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From mitochondria to
sarcopenia: role of 17b-estradiol
and testosterone

Xu Tian, Shujie Lou and Rengfei Shi*

School of Kinesiology, Shanghai University of Sport, Shanghai, China
Sarcopenia, characterized by a loss of muscle mass and strength with aging, is

prevalent in older adults. Although the exact mechanisms underlying sarcopenia

are not fully understood, evidence suggests that the loss of mitochondrial

integrity in skeletal myocytes has emerged as a pivotal contributor to the

complex etiology of sarcopenia. Mitochondria are the primary source of ATP

production and are also involved in generating reactive oxygen species (ROS),

regulating ion signals, and initiating apoptosis signals in muscle cells. The

accumulation of damaged mitochondria due to age-related impairments in

any of the mitochondrial quality control (MQC) processes, such as

proteostasis, biogenesis, dynamics, and mitophagy, can contribute to the

decline in muscle mass and strength associated with aging. Interestingly, a

decrease in sex hormones (e.g., 17b-estradiol and testosterone), which occurs

with aging, has also been linked to sarcopenia. Indeed, 17b-estradiol and

testosterone targeted mitochondria and exhibited activities in regulating

mitochondrial functions. Here, we overview the current literature on the key

mechanisms by which mitochondrial dysfunction contribute to the development

and progression of sarcopenia and the potential modulatory effects of 17b-
estradiol and testosterone on mitochondrial function in this context. The

advance in its understanding will facilitate the development of potential

therapeutic agents to mitigate and manage sarcopenia.
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1 Introduction

Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized

loss of muscle mass and strength/function upon aging, with an increased risk of adverse

outcomes, including falls, disability, loss of independence, morbidity, and mortality (1).

Muscle mass and strength peak in young adulthood and, after a plateau, start decreasing

gradually with advancing age (2, 3). Such a decline can be accelerated in persons with

inactive lifestyles (4), as well as in the setting of chronic diseases (5) or inadequate nutrition

(6). The sarcopenia process is accompanied by progressive muscle wasting attributed to

increased levels of apoptosis (7) and reduced capabilities for muscle regeneration (8). This
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cellular and functional deterioration is a multifactorial etiology,

in which hormonal alterations (9), neuromuscular junction

degeneration (10), muscle fat infiltration (11), oxidative stress

(12), chronic inflammation (13), and mitochondrial dysfunction

(14) are the crucial factors accountable for this pathology. However,

the specific role of these factors and the exact molecular

mechanisms triggered by those conditions are not fully understood.

In humans, skeletal muscle is one of the most dynamic and

plastic tissues in the body, comprises approximately 40% of total

body weight, and contains 50–75% of all body proteins (15). Skeletal

muscle is made up of bundles of muscle fibers (muscle cells) named

fascicles. The cell membrane surrounding the muscle fiber is the

sarcolemma, and beneath the sarcolemma lies the sarcoplasm,

which contains the cellular proteins, organelles, and myofibrils:

the thin filaments (actin) and the thick filaments (myosin). Actin

and myosin are contractile proteins that are responsible for muscle

contraction. Mitochondria form a three-dimensional network in the

sarcoplasm that produces the energy needed for muscle contraction

when oxygen is available to the muscle fibers (16). Besides, efficient

communication between the nervous and muscular systems is a

critical factor in the ability of muscle contraction. Muscle fibers

connect with motor neurons to form the neuromuscular junction

(NMJ), a highly specialized synapse. There, neuronal signals from

the brain or spinal cord are delivered to the sarcolemma via the

neurotransmitter acetylcholine, triggering the depolarization of

muscle fibers and initiating muscle contraction. Hence, the

maintenance of functioning muscle mass is a complex process,

and malfunction of any of the above elements can lead to

muscle deterioration.

