4 are essential for cardiac and skeletal development (42)

IL-6 Muscle tissue Rainbow trout
(Onchorynchus
mykiss)

No increase in il-6 expression in muscle after exercise (43)
f
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oxidation in fish remains to be elucidated, but it appears that the

regulation of muscle lipid metabolism by adiponectin and its

mechanisms of action would be both conserved.

With regards to the effects of adiponectin regulating bone mass,

controversial results were reported in mammals. From the available

literature, it seems that adiponectin directly influences skeletal

health. To identify the mechanisms that underlie the activity of

adiponectin in bone, many studies in vitro and in mice models over-

expressing or lacking adiponectin have been carried out. Although

the in vitro data showed an osteogenic role of adiponectin,

supported by pro-osteoblastic and anti-osteoclastic effects, data

from transgenic mice or human studies failed to demonstrate

unambiguously a beneficial effect of adiponectin on bone

development (57). The inconsistency of the results may be partly

due to the variation among experimental systems, the use of

different structural forms and the complex nature of adiponectin

signaling, which involves multiple direct and indirect

mechanisms (58).

In fish, limited information exists on the role of adiponectin in

bone. Zebrafish fed a high fat diet showed decreased plasma levels of

adiponectin accompanied by a reduction of mineralized areas in

scales and an alteration of growth tissue markers, such as a decrease

of alkaline phosphatase and an increase in tartrate-resistant acid

phosphatase activity respect to control fish, suggesting a positive

effect of adiponectin on bone growth (7). Nevertheless, as far as we

know, no other studies about the communication of adipose tissue

and bone mediated by adiponectin have been addressed until now

in fish.

Adiponectin has also local effects on the adipose tissue,

stimulating glucose uptake and increasing lipid content in

mammalian adipocytes (59). In fish, adiponectin increased

glucose uptake in cultured rainbow trout adipocytes without

modification of AKT or TOR phosphorylation (6), suggesting

other signaling pathways involved. Nevertheless, due to the high

levels of adiponectin expression in trout muscle, it is unknown

whether an autocrine effect could exist in vivo, or whether

adiponectin from muscle could contribute to regulate adipose

tissue glucose metabolism in an endocrine or paracrine way. The

future development of specific methods to measure circulating

adiponectin levels and tissue secretion would help to better

understand its role in fish.

Finally, it is remarkable that adiponectin and its receptors are

modulated by nutritional status. For example, feed restriction affects

their expression in a different way in muscle and adipose tissue in

rainbow trout, Atlantic salmon (Salmo salar) and zebrafish, with

also variations between species, underlining its key role in the

communication between tissues (5, 44, 60). Nevertheless, going

into detail about these changes is beyond the scope of this review.

Although the information regarding fish adiponectin is limited

to very few species, taken together the reviewed results, a general

conservation of structure and functions of adiponectin could be

suggested at least bearing in mind its effects in muscle, bone, and

adipose tissue metabolism. However, specific features in teleost

adiponectin system should be considered to fully understand its

physiological role.
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2.2 Leptin

Leptin is a 16 kDa pleiotropic cytokine with an important role

in food intake control and energy homeostasis in vertebrates. Fish

leptin was first identified in 2005, when the leptin gene ortholog was

cloned in pufferfish (61). Since then, leptin sequences were

described in many fish species (reviewed by Blanco and Soengas

(62)): common carp (63), zebrafish (64), medaka (65), Atlantic

salmon (66), striped bass (Morone saxatilis) (67), yellow catfish,

(Pelteobagrus fulvidraco) (68), mandarin fish (Siniperca chuatsi)

(69), goldfish (Carassius auratus) (70), European and Japanese eel

(Anguilla anguilla and Anguilla japonica, respectively) (71) and,

more recently, in Northern snakehead (Channa argus) (72),

among others.

Teleosts share very low primary sequence identity (~13-25%)

with human leptin (73). A great number of fish species have two

copies of this gene, named differently in various species (lep-a/I/1

and lep-b/II/2), due to the whole-genome duplication (WGD) event

that occurred during the evolution of the teleost lineage (73). For

instance, two copies are found in tongue sole (Cynoglossus

semilaevis), Nile tilapia, orange-spotted grouper (Epinephelus

coioides), chub mackerel (Scomber japonicus), Northern

snakehead, zebrafish and medaka (62). Both leptin sequences

show variable identity and even duplicate leptin genes described

within fish species may be very different in primary amino acid

sequence conservation (e.g., zebrafish) (64). lep-a/I/1 is the

predominant form expressed in many of the teleost fish analyzed

(74). On the contrary, other fish species (e.g., mandarin fish,

pufferfish) retained only one leptin gene, but the existence of a

second paralog cannot be discarded.

In mammals, leptin is an adipostat, is produced by, and

circulates in proportion to the amount of white adipose tissue

(75), but this scenario has not been confirmed yet in fish. In contrast

to mammals, fish leptin shows differential distribution patterns, and

is commonly highly expressed in the liver (62). Only in some

species, the expression of leptin in adipose tissue is relatively high

(76–78). Besides, its expression is found in some other tissues such

as brain, gonads, kidney, gill, muscle and spleen, but the

transcriptional patterns are very different between species (69, 79,

80). leptin paralogs also showed different transcriptional features

within the same species, with lepA being more abundant in the liver

whereas lepB in the gonads, thus indicating divergent roles (65, 76).

The development of different methods for measuring leptin in

fish has resulted in abundant literature regarding plasma levels and

their regulation, especially by nutritional status. In many fish

species, and in contrast with mammals, circulating leptin was

significantly increased after different periods of food deprivation,

and subsequently decreased after refeeding in rainbow trout (68, 81,

82), or fine flounder Paralichthys adspersus (83). On the contrary,

circulating leptin levels in other species were decreased after food

deprivation (e.g., burbot, Lota lota) (84). Moreover, leptin

expression in liver increased after refeeding in goldfish (70),

common carp (63) or the cyprinid Labeo rohita (85). In addition,

other studies revealed that leptin levels were not affected by fasting,

but displayed peri-prandial changes in pacu (Piaractus
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mesopotamicus) (80). These findings suggested that leptin is clearly

involved in energy homeostasis regulation but might exhibit

different functional properties depending on the fish species.

However, in all the species tested, leptin acted as an anorexigenic

peptide; thus, increased circulating levels of leptin during fasting,

reflected a possible strategy to avoid wasting energy foraging in

those situations (62, 74).

Secretion studies are crucial to know which tissues might

contribute to circulating leptin. Measurable levels of leptin A were

found by homologous radioimmunoassay (81) in culture media

from both, rainbow trout pre-adipocytes and mature adipocytes,

with significantly higher levels in the latter (9). As far as we know,

this study is unique demonstrating that leptin is produced and

released by adipocytes and supporting that adipose tissue might

contribute to circulating leptin levels in rainbow trout and that this

can act as a hormone.

Nevertheless, as indicated in fish, leptin is highest expressed in

liver. It is not surprising that leptin, as a regulator of energy

expenditure, is controlled at least in part by glucose and key

elements of the endocrine stress axis. In this sense, recently,

Mankiewicz et al. (86), using tilapia (Oreochromis mossambicus)

freshly isolated hepatocytes’ incubations and a homologous leptin A

ELISA, showed that its secretion is modulated by high levels of

glucose. In the same study, an in vivo injection of epinephrine

stimulated a rapid rise in blood glucose, which was followed by a 4-

fold increase in hepatic lepA mRNA and plasma levels.

Interestingly, specific fatty acids could modulate fish leptin

secretion since leptin mRNA expression was downregulated by

saturated fatty acids, and upregulated by monounsaturated and

long chain polyunsaturated fatty acids in rainbow trout liver

slices (87).

Indeed, it would be very helpful to have more information on

leptin secretion by hepatocytes and adipocytes and about its

regulation especially in species where leptin is highly expressed in

liver and adipose tissue. Furthermore, the co-culture of different

types of fish cells, such as adipocytes-myocytes, may help to

understand the interactions of their secretomes and the crosstalk

between these tissues.

The physiological actions of leptin are mediated by a

glycoprotein consisting of a single-membrane-spanning receptor

(LepR), that belongs to the class-I cytokine receptor family (88). In

fish, an orthologous gene for the mammalian lepr was identified in

several species (62), typically present as a single ortholog; however,

duplicate lepr paralogs have been identified in a few species,

including Atlantic salmon (89), European eel (71) or rainbow

trout (86). Furthermore, in some species more than one isoform

is present, as it also occurs in mammals, generated by alternative

mRNA splicing and/or proteolytic processing of the protein

products (88). The mammalian long isoform, or leprb, is the only

one with clearly demonstrated signaling capability (90). There is few

information regarding the functionality of these isoforms, but the

salmon LepR (long form) includes all functionally important

domains conserved among vertebrate LepRs.