Emerging evidence suggested that apart from energy

production, mitochondria perform other critical functions to

maintain homeostasis and function in the skeletal myocytes,

including regulation of intracellular Ca2+ homeostasis,

modulation of cell proliferation, and integration of apoptotic

signaling (17–19). Aberrant mitochondrial quality control (MQC)

leads to loss of mitochondrial integrity, which is thought to be a

major factor in muscle degeneration (20). Along with

mitochondrial alteration, age-related decreases in sex steroid

hormones in both men and women have been implicated as

critical factors in the development of sarcopenia (21, 22).

Notably, mitochondria have sex-specific features, and alterations

in mitochondrial quality control are associated with changes in sex

steroid hormone levels (23, 24). Here, we will outline the current

understanding of the central mechanism by which mitochondria

contribute to skeletal muscle health during aging and the potential

correlation between the mitochondria and sex hormones in the

pathogenesis of sarcopenia, focusing on recent findings.
2 Mitochondria structure and function

2.1 Mitochondria and mitochondrial
life cycle

The mitochondrion is a micron-sized, densely arranged,

dynamic organelle that exists in cells as granular or filamentous
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structures and varies in number across tissues or cell types.

According to the endosymbiotic hypothesis, mitochondria were

initially derived from aerobic a-proteobacteria, which, over billions
of years of evolution, were engulfed by anaerobic archeobacteria to

form primitive eukaryotic cells (25). Due to their ancient bacterial

origin, the bilayer membrane of mitochondria also seems to be

explained accordingly. The inner membrane is rich in cardiolipin,

which is thought to be derived from the cell membrane of the

bacteria itself, while the outer membrane is originated from the cell

membrane of the host cell. These two membranes divide the

mitochondria into two compartments: the intermembrane space

and the matrix space. The inner mitochondrial membrane folds

inward to form the mitochondrial cristae, responsible for more

biochemical reactions that convert dietary fuel metabolites into

ATP, CO2, and H2O to sustain life.

Unlike other organelles in cells of the human body,

mitochondria harbor a small amount of their own DNA

(mtDNA), which encodes a series of critical proteins involved in

mitochondrial respiration, including 13 genes encoding subunits of

the respiratory chain, two genes encoding ribosomal RNAs, and 22

genes encoding transfer RNAs (26). Similar to bacterial

chromosome, mtDNA is packaged by a series of proteins,

including prohibitins, ATPase family AAA domain-containing

protein 3 (ATAD3), the mitochondrial transcription factor A

(TFAM), and mitochondrial polymerase gamma catalytic subunit

(POLG) to form mtDNA-protein complexes called nucleoids (27,

28). TFAM is known to be the main nucleoid protein, acts as a

transcription factor for mtDNA, and plays an important role in

nucleoid compaction and mtDNA maintenance (27). Genetic

defects of mtDNA are associated with many human diseases (29).

Different from nuclear DNA (nDNA), mtDNA is inherited only

through the maternal line, is intronless, and lacks histones (30). All

other mitochondrial proteins, including those involved in mtDNA

replication, repair, transcription, and protein translation, are

nuclear-encoded and translocated to the mitochondria using

specialized import systems — the translocase of the outer

membrane (TOM) and translocase of the inner membrane (TIM)

complexes (31). The TOM complex recognizes and binds to the

mitochondrial targeting sequence of the incoming protein, while the

TIM complex facilitates the translocation of the protein across the

inner mitochondrial membrane (32).

Sufficient energy supply and cellular survival rely upon the

complex mitochondrial life cycle, which involves mitochondrial

biogenesis, fission-fusion, and mitophagy (33). Mitochondrial

biogenesis and degradation(mitophagy) are a set of opposing

processes to maintain a dynamic equilibrium of cellular

mitochondrial content. Mitochondrial proliferation is achieved by

increasing nuclear and mitochondrial-encoded proteins, mtRNA,

and other components (i.e., mitochondrial biogenesis), followed by

mitochondrial fission. Regulation of mitochondrial biogenesis

varies among tissues and stimulation factors but often involves

some important co-activators and specific transcription factors,

including the peroxisome proliferator-activated receptor g co-

activator 1-a (PGC-1a), nuclear respiratory factors (NRF1 and

NRF2), estrogen-related receptors (ERRa, ERRb, and ERRg), and
TFAM (34). Dysfunctional and damaged mitochondria can be
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effectively degraded, eliminated, and recycled via mitophagy. This