High expression of lepr is commonly found in the brain,

pituitary, and gonads of many fish species; however, there are

species-specific differences in its tissue distribution. In this sense,
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the muscle, head kidney, pituitary and pancreas are the major

expressing tissues in Nile tilapia (78) and, the muscle, skin, gill,

brain and eye in medaka (65). Nevertheless, the physiological role of

these receptors is still unclear.

In vertebrates, adipocytes regulate energy metabolism of the

whole body, including muscle and bone, indirectly through

interaction of leptin with sophisticated brain circuits that

maintain energy levels by affecting food intake and energy

expenditure (91). In mammals, leptin increases sympathetic

nervous system tone (92) and, through its interaction with the

melanocortin system, activates thyrotropin-releasing hormone to

increase thyroid hormone signaling and, thus, energy expenditure

(93–95). As mentioned before, most of the studies of leptin

administration in many fish species support an anorexigenic

action and there is abundant literature regarding its role as

inhibitor of food intake, which has been reviewed extensively (62,

73) and is out of the scope of this review. However, its role as a

regulator of energy expenditure has been less explored in fish.

Regarding lipid homeostasis, autocrine effects of leptin on

adipose tissue of rainbow trout have been suggested using

recombinant trout leptin (96). Indeed, leptin increased lipolysis

measured as glycerol release in mature freshly isolated adipocytes of

this salmonid. Furthermore, leptin significantly suppressed the fatty

acid transporter fatp1 expression, suggesting a decrease in fatty acid

uptake and storage, but did not affect the expression of any of the

lipogenesis or b-oxidation-related genes studied (9). More recently,

Basto-Silva et al. (11), reported that leptin inhibits lipid

accumulation, significantly reducing the peroxisome proliferator-

activated receptor gamma (pparg) and fatty acid transporter cd36

gene expression, both in early differentiating and mature adipocytes

of gilthead sea bream (Sparus aurata).

Some other findings come from studies with lepr mutants.

Indeed, hyperphagia in lepr-deficient medaka led to a higher

growth rate at the post-juvenile stage, but not in adults, although

adult lepr mutants possessed large depots of visceral fat, unlike the

wild type fish (97). On the other hand, lepr knockout zebrafish did

not develop obesity (98), which is in marked contrast to mammals,

particularly mice (ob and db models) and barely affected

metabolism and energy allocation (99). lepr knockout trout

exhibited a hyperphagic phenotype, and increased energy stores

in muscle as observed in mammalian models (100). Recently, it was

reported that leptin induces muscle wasting in a zebrafish kras-

driven hepatocellular carcinoma model (10). By using lepr knockout

fish, it was found that these animals had a higher survival rate and

significantly lower muscle-wasting level after tumor induction than

the tumor-induced fish in the wild-type background. These results,

besides having interest in cancer cachexia, also demonstrated direct

effects of leptin in fish muscle physiology.

In mammals, leptin has intense effects on skeletal muscle fatty

acid metabolism, resulting in an increase in the capacity of this

tissue to oxidize fatty acids and reduce triacylglycerides stores.

Therefore, the development of leptin resistance in skeletal muscle,

characteristic of obesity, may lead to insulin resistance in that tissue

by allowing the accumulation of intramuscular lipids and

disruption of the insulin signaling pathway (101). This situation

can be ameliorated by different lifestyle factors such as aerobic
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training and diet, establishing a homeostatic crosstalk. Although

not being an obesity fish model, studies in energetically divergent

rainbow trout lines selected for low (lean line, LL) and high (fat line,

FL) muscle adiposity, revealed impaired central leptin signaling

system in the FL fish, probably linked to high muscle fat, since no

differences in appetite regulation and feed intake between the two

rainbow trout lines were found (102).

Some studies suggested indirectly the regulation of muscle

metabolism by leptin in fish. The increase in circulating leptin

under food deprivation might trigger the activation of the AMP-

activated protein kinase (AMPK) in the skeletal muscle of fine

flounder and contribute to the negative effects on anabolic processes

(83). Another indirect evidence of leptin actions on fish muscle

came from studies on lepr expression, which is modulated by

nutritional status. The two lepr paralogs identified in rainbow

trout are differentially expressed across tissues under catabolic

conditions, showing that during fasting, leptin is likely acting to

promote energy mobilization in the muscle through lepra1 and in

the liver through lepra2 (86).

Clearly, more studies are required to learn about leptin

crosstalk. The use of fish models in which primary culture of

myogenic cells is well established (27, 30) may provide further

insights for understanding the mechanisms by which leptin

regulates metabolism and growth in fish skeletal muscle.

Regarding bone as a target tissue of leptin, different studies with

mammalian models have shown that it plays multiple crucial roles

in skeletal growth and metabolism through both, central and

peripheral pathways, and that it might be involved in many

human bone diseases (103). In humans, leptin is likely to exert a

positive effect on bone mass, and contribute to the balance between

adiposity and bone density (104). Interestingly, administration of a

high fat diet alters energy metabolism generating an osteoporosis-

like phenotype in adult zebrafish scales (7), but no information

regarding the possible role of leptin regulating these processes has

been reported to date. In this sense, it would be very interesting to

study the role of leptin regulating the plasticity of cells derived from

gilthead sea bream vertebra bone, which can be differentiated into

both, osteoblast and adipocyte phenotypes (105, 106), as this will

shed more light into the possible role of leptin as a mediator of the

communication between adipose tissue and bone in fish.
2.3 Resistin

Resistin is a peptide that was first identified as a factor produced

exclusively by adipocytes (107). Indeed, in mice, resistin mRNA

expression is abundant only in adipose tissue (107) while in

humans, it is expressed in white adipose tissue but also in other

tissues. In fact, peripheral blood mononuclear cells, macrophages,

and bone marrow cells are the primary source of circulating human

resistin (108). Resistin is widely found in other species and, for

example, it is highly expressed in the lung in porcine, goat and

yak (12).

The increase in plasma resistin concentration impairs insulin

sensitivity and decreases glucose tolerance in mice, and plays a

significant role in human obesity-induced insulin resistance (109).
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It also shows pleiotropic effects and could be involved in

physiological and pathological processes of bone/rheumatological

disorders. The resistin receptor is unknown but several proteins

could do such function: toll-like receptor 4, decorin, orphan

receptor-1, insulin-like growth factor receptor, and adenylyl

cyclase-associated protein 1 (110, 111).

In 2015, Hu and co-workers analyzed available genome

sequences of the resistin-like gene family of diverse vertebrates

(112). Genes encoding resistin-like peptides were found in

Actinistia (coelacanth, a lobe-finned fish), but not in fish from the

Actinopterygii, Chondrichthyes, or Agnatha. More recently, a

resistin full-length cDNA has been obtained, with an open

reading frame encoding 106 amino acids in Siberian sturgeon

(Acipenser baerii) (12), showing low identity with other

vertebrates, except when compared with the sterlet (Acipenser

ruthenus). However, the resistin C-terminal is well conserved

among species, suggesting that this region may be important to

its physiological roles.

Gene expression of resistin was very high in the liver of Siberian

sturgeon in comparison with other tissues, as described previously

also for leptin. Besides adipose tissue, the liver is an important organ

of lipid accumulation in some species, and it is essential in

metabolic homeostasis, suggesting that resistin, as other classical

adipokines, may have a role in metabolism regulation. In fact, in

Siberian sturgeon, resistin mRNA expression in the liver decreased

after fasting and increased sharply after refeeding, confirming it is

affected by nutritional status (12) supporting this hypothesis.

Nonetheless, data is limited to this study; consequently, further

studies are needed to investigate the role of resistin as a hormone

involved in tissue crosstalk in fish.
2.4 Tumor necrosis factor

TNF is a cytokine belonging to the “TNF ligand superfamily”

(113, 114) that plays crucial roles in regulating immune functions

and metabolism in vertebrates. In mammals has two isoforms,

TNFa and TNFb, while in fish there is only one more similar in

structure and organization to TNFa (115). Only a single copy of

tfna gene was found in mammals, otherwise, various copies of the

same gene were found in fish, the number of which depends on the

species (116–122). TNFa was first identified in the Japanese

flounder, Paralichthys olivaceus (123), and posteriorly in

zebrafish, rainbow trout, gilthead sea bream and common carp

(120, 124, 125). TNF family signature is well conserved among

mammals and fish (119, 126).

TNFa was first described as a cytokine secreted by macrophages

regulating inflammation, apoptosis, cell proliferation and

stimulation of the immune system (115).. TNFa is also secreted

by adipose tissue or skeletal muscle (113, 127), and it is classically

included in the list of mammalian adipokines. It was in 1999 when

Bulló-Bonet et al. (128) suggested that TNFa can be produced by

human adipocytes themselves and, more recently, tnfa expression

has also been detected in fish cultured adipocytes (6).

TNFa receptors, TNFR1 and TNFR2, have been described for

several fish species (129). The functions of TNFR1 are, among
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others, related to apoptosis or cellular death while TNFR2 is

involved in the promotion of cell survival (129). tnfr1 is expressed

in many tissues, but tnfr2 is more tissue specific, limited to immune,

endothelial, microglia and nerve cells (129).

Either the mature adipocytes or the stromal vascular fraction of

adipose tissue, which includes pre-adipocytes mixed with

macrophages, can act as endocrine cells secreting adipokines

including TNFa. In mammals, obese individuals produce more

TNFa, in part due to the high number of infiltrated macrophages in

the adipose tissue (6, 130, 131). TNFa has a clear paracrine and/or

autocrine role within adipose tissue (17). In mammals and fish,

TFNa promotes adipocyte lipolysis, modulates lipogenesis, and

glucose transport and inhibits pre-adipocytes proliferation (129,

132). It can also interact with other cytokines and vice versa (115).

In fish, as in mammals, besides modulating fat metabolism, it has

been proved that TFNa can act as a pro-inflammatory, apoptotic or

organ regenerator regulator (6, 133–136). In almost all fish studies

conducted and described in this review, mammalian recombinant

TNFs have been used (5, 13, 137), although few studies have

reported the use of recombinant trout TNF1 and TNF2 in muscle

or other cell models (16, 129, 138).

Most of the studies regarding the effects of TNFa as a crosstalk

mediator in fish have been limited to its autocrine effect in adipose

tissue. This cytokine induced lipolysis in rainbow trout (13),

gilthead sea bream (18, 19) or large yellow croaker (17) in

experiments conducted both in vitro and in vivo. In mammalian

models, TNFa lipolytic action is usually mediated by modulation of

hormone-sensitive lipase (HSL) and adipose triglyceride lipase

(ATGL). Silencing of atgl expression in 3T3-L1 pre-adipocytes

almost completely abolished TNFa-induced glycerol release, while

TNFa-induced lipolysis under the same conditions was only

partially decreased upon reduction of hsl expression (139). In

contrast with these observations, TNFa decreased the expression

of the key lipolytic enzyme atgl in large yellow croaker pre-

adipocytes (17) although other mammalian studies showed a

similar action (140–142). The expression level of atgl was

increased in liver and muscle by lipopolysaccharide (LPS)-

induced TNFa in blunt snout bream, but not in adipose tissue

(143). Altogether, these data suggest that TNFa might modulate

adipose tissue lipolysis at several levels and with differences between

fish species. These variations might be explained in terms of

differences in the doses and origin of the peptides used in

the experiments.

Regarding mechanisms of action, TNFa can activate MAPK in

human adipocytes, leading to a lipolysis increase though ERK1/2

and p38 kinase activation (144, 145). Accordingly, Albalat et al. (13)

demonstrated that these protein kinases are partially involved in the

lipolytic effects of human TNFa in rainbow trout adipocytes. On

the other hand, TNFa increased PPARa during activation of

adipocyte lipolysis in large yellow croaker, in agreement with the

role of this transcription factor in fatty acid catabolism (17, 146,

147). The relevance of PPARg is not so clear as TNFa
downregulated pparg expression, promoting lipolysis in gilthead

sea bream adipocytes (19) as in mammals (148), but during TNFa-
induced lipolysis, pparg expression levels increased in large yellow

croaker (17). With regards to other possible transcription factors
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involved, liver X receptor (lxr) was upregulated by TNFa in

rainbow trout isolated adipocytes, in parallel to the pro-lipolytic

actions of this factor (14). Nevertheless, this mechanism of action is

not so clear in TNFa-induced lipolysis in gilthead sea bream

isolated adipocytes (19), highlighting again the complexity of the

signaling pathways of TNFa activating adipocyte lipolysis in fish.

Furthermore, TNFa can cause a decrease in adiposity by other

mechanisms besides inducing lipolysis. In order to decrease the

amount of triglycerides in adipocytes, TNFa minimizes fatty acid

uptake reducing substrate availability, but also inhibiting the

esterification of free fatty acids in mammals (132) or decreasing

the lipogenic enzyme fatty acid synthase (fas) expression (149).

Among fish studies, TNFa did not change the expression of fas,

ppara or pparg in large yellow croaker pre-adipocytes but decreased

the expression of lipoprotein lipase (lpl) (17), in agreement with its

role reducing fatty acid uptake. Supporting this fact, in rainbow

trout, TNFa induced by LPS administration, decreased fatp1

mRNA expression in adipose tissue, as well as in isolated

adipocytes (5).

Moreover, in mammals it is proved that TNFa induces insulin-

resistance (12, 150), by impairing insulin-stimulated glucose uptake

through the inhibition of insulin signaling at the insulin receptor

substrate level (151, 152), but on the other hand, TNFa increases

basal glucose uptake in adipose tissue (153). From studies in

rainbow trout adipocytes, it was concluded that stimulation of

basal glucose uptake by TNFa seems to be conserved from fish to

mammals. Meanwhile, the interactions between insulin and TNFa
are ambiguous in fish, namely: although an inhibitory effect

compared to insulin treatment was observed on AKT and TOR

phosphorylation when TNFa was added together with insulin in

rainbow trout adipocytes, it was not reflected on glucose uptake (6).

On the other hand, recombinant trout TNFa directly stimulated

glucose uptake in rainbow trout myoblasts and myotubes providing

evidence for a potential regulatory role of TNFa in skeletal muscle

metabolism (16).

Concerning adipogenesis, a negative effect of TNFa has been

well documented in several in vitromodels (12, 154, 155), including

fish pre-adipocytes and adipocytes (6, 15). In mammals, TNFa is

both an inhibitor of adipocyte differentiation and a suppressor of

some early stage genes responsible of pre-adipocyte conversion

(156); although in rats or mice, low concentrations of TNFa have a

promoting effect on adipocyte proliferation (155, 157). In large

yellow croaker, high concentrations of TNFa inhibited adipocyte

proliferation but low concentrations had no effect (17). Like in

mammals, this cytokine slightly enhanced rainbow trout adipocyte

proliferation, only at a low dose, and inhibited cell differentiation, as

indicated by a decrease in glycerol-3-phosphate dehydrogenase

activity (15). Additionally, lpl, proved to be an early marker of

adipocyte di fferent ia t ion, together with pparg , were

transcriptionally downregulated by TNFa in fish as in mammals

(15, 17). Furthermore, in the primary rainbow trout adipocytes

culture, incubation with TNFa downregulated the expression of

fatp1 (5), which can be understood not only as a decrease in cell

differentiation but also as a contribution to reduce fatty acid uptake

and thus, the lipid content of the adipocyte. Moreover, TNFa could

cause a decrease in adiposity in mammals inducing adipocyte death
frontiersin.org

https://doi.org/10.3389/fendo.2023.1155202
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hue et al. 10.3389/fendo.2023.1155202
(132, 158, 159), but as far as we know, there is no data available on

the cytotoxic effect of TNFa in fish adipose tissue. Overall,

differences in the response of adipocyte cells to TNFa in fish

seem to be related to dosage and species specificity as it occurs in

some mammalian models as well.

Interactions between TNFa and other adipokines (i.e.,

adiponectin) seem to have specific features in fish. Indeed, it has

been reported that adiponectin suppresses the expression and

release of TNFa from human and 3T3-L1 adipocytes (160, 161).

In rainbow trout adipocytes, TNFa increased the mRNA levels of

adipor1 but neither adiponectin nor TNFa modulated each other

gene’s expression, although TNFa inhibited the insulin-induced

increase in adiponectin mRNA levels (6). Therefore, the reciprocal

suppressive effect of both adipokines previously reported in

mammals is not clearly present in fish. When tested in vivo, the

absence of a mammalian-type regulation between adiponectin and

TNFa was confirmed, since TNFa injections failed to regulate the

expression of the adiponectin system in rainbow trout adipose

tissue (5).

To sum up, TNFa functions seem to be conserved between fish

and mammals, it is secreted by fish adipocytes and could act in the

adipose tissue in an autocrine way, and in other tissues including

skeletal muscle. Therefore, it is likely that a crosstalk exists among

all the tissues in which TNFa is involved, but further studies are

needed to definitively prove that.
2.5 Other adipokines

Another regulatory peptide produced by adipocytes to be

considered is apelin. In mammals, apelin and its receptor, that

belongs to the type 1 angiotensin G protein-coupled receptor family

(162), are expressed in adipose tissue but also widely distributed in

other peripheral tissues in goldfish (162), Ya-fish (Schizothorax

prenanti) (163), and others (164). Apelin has multiple roles,

according to the numerous locations where it is found. These

include the regulation of cardiovascular functions, metabolism,

feeding behavior and energy expenditure. In adipose tissue and

muscle, apelin regulates AMPK and promotes glucose utilization. It

was hypothesized that apelin contributes to obesity disorders by

developing adipose tissue mass via angiogenesis or pre-adipocytes

proliferation. Nevertheless, contradictory results among diverse

studies in mammals have been described and the precise role of

apelin needs further investigation (162, 163, 165, 166). In fish, very

little is known regarding apelin. Apparently, the only role of apelin

demonstrated in fish was as orexigenic factor (162, 163).