process is regulated by some proteins, among which the PTEN-

induced putative kinase 1 (PINK1) and E3-ubiquitin ligase

Parkinson juvenile disease protein 2 (PARK2) are served to

recognize damaged mitochondria and localize them to the

autophagosome, which then fuses with lysosomes to form

autophagolysosomes (35, 36).

Just as mitochondrial biogenesis and mitochondrial autophagy

dynamically regulate mitochondrial quantity and quality,

mitochondrial fusion and fission serve as another set of opposing

processes to regulate mitochondrial production and morphology.

Mitochondrial fission separates the damaged part from the healthy

mitochondrial network or occurs during cell mitosis, producing two

new mitochondria to meet cell division needs (33, 37). A few

mitochondrial outer membrane proteins, including mitochondrial

parting protein 1 (FIS1), mitochondrial splitting component (MFF)

(38), and mitochondrial dynamics proteins of 49 kDa and 51 kDa

(MiD49, MiD51) (39), are identified to mediate mitochondrial

fission by targeting the GTPase dynamin-related protein 1

(DRP1) to the mitochondrial surface. On the other hand, fusion

allows the transfer of metabolites, enzymes, and gene products

between mitochondria for optimal functioning. Mitochondrial

fusion is mediated by three large GTPases of the dynamin

superfamily: Mitofusin 1 (MFN1), Mitofusin 2 (MFN2), and optic

atrophy 1 (OPA1) (40).
2.2 Mitochondrial functions

As the cell’s powerhouse, mitochondria primarily use fatty acid

and carbohydrate-deriving substrates to generate reducing

equivalents, eventually converted to chemical energy in the form

of ATP. The common degradation product of fatty acids and

carbohydrates in mitochondria is acetyl-CoA, which undergoes a

series of enzyme-catalyzed reactions (called the Krebs cycle) in the

mitochondrial matrix to generate NADH and FADH2. The NADH

and FADH2 molecules are transferred to the inner mitochondrial

membrane and re-oxidized to NAD+ and FAD+ in the electron

transport chain (ETC). They donate the carried electrons to the

energy receptor (oxygen), formatting ATP through a process called

oxidative phosphorylations (OXPHOS).

The ETC consists of five protein complexes forming a redox

chain (also known as the respiratory chain). A consequence of

electron transport is the production of reactive oxygen species

(ROS). Mitochondria-derived ROS include the superoxide anion

(O2−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) are

tightly regulated via mitochondrial and cytosolic antioxidant

defenses. Superoxide dismutase (SOD), catalase (CAT),

glutathione peroxidase (GPX), quinone oxidoreductase 1

(NQO1), and heme oxygenase 1 (HO-1) are enzymes that

constitute the key to the cellular antioxidant defense system. Low

levels of ROS act as signaling molecules to regulate various

intracellular processes (41). However, mitochondrial dysfunction

is strongly linked to the excessive release of ROS, which results in

oxidative damage to lipids, proteins, and DNA, leading to the

development of degeneration and biological aging (42).
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Another essential function of mitochondria is to regulate

intracellular calcium (Ca2+) homeostasis. Mitochondrial Ca2+

uptake plays a vital role in regulating cellular functions, involving

stimulation of ATP production, inhibition of autophagy, correction

of intracytoplasmic Ca2+ signaling, and regulation of cell death.