Nonetheless, other studies have hypothesized that apelin might be

involved in the regulation of many physiological functions in fish

due to its expression in various tissues, as in mammals.

Concerning other adipokines, adipsin and visfatin are two

recognized ones found in mammals and fish. Adipsin has been

described in olive flounder (167) and visfatin in silver Prussian carp

(Carassius auratus gibelio) (168). Both were identified in Atlantic

salmon and expressed in differentiating adipocytes derived from the

adipose-derived stromo-vascular fraction (169). These studies

agreed with mammalian literature showing that, apart from being
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expressed in different tissues, they are found mainly in adipose

tissue. In mammalian models, those cytokines are implicated in

immunological and inflammatory functions and, could be also

involved in the control of lipid metabolism and adipogenesis. The

basis established in the literature about those two adipokines could

help discovering in the future the true roles, pathways, and cross

talking in which adipsin and visfatin are involved in fish.
3 Lipokines

Studies of mammalian adipose tissue secretome focused at first

on adipokines (leptin and adiponectin, mainly); however, adipose-

derived lipids or lipokines emerged as new endocrine factors (170).

Provided by intracellular pathways of fatty acid metabolism,

circulating in blood plasma and acting as mediators between

adipose and non-adipose tissues (pancreas, liver or muscle),

lipokines appeared as regulators of metabolic homeostasis, stress

or inflammation (171). Among these lipokines, lysophosphatidic

acid, palmitoleate, fatty acyl esters of hydroxy fatty acids, oxylipins

and N-acyl amino acids, can act as autocrine or paracrine signals

(114). Some lipokines increase fatty acids uptake in skeletal muscle

(172), whereas others secreted by myocytes and stimulated through

exercise (i.e., b-aminoisobutyric acid (173);), act upon white

adipocytes and hepatocytes. Interestingly, lipidome atlases now

appear to characterize adipose tissues: subcutaneous versus

visceral depots (174).

On fish so far, few lipidome data are available in relation to

crosstalk between organs, maybe due to a key fat storage in liver in

some species, or only the existence of white fat adipose tissue,

whereas in mammals, brown adipose tissue is involved as well (175,

176). To our knowledge, lipidome reports rather appeared in

relation to fish environment or diet, focusing more on lipid

metabolism than on lipokines (177, 178). For instance, Dreier

et al. (177) highlighted the impact of environmental factors on

lipid metabolism referring to studies on largemouth bass

(Micropterus salmoides), zebrafish embryos or adults, rainbow

trout juveniles or Mediterranean cyprinidae. Therein,

relationships between pollution and changes in transcripts related

to lipid metabolism were evidenced, as well as chemical exposure

and fish lipid composition, or polluted water and phosphatidyl-

cholines/-ethanolamines alterations within skeletal muscle. Among

changes, the cholesterol pathway appeared as the one exhibiting the

highest number of altered metabolites in the study on zebrafish

embryos, whereas limited phospholipid lipase activities affected

brain tissues, and neurobehavioral responses, in the report on

young trout. On the other side, Jin et al. (178) reported how diet

composition affects the lipid uptake (gut), processing (liver) and

deposition (muscle) in Atlantic salmon in freshwater and

seawater stages.
4 Myokines

Skeletal muscle constitutes the largest part of the body weight,

particularly in fish, where it accounts for up to 60-70% and is
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therefore the largest organ. Since the beginning of the 21st century,

it is known that skeletal muscle secretes proteins called myokines,

which influence the function of other tissues and organs (4, 179)

through autocrine, paracrine and endocrine signaling. Although

several hundreds of myokines have been identified in mammals

from decades, few are known in fish. These myokines and their

reported effects in the muscle itself, bone and adipose tissue in fish

are summarized in Figure 2 and Table 1.
4.1 The transforming growth factors
family members

The TFG beta (TGF-b) superfamily includes numerous

structurally related growth factors known to regulate proliferation

and differentiation of many cell types. These growth factors are

classified into three subfamilies: TGF-b (including myostatin,

MSTN), bone morphogenetic proteins and activin/inhibin.
4.2 Myostatin

The most famous and studied myokine is MSTN, also

known as growth differentiation factor 8 (GDF-8) belonging to

the TGF-b superfamily. MSTN is synthesized as a precursor

protein containing a signal peptide, a large prodomain, and the

bioactive peptide. After two cleavages, the mature MSTN dimer

functions through binding to the activin receptor IIB that leads

to the phosphorylation of the transcription factor Smad3

(180). Identified in 1997 in mouse by McPherron et al. (181),
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mstn is nearly expressed exclusively in skeletal muscle although it is

also detectable in cardiac muscle and adipose tissue. The models of

mstn knockout mouse or the natural null allele lead to the “double-

muscle” phenotype (181, 182), being MSTN considered as the

strongest endogenous inhibitor of muscle growth. Interestingly,

the mstn knockout mouse beside the muscle phenotype, also

exhibits decreased fat mass. Several works have shown

that inactivation of MSTN increases the expression of key

thermogenic genes (e.g., ucp1, prdm16) and brown adipose-

related markers in white adipose tissues, leading to increased

energy expenditure and loss of adipose mass (183, 184).

In fish, mstn genes were identified in numerous species

revealing the presence of up to four paralogs coding for a well-

conserved mature protein (~90% identity between mammals and

fish) (reviewed by Gabillard et al. (185)). Fishmstn expression is not

restricted to muscle but rather has a widespread pattern including

white and red muscle, brain, liver, ovary… (20, 186–188). In

addition, the expression of mstn paralogs is differently regulated

according to tissues and physiological situation. In rainbow trout,

mstn-1a is expressed in nearly all tissues whereasmstn-1b andmstn-

2a are mainly expressed in brain, red and white muscle. In zebrafish

and tilapia, mstn-1 is strongly expressed in brain and muscle

whereas mstn-2 is mainly expressed in brain (185). Moreover, a

fasting period upregulated mstn-1 but not mstn-2 expression in

muscle and liver of barramundi (Lates calcarifer) but decreased

mstn-1 expression in brain and gills (20). On the contrary, in

zebrafish, no clear effect of fasting was observed for both mstn

orthologs in muscle (189). Concerning the receptor, expression of

activin receptor type IIB has been found in numerous tissues in

salmon, goldfish, and zebrafish, suggesting that MSTN could have
FIGURE 2

Crosstalk between adipose tissue, muscle, and bone in fish through cytokines secreted by the skeletal muscle, also known as myokines. Myostatin
(MSTN) can be secreted by muscle but also from the bone. It has a potential positive effect on fatty acid (FA) oxidation and a proved negative effect on
myocyte proliferation. Other two myokines most likely have autocrine roles: Transforming growth factor-b (TGF-b) and inhibin A (inhbA) inhibit cell
proliferation and differentiation in muscle. Insulin-like growth factor 1 (IGF-1), produced mostly by muscle but also by other tissues like adipose and
bone, enhances in muscle cell proliferation and differentiation, activation of the PI3K/AKT pathway, glucose and amino acid (AA) uptake and protein
synthesis. IGF-1 also induces proliferation and differentiation of adipose cells. Moreover, it is also hypothesized that IGF-1 has an influence on bone
formation. Other potential myokines are interleukin 6 (IL-6), irisin, myonectin, and leukemia inhibitory factor (LIF). Positive proved effects: green solid line;
Positive suggested effects; green dotted line; Negative proved effects: purple solid line; Negative suggested effects: purple dotted line.
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an effect in several fish tissues including the muscle, hence acting in

an autocrine manner (35).

To decipher the mechanism of action of MSTN in fish muscle,

several studies used cultured myoblasts. With appropriate

proliferation and differentiation media, it was shown that human

MSTN inhibited trout myoblast proliferation (21) and induced

myotube atrophy (22). In contrast, MSTN had no effect on

myoblast differentiation because it did not decrease MyoD and

Myogenin protein levels (21) as in mammals (190). Another study

(35) observed that myoblasts cultured in low serum concentration

(2%) expressed higher levels of myogenic markers (myogenin,

myod) in the presence of MSTN, suggesting an enhancement of

differentiation. Nevertheless, low serum concentration and addition

of MSTN for a long time, strongly inhibited cell proliferation and

consequently promoted differentiation in a non-specific manner as

suggested by the authors themselves.

To understand the function of MSTN better, several authors

inactivated the gene and observed the muscle phenotype. In

medaka, a null-mutation of the unique mstn gene induced a 30%

increase of muscle mass 16 weeks post-hatching (23), associated to

fiber hyperplasia during the first 5 weeks post-hatching and fiber

hypertrophy at 16 weeks of age. In the last few years, several papers

have reported an increase of muscle mass followingmstn disruption

in carp (191), blunt snout bream (192), olive flounder (193) and

channel catfish (194), showing in this case a consistent response

between species. Unfortunately, the consequences of mstn null

mutation on other tissues were not studied in these works.

TALEN-induced inactivation of mstn gene in medaka observed

an increase of muscle mass (25%) but also an alteration of the

immune system (24). In zebrafish, inactivation of mstnb but not

mstna lead to an increase of muscle mass after 80 days post-

fertilization associated to muscle hyperplasia (25, 150).

Interestingly, the authors reported an increase of fat accumulation

in muscle of mstnb -/- zebrafish and showed evidences for a

transition of energy supply from an amino acid- to a lipid-

dependent source (150). Recently, CRISPR/Cas9 inactivation of

mstn in loach (Misgurnus anguillicaudatus) led to an increase of

fibers number but also accumulation of lipids, especially in red

muscle (195).

Regarding the impacts on bone metabolism, mstn null mice

displayed in some studies, besides muscle hypertrophy, a significant

increase in bone mineral density, which provides direct evidence of

muscle to bone biochemical crosstalk (196, 197). Some evidence

exists that inhibition of MSTN action increases bone formation in

mice, suggesting that it exerts a negative effect on osteoblasts

differentiation. In contrast, MSTN acts as a positive regulator of

osteoclasts, increasing bone resorption (198). Hence, fish in vitro

studies using osteoblast cultures (105) would be very advantageous

to study the possible communication of MSTN with fish

skeletal bone.

Together, these results suggest that MSTN could have a role in

non-muscle tissues, but it is unknown whether these effects result

from crosstalk between tissues or simply from a wide expression of

MSTN, for example in adipose tissue or immune system organs. In

fact, bone-derived MSTN has been also recently suggested to

control muscle development in gilthead sea bream in two in vivo
Frontiers in Endocrinology 12
models, one of fasting and refeeding and another one of muscle

regeneration after an injury, since mstn2 expression in bone was in

all cases modulated, as proposed by the authors, to coordinate

musculoskeletal growth (199, 200).
4.3 Other TGF-b family members

Whereas the function of MSTN is well studied in fish, data

about the potential role of other TGF-b members on the crosstalk

between adipose, muscle and bone tissues are very scarce. In trout,

four tgf-b orthologs (tgf-b1, tgf-b2, tgf-b3, tgf-b6), three paralogs of
tgf-b1, (tgf-b1a, tgf-b1b and tgf-b1c), and four inhibin bA (inhba)

paralogs have been identified (201), expressed in red and white

muscle and adipose tissue. It is noteworthy that tgf-b6, which is not

present in tetrapods, is highly expressed in white muscle of gilthead

sea bream (202) but not in trout (201). In addition, tgf-b6
expression was downregulated during a refeeding period

following fasting in gilthead sea bream muscle (202). Under a

comparable experimental condition in trout, tgf-b1a and tgf-b2
were quickly downregulated during refeeding whereas tgf-b3
increased up to 7 days post-refeeding (201). In contrast, the

muscle expression of inhba1 but no other inhba, sharply dropped

during refeeding being even undetectable in some fish samples.

inhba was downregulated during in vitro differentiation of

myogenic cells, and upregulated by IGF-1 (39). Similarly, inhba

knockout mice exhibited enhancement of muscle development,

showing a conserved role for this gene in growth regulation (203).

Furthermore, Smad4, the central intracellular mediator of TGF-b
signaling, has been shown to be essential for cardiac and skeletal

development of zebrafish (42).

Moreover, TGF-b members and inhibin/activin bind to the

activin type II receptor (AcvR) and overexpression of a dominant

negative form of this receptor induced a strong development of

trout muscle (40). In zebrafish, inactivation of both activin receptors

(acvr2aa and acvr2ba) induced a strong increase of muscle mass due

to fiber hypertrophy (204). Similarly, overexpression of follistatin,

an antagonist of inhibin/activin and MSTN, specifically increased

muscle growth (41). Together, despite the complexity of the TGFs

superfamily reported in fish, the data suggest that some TGF-b
members and inhbA could be inhibitors of muscle growth or

regeneration in trout, even though these results need to be

confirmed in other fish species.
4.4 Insulin-like growth factors

The growth factors IGF-1 and IGF-2 are polypeptides of 67-70

amino acids identified in mammals and fish 50 years ago, and well

conserved across evolution (~70% amino acid identity between

mammals and fish) (205). These growth factors are mainly

produced and secreted from the liver, which accounts for 80% of

the circulating IGF-1 (206), the peptide that exerts the major

endocrine control of tissues growth. Nevertheless, igfs are

expressed in almost all tissues, stimulating in an autocrine/

paracrine manner, the proliferation and differentiation of cells.
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IGFs bind to a tyrosine kinase receptor, the IGF type 1 receptor

(IGF1R) that mediates almost all the actions of IGF-1 and IGF-2

and has a ubiquitous expression. Another kind of receptor, the IGF

type 2 receptor, exhibits greater affinity for IGF-2 than for IGF-1,

but does not activate signaling pathways. In contrast, the binding of

IGF-2 to its own receptor results in the degradation of the ligand,

thus participating to the regulation of its activity. To define the

effects of IGF-1 produced by muscle fibers, a transgenic construct

was generated in which expression of a human igf-1 was driven by

the avian skeletal a-actin gene (207). IGF-1 concentration in the

serum was similar in wild type and transgenic mice, but the latter

developed skeletal muscle hypertrophy and male mice had less

adipose tissue (208). The IGFs produced by skeletal muscle were

considered myokines and modulated by several hormonal and

environmental factors to regulate muscle homeostasis but also

bone and adipose tissues.

Regarding endocrine or possible autocrine effects, in fish

cultured myoblasts, IGFs stimulate cell proliferation (27, 30, 32),

amino acid and glucose uptake, protein synthesis (22, 31, 33, 34),

and cell differentiation (28, 35, 35, 38) contributing to muscle

growth. In addition, growth hormone (GH) and IGF-1 stimulate

the expression of igf-1 in myoblasts of gilthead sea bream

(209) and Atlantic salmon (29) supporting the promotion of

autocrine functions.

From several decades, the effect of nutritional status on igfs

expression has been studied in numerous fish species. For instance,

food starvation results in suppressed growth associated with a

decrease of liver igf-1 mRNA and circulating IGF-1 in trout (36),

eel (210), salmon (211), barramundi (212), catfish (213) and tilapia

(214). In muscle, food restriction decreases igf-1 but not igf-2

expression in trout (36, 215, 216) and tilapia (217, 218) showing

that muscular expression of igf-2 is not related to muscle growth.

According to these results, amino acids supplementation stimulated

the expression of igf-1 and igf-2 in myoblasts/myotubes of salmon in

culture (29). Another environmental parameter that influences

expression of igfs is water temperature. Indeed, in juvenile trout,

expression of igf-1 in muscle is higher at 16°C than 8°C (219)

whereas no significant effect has been observed for igf-2 expression.

Nevertheless, the induction of igf-1 expression in muscle was rather

due to a temperature-induced increase of food intake than to the

temperature itself (219).

Exercise in fish often induces better growth rate, especially in

pelagic fish. Recently, it has been reported that gilthead sea bream

under sustained swimming expressed more igf-1 in white muscle

(220). More precisely, it was reported that the splice variant igf-1c

was upregulated whereas no effect was observed for igf-1a and igf-

1b. This effect was found in the anterior and the caudal part of the

myotome, whereas igf-2 expression was upregulated only in the

caudal part, where the muscle is heavily loaded during swimming.

In zebrafish, exercise stimulated muscle growth without stimulation

of IGF-1 (221) highlighting potential differences between fish

species. These differences could be attributed not only to fish

species characteristics but also to the type of exercise (intensity

and duration). Unfortunately, in those studies bone growth was not

analyzed to enlighten a possible role of muscle IGF-1 acting locally

on skeletal bone development/metabolism. To our knowledge, only
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one paper in fish is available showing in vivo evidence of the

functional role of IGF-1 produced by muscle in an autocrine or

paracrine way. These data showed that transgenic carp

overexpressing igf-1 in the white muscle exhibited lower growth

and a fast-to-slow fiber switch associated to upregulation of the

muscle genes involved in lipid metabolism (222). The authors

suggested that the paradoxical lower growth rate reported could

be related to deep changes in metabolism that would affect the

growth of muscle fibers.