Mitochondrial Ca2+ uptake is regulated by a multi-protein

complex centered around mitochondrial Ca2+ uniporter (MCU)

and MCU regulatory unit b (MICUb), and in close interactions

with several regulatory subunits, such as mitochondrial Ca2+ uptake

proteins (MICU1 and MICU2) and essential MCU regulator

(EMRE). Mitochondrial Ca2+ extrusion is mainly dependent on the

mediation of Na+/Ca2+/Li+ exchanger (NCLX). Mitochondrial Ca2+

overload induces the collapse of mitochondrial membrane potential

and the mitochondrial opening of permeability transition pore

(mPTP), which triggers the release of pro-apoptotic factors and

leads to cell death.

It has been known that mitochondria are closely linked to

the inflammatory response. The accumulation of damaged

mitochondria leads to the release of several components, such as

cell-free mtDNA, N-formyl peptides, and cardiolipin, which can be

recognized by pattern recognition receptors (PRRs) as a damage-

associated molecular pattern (DAMP) to stimulate inflammation

(43). Interestingly, circulating levels of mtDNA rise gradually with

age and connect with those of systemic pro-inflammatory

cytokines, such as interleukin 6 (IL6) and tumor necrosis factor-

alpha (TNF-a) (44).
In addition, mitochondria are involved in a variety of other

essential cellular functions, such as the maintenance of ion

homeostasis, pH regulation, steroid hormone synthesis,

and thermogenesis.
3 Mitochondria and sarcopenia

3.1 Mitochondrial regulation of sarcopenia

Mitochondria play a central role in regulating multiple vital

cellular processes involved in energy supply, cellular proteostasis,

ROS production, calcium homeostasis, and cell apoptosis (45).

Aging increases the levels of mitochondrial stress leading to the

increased sensitivity of the mPTP opening. The mPTP is a weakly-

selective, large-conductance channel that is closed under non-

stressed conditions, which can be triggered to open by

mitochondrial ROS (mROS) and Ca2+ overloading. Excessive

opening of mPTP opening causes the loss of mitochondrial

membrane potential and subsequent release of mitochondrial

contents (e.g., mROS and cytochrome c) to the cytosol, thereby

initiating an apoptotic signaling cascade in muscle fiber and motor

neurons. The activation of apoptotic signals is accompanied by

DNA fragmentation and subsequent nuclear apoptosis, which

eventually leads to muscle atrophy and denervation. Figure 1

shows the general pathways initiated by mitochondrial alteration

resulting in motor neuron and muscle cell death and culminating in

sarcopenia (14).

As mentioned above, mitochondria were thought to the main

source of ROS production. Conversely, the accumulation of ROS in
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the muscle and neuron cells has the potential to damage cellular

mitochondria (46). This is mainly attributed to the decrease of

antioxidant enzymes level in cells caused by aging. For instance, the

reduction of the cytosolic antioxidant CuZn-superoxide dismutase

(CuZnSOD) was observed in mouse nerves and muscle, consistent

with sarcopenic muscle loss (47). In deed, the production of mild

oxidative stress acts as a cellular signal that increases skeletal muscle

strength, while further increases reduce strength and promote

muscle fatigue (48). Considering the age-related decline in cellular

antioxidant activity, the accumulation of cellular macromolecular

damage induced by free radicals may be a critical driving force for

muscle degeneration.

Mitochondrial Ca2+ is a key regulator of mitochondrial function

and cell death. An increase in Ca2+ concentration induces mPTP

opening, which further exacerbates the imbalance of intracellular

Ca2+ homeostasis, possibly caused by leaky ryanodine receptors in

aged skeletal muscle (49). Mitochondrial Ca2+ overload results in

mitochondrial swelling, with perturbation or rupture of the outer

membrane, and in turn the release of mitochondrial apoptotic

factors into the cytosol. This is partly responsible for the

increased incidence of apoptosis in aged skeletal muscle cells (50).

Aging decreases the mitochondrial function and mitochondrial

content in the skeletal muscle. As mentioned above, muscle

contraction begins with a signal, a neuronal action potential,
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travels through motor neuron. Neural conduction and the reset of

membrane potential after each action potential is a high energy-

consuming process. Therefore, decline in mitochondrial function

and loss of mitochondrial content in motor neurons may contribute

to a decrease in muscle strength (51, 52). Nevertheless, the role of

mitochondria in regulating motor neuron aging deficits or motor

neuron death is not well understood.