Notwithstanding, despite numerous data on IGFs actions and

regulations, it remains unclear whether IGFs produced by the

muscle have a function on the development of adipose tissue or

bone as it occurs in mammals. In this sense, during bone repair,

muscle-derived IGF-1 may signal to the osteoprogenitor cells in the

periosteum to increase bone formation in a paracrine way (198).

Supporting this hypothesis, increased proliferation was reported in

response to IGF-1 in an in vitro model of bone-derived cells from

gilthead sea bream (105). However, if this IGF-1 in vivo comes from

the muscle or acts as an osteokine in an autocrine manner still must

be deciphered.

Furthermore, we could also consider IGF-1 as an adipokine, as

it is expressed together with its receptor in adipose tissue as in many

other tissues in mammals and fish (43). Some studies have

addressed this, and the mitogenic effect of IGF-1 in the adipose

tissue has been confirmed. In this sense, IGF-1 increased

proliferation of rainbow trout (15) and gilthead sea bream (37)

pre-adipocytes and, it also stimulated differentiation in the early

stages of gilthead sea bream cells in culture (37). Again, we cannot

categorize what type of communication is really happening in vivo

considering that this IGF-1 could be coming from the adipose tissue

and act in an autocrine way, but also from contiguous tissues such

as muscle or from the plasma being IGF-1 produced in the liver,

thus representing paracrine or endocrine actions, respectively.

Finally, the activity of IGFs is regulated by six binding proteins

(IGFBPs) in mammals and fish (223). Although some of the IGFBPs

functions are IGF-independent, it has been clearly shown that they

bind IGF-1 and IGF-2 with high affinity to prevent their

degradation and to modulate their binding capacity to the IGF1R.

igfbp1, igfbp2 and their paralogs are mainly expressed in the liver

and involved in the regulation of metabolism. igfbp5 is readily

expressed in muscle and associated to muscle growth,

downregulated during fasting and upregulated during refeeding in

trout in a similar manner than igf-1 andmyogenin (36), as well as its

expression paralleled that of igf-2 in a model of sustained exercise in

gilthead sea bream (220). Due to the presence of numerous igfbp

paralogs in the teleost genome, the functions of IGFBPs remain

elusive. For a comprehensive overview of teleost IGFBPs, the reader

is referred to the review by Garcia de la serrana and

Macqueen (223).
4.5 Interleukin-6

IL-6 is a cytokine produced by immune cells, mesenchymal

stem cells (MSCs), endothelial cells and fibroblasts (224). In

addition, IL-6 was one of the first myokines identified in
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mammals due to its strong increase in muscle after exercise (225),

leading to an increase in blood IL-6 levels (225, 226) that in turn,

stimulates hepatic glucose production and lipolysis. In fish, IL-6 was

identified in several species including rainbow trout (227) and

zebrafish (228) but il-6 expression in muscle has only been

observed in zebrafish and very recently, in gilthead sea bream

(200). Although the literature on fish IL-6 focuses on its functions

in the immune system, transcriptomic analysis of muscle after

exercise failed to observe increased il-6 expression in zebrafish

(221). Therefore, the function of IL-6 as a myokine in fish

remains to be determined.
4.6 Others myokines

Although the number of identified myokines continues to

increase in mammals, data in fish is still very scarce. For instance,

the functions of irisin (229), myonectin (230) or the leukemia

inhibitory factor (LIF) (231) on the crosstalk between fish

adipose, muscle and/or bone tissues is still unknown arguing in

favor of future work on this direction.
5 Osteokines

Bone is a specialized connective tissue composed of cells and a

mineralized extracellular matrix (ECM). The skeleton serves as

attachment of the muscle for locomotion, provides mechanical

protection for internal organs, and constitutes a reservoir for

hematopoietic stem cells and minerals contributing to calcium

homeostasis. In mammals, it has been recently shown that the

bone can act also as an endocrine organ through the secretion of

specific hormones called ‘osteokines’ (232, 233). Evidence over the

past decades have identified at least three bone-derived molecules

showing endocrine functions. Osteocalcin and lipocalin-2 (LCN2)

are secreted by osteoblasts and primarily involved in the control of

energy metabolism and homeostasis (234), while fibroblast growth

factor 23 (FGF23) is produced by osteoblasts and osteocytes and

regulates phosphate homeostasis in the kidney (235). In this review,

we will present the existing information about these bone-derived

cytokines in fish.
5.1 Osteocalcin

Osteocalcin (a.k.a. bone Gla protein) is a small (45-50 amino

acids) secreted molecule belonging to the vitamin K-dependent

protein family and containing 3-4 g-carboxyglutamic acid (Gla)

residues, through which it interacts with calcium and

hydroxyapatite. Produced by osteoblasts, osteocalcin is among the

most abundant (10-20%) non-collagenous proteins found in the

ECM of bone and dentin of most vertebrates, from bony fish to

mammals (236). In fact, the appearance of osteocalcin seems to

have paralleled hydroxyapatite-containing bone structures

development, since it is not found in elasmobranchs, whose

skeleton is composed of calcified cartilage (237). The mature g-
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carboxylated form of osteocalcin has been associated with bone

formation and mineralization, and it is required for the correct

maturation of the hydroxyapatite crystals in mammalian bone

(238). On the other hand, the uncarboxylated osteocalcin has

been recently identified in mammals as a hormone regulating

glucose metabolism, fat mass, angiogenesis, as well as male

reproduction (239–241). Osteocalcin induces the production and

secretion of insulin by pancreatic b cells, and promotes adaptation

to exercise by stimulating the use of glucose and fatty acids by the

skeletal muscle (242–244). In addition, osteocalcin controls

cognition, and seems to be necessary for developing the acute

stress response (189). However, none of these functions outside

the skeleton have been postulated for a fish osteocalcin yet.

The osteocalcin gene originated before the division of the

Teleostei and the Tetrapoda. In fish, the first osteocalcin

characterized was that of the gilthead sea bream (245). Later on

osteocalcin was identified in meagre (Argyrosomus regius), Adriatic

sturgeon (Acipenser naccarii), common carp, pufferfish, medaka,

Senegalese sole (Solea senegalensis), white sea bream (Diplodus

sargus) and rainbow trout among others (246–249). The gene

structure and primary sequences of teleosts’ osteocalcins show

many conserved features with those of other vertebrates,

especially in the central region of the molecule (250). Conserved

elements include two invariant cysteine residues that form a single

disulfide bond in the mature molecule, as well as three g-
carboxyglutamic acid residues in the Gla domain, key to facilitate

binding of osteocalcin to hydroxyapatite (251, 252). Moreover,

during the characterization of osteocalcin from the meagre, a

fourth carboxylation was reported (250). This feature was

identified in other fish osteocalcins through multiple-sequence

analysis; as well as in mammals, although no post-translational

modification has been reported in those; therefore, its relevance

remains to be elucidated. In any case, all known osteocalcins encode

polypeptide chains as pre-pro-precursors with well-conserved

features, suggesting the assemblage of a similar functional three-

dimensional structure. Hence, mature osteocalcin binds strongly to

hydroxyapatite to control crystals maturation, but also, a small

fraction of osteocalcin (i.e., unbound) is released into the

circulation, serum osteocalcin levels being considered the most

sensitive marker of bone formation (240, 253).

Although most fish species only have one osteocalcin gene as in

mammals, the existence of a second osteocalcin has been reported in

some teleosts including zebrafish, rainbow trout, or Atlantic cod

(Gadus morhua) (247, 254). Comparative analysis of the mature

peptides revealed a high sequence conservation, suggesting that

both isoforms may have the same function concerning bone

mineralization. Indeed, this second osteocalcin is characterized by

a large acidic and serine-rich pro-domain that perhaps, may be

highly phosphorylated thus, potentiating its calcium binding

properties (247). This second osteocalcin is thought to have arisen

from WGD in the Teleostei lineage about 400 million years ago

(247, 255). Moreover, in rainbow trout, the reported presence of

paralogs for this second osteocalcin is in agreement with the

salmonid-specific genome duplication (256).

In terms of tissue expression, fish osteocalcin as in other

vertebrates is located only in mineralized bone tissues, including
frontiersin.org

https://doi.org/10.3389/fendo.2023.1155202
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hue et al. 10.3389/fendo.2023.1155202
branchial arches, jaw, vertebra, scales and teeth (245, 257).