The primary causes of the decline in mitochondrial function

and mitochondrial content in aging muscle are the result of the

failing mitochondrial quality control (MQC) processes (a series of

processes including proteostasis, biogenesis, dynamics, and

mitophagy). The following subsections summarize the current

evidence supporting MQC derangements as a factor in sarcopenia.
3.2 Mitochondrial proteostasis
system in sarcopenia

Loss of proteostasis leads to proteome mislocalisation and

aggregation, triggers proteotoxic insults and cell death, which

further adversely impacts the physiological function of skeletal

muscle (53). To maintain the homeostasis of the mitochondrial

proteome, mitochondria are equipped with a proteostasis system

that consist mainly of a cooperative network of organelle-specific

proteases (mitoproteases) and the ubiquitin proteasome system

(UPS). A recent proteomics-based study of Drosophila fibroblasts

found that approximately 70% of mitochondrial protein turnover

occurs through non-autophagic degradation processes such as

mitoproteases and UPS; Autophagy accounts for about 30% of

mitochondrial protein turnover (54).

Mitoproteases serve as the first line of defense against mild

mitochondrial damage and involves the degradation of misfolded or

damaged proteins (55). Since about two-thirds of the mitochondrial

proteins are located in the mitochondrial membrane and matrix,

regulation of the enormously protein-dense matrix environment is

particularly important for retaining normal mitochondrial

functions. In the mitochondrial matrix, protein turnover is

regulated by three core ATP-dependent AAA proteases: Lon

protease homolog (LONP1), Clp protease proteolytic subunit

(CLPP), and matrix (m)-AAA protease. Several recent studies

have suggested a link between AAA proteases-dependent

mitochondrial protein quality control and muscle quality/function

maintenance. A reduced muscle mass and strength has been

reported in mice with deletion of the Lonp1 gene in response to

muscle disuse (56). Down-regulation of ClpP in C2C12 mouse

myoblasts resulted in mitochondrial dysfunction and reduction

of cell proliferation (57). Mutation of Drosophila m-AAA

mitochondrial protease leaded to impaired mitochondria

function, shortened lifespan, and neuronal and muscular

degeneration (58). Additionally, protein degradation in the inter-

membrane space is mainly achieved by intermembrane (i)-AAA

protease YME1L1, High-temperature requirement protein A2

(HTRA2/OMI), the metallopeptidases OMA1 and the presenilins-

associated rhomboid-like protein (PARL). Protein quality control in

the mitochondrial intermembrane space is also critical to safeguard

a proper mitochondrial function and skeletal muscle funciton.
FIGURE 1

Schematic depicting the sarcopenia triggered by mitochondrial
stress in aging. Increased mitochondrial stresses in the aging lead to
mPTP opening. The release of mitochondrial contents (e.g., ROS,
Ca2+, and cytochrome c) into the cell cytosol initiates an apoptotic
signaling cascade that culminates in DNA fragmentation and loss of
the nucleus (apoptosis). Sufficient nuclear death in a muscle cell will
result in the death and removal of the entire muscle cell.
Furthermore, motor neuron death coincides with skeletal muscle
cell death, i.e., the apoptotic removal of alpha motor neuron nuclei.
The death of these cells contributes to the loss of muscle mass and
function during aging. Thus, dysfunctional mitochondria trigger a
cascade of signals that initiate the signaling pathways that lead to
sarcopenia.
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Absence of HTRA2/OMI protease activity induced denervation-

independent skeletal muscle degeneration with sarcopenia

phenotypes in mice (59). Suppression of PARL protein in

cultured healthy human myotubes lowered mitochondrial mass

and insulin-stimulated glycogen synthesis and increased reactive

oxygen species production (60).