Osteocalcin is associated to osteoblast-like cells and its content in

fish bone is not dependent on the origin of the tissue, since similar

levels have been found in fish with either cellular or acellular bone

(i.e., devoid of entombed osteocytes). However, lower levels of

osteocalcin mRNA have been reported in scaleless fishes such as

channel catfish (Ictalurus punctatus), probably due to their need of

using bone as the primary source of calcium for homeostasis instead

of the scales as other fish species (258). Furthermore, as previously

observed in mammals (259, 260), osteocalcin mRNA levels vary

depending on the stage of development, as it is only present in

calcified bone structures also in fish (245, 248, 261). In gilthead sea

bream, osteocalcin appearance at around 30 days post-hatching

coincides with the onset of skeleton mineralization (245), and the

levels of expression at that time are greatly induced in response to

increased incubation temperature during embryogenesis (262),

which can be related with accelerated growth and the appearance

of skeletal abnormalities. Indeed, inverse correlation between

malformation severity and osteocalcin levels have been reported in

fish (263–265). These evidences are supported by the knockout

mice study in which osteocalcin deficiency led to higher bone mass

by increased and accelerated bone formation (266).

Osteocalcin functions in mammals seem to be mediated

through GPRC6A, a G protein-coupled receptor family C group 6

member (267, 268). In fish, this receptor was first identified in silico

in relation to the olfactory epithelium and vomeronasal organ in

several species (269). More recently, the expression and

functionality of GPCR6A as amino acid receptor and sensor in

the gastrointestinal tract of rainbow trout has been demonstrated

(270), as in mammalian cells (271); nevertheless, its potential

involvement mediating the role of osteocalcin in fish bone or

other extra-skeletal tissues like muscle and adipose remains to

be elucidated.
5.2 Lipocalin-2

LCN2 (a.k.a. neutrophil gelatinase-associated lipocalin or

siderocalin), belongs to the lipocalin family of small secreted

proteins (160-200 amino acids), which contains up to 50

members generated after WGD and specific gene duplications

(272). Lipocalins share a common folding pattern resulting in a

tertiary structure with eight-stranded antiparallel b barrels that

enclose a hydrophobic substrate-binding pocket (273). Lipocalins

have many different functions depending on their ligands (e.g.,

retinol, steroids, odorants, pheromones, siderophores, etc.).

Specifically, LCN2 is an iron-sequestering protein, first

described in mammals as secreted by neutrophils, and mostly

involved in innate immunity functioning as an antimicrobial

protein (273–275). The expression of lcn2 in rodents is also

strongly induced in cartilage, embryo-derived hypertrophic

chondrocytes and myocytes after stimulation with bacterial LPS,

showing an inflammatory response during development (276). In

humans, lcn2 is highly expressed among others in the liver and

adipose tissue, and circulating LCN2 has been identified as an
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inflammatory marker closely related to obesity and its metabolic

complications (277). More recently, bone-derived LCN2 has been

identified, and demonstrated that it influences energy metabolism

by activating anorexigenic signaling pathways in the brain (278).

These actions of LCN2 occur through binding to the melanocortin 4

receptor at the level of the hypothalamic paraventricular and

ventromedial neurons.

In fish, a recent phylogenetic study of the lipocalin family,

showed six members, being the lipocalin-type prostaglandin D

synthase the evolutionary precursor of LCN2. In triploid crucian

carp, a lipocalin named 3nLcn2 was recently described, showing a

lipocalin domain and moderate to high levels of sequence identity

with other fish lipocalins, although low when compared with

mammalian sequences (279). Furthermore, 3nLcn2 presented

antimicrobial activity against bacterial infection, especially

exerting a protective effect at intestinal level, thus playing a role

in immune defense in fish, as previously described in mammals.

However, LCN2 bone-secretion or function as an osteokine have

not been described yet for any fish species.
5.3 Fibroblast growth factor 23

FGF23 is in mammals, primarily expressed and secreted from

the bone and related to phosphorous regulation (280), although it

has been also proposed to act controlling body calcium

homeostasis (281).

FGF23 is a 32 kDa protein, phylogenetically grouped with

members of a FGFs subfamily that act as hormones or systemic

factors interacting with specific receptors in the presence of

members of the Klotho family of proteins. Indeed, FGF23 binds

to Klotho, which encodes a type I membrane b-glycosidase-like
protein that is an essential cofactor for FGF23 binding to FGF

receptors (280).

In teleosts, fgf23 and aklotho have been cloned in zebrafish

among other species. Phylogenetic analysis showed as expected, that

zebrafish fgf23 is more closely related to fgf23 from other fish species

such as the rainbow smelt (Osmerus mordax) and the spotted green

pufferfish, sharing 63 and 57% identity, respectively, than to the

human gene (282). In adult zebrafish, fgf23 is specifically expressed

in the corpuscles of Stannius (282), which are endocrine glands that

lie in close proximity to the nephron and are thought to be involved

in calcium homeostasis, and aklotho is expressed in the kidney.

fgf23 expression is stimulated by ambient water with a high calcium

level. Overexpression of fgf23 in zebrafish lead to inhibition of

calcium uptake by downregulating the expression of the epithelium

calcium channel (ECaC) suggesting that FGF23 functions as a

hypocalcemic hormone (283). Besides, a previous study also using

zebrafish, reported that FGF23 regulates phosphate homeostasis

(284). Interestingly, fgf23 and aklotho mutations cause shortened

lifespan in zebrafish, with early onset of behavioral and degenerative

physical changes, and a specific calcification of vessels throughout

the body (285). Altogether, these studies suggest a significant role of

FGF23 and Klotho regulating fish mineral balance and aging-

related processes, similarly as it occurs in mammals.
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6 New approaches to specific analysis
of tissue interactions

Other complementary studies that aim to decipher cellular

interactions have been developed in mammalian models,

including cells co-cultured, to try understanding in vitro how they

communicate in vivo through contacts, secretions or both (286). For

instance, adipocytes cultured in 2D as freshly isolated from tissues

or immortalized cell-lines, evidenced some of these interactions:

endocrine and paracrine mainly.

Indeed, due to adipose tissue evolution (175) and numerous

adipose depots (visceral, subcutaneous, intra-muscular, brown…),

adipocytes from endotherms were cultured with various cell types

like those from blood vessels (287), cartilage (288), immune tissues

(289), intestine (290) or even cancers (291). Herein, we focus on

adipocyte-muscle co-cultures. Floating and fragile mature

adipocytes used in co-cultures are rare as compared to cell-lines

such as 3T3-L1, mouse fibroblasts that differentiate into adipocyte-

like cells and the mouse myoblast cell line C2C12, themselves

preferred to others (292). As an illustration for reciprocal dialogs

among these cells: 3T3-L1 suppress muscle differentiation in C2C12

myocytes (293), while differentiated C2C12 inhibit proliferation

and differentiation of 3T3-L1 adipocytes (294). Pre-adipocyte

models, developed in vitro to provide differentiating adipocytes

within 2 weeks of culture, did not resemble fully mature adipocytes

with their large unilocular lipid droplet (295), but eased the co-

culture in several species. Papers reporting on pre-adipocytes and

muscle cells described different kinds of interactions and effects

depending on the cell ratio, cell densities or length of co-

culture time.

Studies with intra-muscular adipocytes in co-culture are rare,

even though from their location they would be ideal partners to

crosstalk with muscle MSCs. As an example, intra-muscular pre-

adipocytes (IMPA) from chicken muscle impeded MSCs

differentiation and promoted lipid deposition (26), proliferating

MSCs inhibited IMPA differentiation and non-proliferating MSCs

accelerated IMPA differentiation and lipid storage (296). Last, but

not least, fibro-adipogenic progenitors, identified as multi-potent

progenitors within the muscle, are highly influenced by the

environment in their lineage choices and, conversely, influence

muscle homeostasis by their secretions (297).

Based on single-cell or -nucleus sequencing, multiple adipocyte

subtypes were recently reported (298, 299), opening the avenue to

co-cultures with dedicated subpopulations depending on the cell-

cell communications to be explored within adipose tissues or with

distal organs (300). In addition, a renewed interest for the ECM:

composition, physics and function (301) paves the way to the

culture of fat cells or progenitors with autologous ECM, in vivo or

in vitro derived (302).

Concerning other cell types, adipocyte stem cells stimulate 2D-

co-cultured chondrocytes in a way that may contribute cartilage

repair (303), whereas mature adipocytes modulate osteoclast

differentiation (304), through the secretion of growth factors or

adipokines: clear illustrations of an active bone-muscle crosstalk in

(305). In the limits of our knowledge, no such co-cultures have been

reported in fish species so far.
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Thereafter, 3D-cultures appeared attractive to work out as a

model since they include cell-cell contacts and so, putative

juxtacrine signals (292, 306, 307). As an example, 3D in vitro

structures were proposed for muscle/bone co-cultures using

established cell lines for muscle (murine C2C12) and bone

(human TE85 (308);). In optimal cases however, cultured cells

look as closely as possible to those inside the tissues and keep this

phenotype as long as possible to signal properly to the other cell

types. For example, membrane mature adipocyte aggregate cultures

helped maintaining adipogenic expression and long-term cultures

with no functional loss, so that subcutaneous or visceral adipocytes

retained depot-specific expression after 14 days (289) while mature

adipocytes are reputed fragile and alive in vitro for only a few hours

or days.

Although co-culture systems in fish remain to be developed,

transgenic lines appeared in zebrafish that helped following in vivo

adipocyte differentiation processes or adiposity dynamics (309),

through the imaging of adipocyte- or lipid droplet-specific labels

(fabp4-EGFP (310);; plin2-TOMATO (311);). Together with the use

of a fasting-refeeding experiment (fabp11-EGFP (312);) or a high

fat diet (311) these lines helped reporting on the metabolic

regulations that impact on adipose tissues.

Furthermore, extracellular vesicles (EVs) isolated from various

biological fluids (blood, lymph for instance) or cell culture media,

mediate important communication between donor and recipient

cells. In fact, EVs are released by a wide variety of cell types and are

found in all organisms investigated so far (313). Recipient cells

catch them by endocytosis, ligand binding or membrane fusion

(313). From donor cells, large EVs or microvesicles (MVs) form by

budding of the plasma membrane and vary in diameter from 250 to

500 nm. Small EVs or exosomes (40-100 nm) form inside the cell by

fusion of intraluminal vesicles with the plasma membrane, and

share with EVs common cargos such as proteins, lipids, RNAs

(314). However, cargos of MVs or exosomes can also be selective,

regulated by physiological or pathological states (315), their release

thus resembling paracrine/endocrine signals. EVs secreted by the

adipose tissue affect bone remodeling (via lipid transfer, circulating

miRNAs or EV-linked-adipokines (316);). And, a reciprocal EV-

based crosstalk between muscle and bone has also been reported

(317), highlighting the role of such vesicles, conserved among

eukaryotes (318). Interestingly, zebrafish embryo-expressing

fluorescent proteins associated with exosomes (e.g., CD63-

phluorin) have been demonstrated to be a relevant model to

study endogenous EVs in vivo to unravel fundamental aspects in

EVs physiology and their role in inter-organ communication

(319, 320).

In mammals, interplays among cytokines and/or exosomes, also

contribute to the metabolic situations altered in obesity or improved

by exercise. As an example, metabolic organs defined as adipose

tissue, gut, skeletal muscle and liver, can communicate with

macrophages infiltrated into the adipose tissue in obesity cases

(321). Similarly somehow, exercise-induced soluble factors among

which adipokines, myokines, osteokines contribute to redistributed

energy, appetite control, fat loss and reduced systemic inflammation

(322, 323). Therein, the adipose tissue appears as an endocrine

organ that interacts with others through cross talking with the
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endothelial cells of the blood vessels (287). Similar interplays might

well be active in fish species as well, but few papers have addressed

the question except one dealing with feeding, appetite regulating

mechanisms, and energy homeostasis (324), proposing teleost fish

as models to understand mammalian dysregulations.
7 Conclusions

To conclude, our current knowledge about adipokines,

myokines, and osteokines physiologies relies, in a great part, on

different findings regarding peptide structure, receptors, and

expression patterns in a variety of fish species and tissues. The

scenario is very complex in teleost fish, since these molecules are

described in a wide variety of tissues and sometimes, different

isoforms are identified. In addition, profiles of tissue distribution

are different in many cases from those in mammals, probably

associated with the specific fish physiology. That happens with

some adipokines, which in fish, are rather expressed in liver, or in

skeletal muscle, which are important organs of lipid deposition.

Subsequently, the denomination of these factors as adipo-, myo- or

osteo-kines could be more diffuse in fish.

Here we provide evidence of the existence of crosstalk between

tissues from studies on the autocrine, paracrine, and endocrine

effects of these cytokines and more specifically, findings from null

mutations or knockouts of specific genes (i.e., mstn, lepr).

Nevertheless, the importance of this communication between

adipose, muscle and bone tissues during fish development, or

along the life cycle, is not known yet.

Another unresolved question is the identity of the secretomes

from these tissues in basal conditions or during fish exercise, fasting

or aging, in order to adjust the whole organism’s homeostasis. The

identification of molecular actors involved in inter-tissue

communication opens new avenues of knowledge and strategies

to improve growth and ameliorate possible metabolic disorders or

skeletal anomalies in cultured fish.

Adipose tissue, muscle and bone are intimately linked, both in

forms and in functions from embryogenesis to growth and

development. Therefore, bone-muscle, muscle-adipose tissue, and

bone-adipose tissue communication must be bi-directional with a

complicated network of cytokines involved in such crosstalk. Research

in this aspect could be greatly helped by the development of new

experimental tools to determine whether these cytokines are responsible

of a particular pathway of communication between tissues. New
Frontiers in Endocrinology 17
approaches such as the co-culture of different cell types, the study of

exosomes or even the development of organoids will thus improve the

understanding of the mechanisms underlying tissues crosstalk in fish.
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199. Lavajoo F, Perelló-Amorós M, Vélez EJ, Sánchez-Moya A, Balbuena-Pecino S,
Riera-Heredia N, et al. Regulatory mechanisms involved in muscle and bone
remodeling during refeeding in gilthead sea bream. Sci Rep (2020) 10:184.
doi: 10.1038/s41598-019-57013-6
frontiersin.org

https://doi.org/10.1210/jc.2009-0558
https://doi.org/10.1074/jbc.272.2.971
https://doi.org/10.1074/jbc.274.37.26287
https://doi.org/10.1194/jlr.M400295-JLR200
https://doi.org/10.1210/endo.138.7.5242
https://doi.org/10.1038/oby.2000.20
https://doi.org/10.1038/sj.cdd.4400292
https://doi.org/10.1016/S0014-5793(97)01204-0
https://doi.org/10.1016/S0014-5793(97)01204-0
https://doi.org/10.2337/diabetes.54.7.2003
https://doi.org/10.1152/ajpendo.00110.2003
https://doi.org/10.1016/j.peptides.2009.04.020
https://doi.org/10.1016/j.mce.2014.08.009
https://doi.org/10.3389/fendo.2021.798903
https://doi.org/10.1152/ajpendo.00015.2009
https://doi.org/10.1007/s12272-020-01274-7
https://doi.org/10.1007/s12272-020-01274-7
https://doi.org/10.1016/j.fsi.2009.06.022
https://doi.org/10.4314/%u.v10i74.%c
https://doi.org/10.1186/1471-2164-11-39
https://doi.org/10.1016/j.cell.2008.07.048
https://doi.org/10.3390/nu11102422
https://doi.org/10.1016/j.cmet.2018.03.020
https://doi.org/10.1016/j.cmet.2013.12.003
https://doi.org/10.1016/j.xcrm.2021.100407
https://doi.org/10.1016/j.cell.2007.10.004
https://doi.org/10.1242/jeb.161588
https://doi.org/10.1016/j.cbd.2020.100742
https://doi.org/10.1021/acs.jafc.0c07281
https://doi.org/10.1016/j.coph.2017.05.005
https://doi.org/10.1007/s00018-014-1689-x
https://doi.org/10.1038/387083a0
https://doi.org/10.1038/387083a0
https://doi.org/10.1038/ng0997-71
https://doi.org/10.1016/j.biocel.2011.11.004
https://doi.org/10.1002/oby.20117
https://doi.org/10.1016/j.ygcen.2013.08.012
https://doi.org/10.1242/jeb.204.20.3523
https://doi.org/10.1210/en.2006-1299
https://doi.org/10.1016/j.ygcen.2006.12.023
https://doi.org/10.1016/j.cmet.2019.08.012
https://doi.org/10.1074/jbc.M204291200
https://doi.org/10.1038/srep22953
https://doi.org/10.1016/j.aquaculture.2020.735597
https://doi.org/10.1016/j.aquaculture.2020.735597
https://doi.org/10.1016/j.aquaculture.2019.734336
https://doi.org/10.1016/j.aquaculture.2019.734336
https://doi.org/10.1016/j.aquaculture.2022.738290
https://doi.org/10.1016/j.aquaculture.2022.738290
https://doi.org/10.1016/j.aquaculture.2021.737097
https://doi.org/10.1016/j.aquaculture.2021.737097
https://doi.org/10.1096/fasebj.26.1_supplement.914.4
https://doi.org/10.1016/j.bone.2018.11.002
https://doi.org/10.1002/jcb.28946
https://doi.org/10.1038/s41598-019-57013-6
https://doi.org/10.3389/fendo.2023.1155202
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hue et al. 10.3389/fendo.2023.1155202
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