The UPS is a primary cytosolic protein degradation system that

removes misfolded, damaged, or aging proteins from multiple cellular

compartments (61). Components of the ubiquitin system are present

in mitochondria, confirming the link between the UPS and

mitochondria. The deubiquitinating enzymes UBP16/USP30, E3

ubiquitin ligases Parkin, MITOL/MARCH5, and RNF185 were

found in the outer mitochondrial membrane and participate in the

regulation of mitochondrial morphology and protein turnover (62–

65). The mitochondria-associated degradation (MAD) is similar to the

process of endoplasmic reticulum-associated protein degradation

(ERAD). In both cases, ubiquitinated proteins are pulled out from

organelles by the chaperone AAA-ATPase p97/Cdc48p, subsequently

deubiquitinated and degraded by the proteasome in the cytosol (66).

p97, also referred to as valosin-containing protein (VCP) or the

cofactor Npl4, is a pivotal regulator of protein homeostasis

pathways (67). However, additional studies are warranted to

understand the role of UPS in degrading mitochondrial membrane

proteins and the importance of UPS in sarcopenia.

On the other hand, multiple cellular stresses associated with the

aging process trigger the mitochondrial unfolded protein response

(UPRmt) that serves as a critical mechanism for promoting cellular

recovery and mitochondrial network survival (68). Under stress

conditions, UPRmt occurs in an attempt to maintain mitochondrial

proteostasis by upregulating the expression of mitochondrial

chaperones and m-AAA proteases (e.g., chaperonin 10,

chaperonin 60, and CLPP) (69). The activation of these signaling

pathways improves protein folding, suppresses ER stress, and

removes damaged proteins.
3.3 Mitochondrial biogenesis in sarcopenia

Fewer mitochondria mass has been observed in skeletal muscle of

the elderly compared to young adults (70). This is believed to

primarily account for inadequate mitochondrial biogenesis, i.e., a

decrease in the production of new mitochondria. PGC-1a, a master

transcriptional regulator of mitochondrial biogenesis, has been shown

to be reduced at bothmRNA and protein levels in aged skeletal muscle

(71, 72). PGC-1a activity is co-regulated by phosphorylation and

NAD(+)-dependent deacetylation via metabolic biosensors AMP-

activated protein kinase (AMPK), mitogen-associated protein kinase

(p38MAPK), and sirtuin 1 (SIRT1) (73, 74). Once PGC-1a is

activated, it powerfully upregulates the expression of several proteins

(e.g., NRF1, NRF2, ERRa, ERRb, ERRg, TFAM) encoded by both

nuclear and mitochondrial genomes, leading to an increase in

mitochondrial mass (75).

Recent studies based on the rodent model have revealed a link

between biogenesis-related gene expression centered on PGC-1a
and skeletal muscle aging. The expression levels of PGC-1a, NRF1,
and TFAM are decreased in the skeletal muscle of senescence-
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accelerated mouse (SAM) prone 8 (SAMP8) during the onset and

development of sarcopenia (76). NRF2 knockout exacerbated frailty

and sarcopenia of mice during aging, accompanied by the reduced

expression levels of PGC-1a, NRF1, and TFAM, as well as a

reduction of mitochondrial content in the skeletal muscle (19).

Additionally, it has been found that SIRT1 serves as a potential

target that is activated by myricanol to increase PGC-1a activity to

ameliorate dexamethasone-induced skeletal muscle wasting (77).

PGC-1a has also been reported to mediate the beneficial effects of

exercise training on aging-related mitochondrial remodeling and

muscle functional deterioration in old mice (78). In contrast,

overexpression of PGC-1a can mitigate the effects of aging on

muscle by increasing mitochondrial protein content and

antioxidant enzyme activity and altering gene expression to

resemble a youthful transcriptome profile (79, 80). Based on these

findings, PGC-1a-mediated mitochondrial biogenesis may be a

promising target for sarcopenia therapy.
3.4 Mitochondrial dynamics in sarcopenia

As highlighted above, mitochondria are highly dynamic organelles

that continually undergo fusion and fission to maintain their

morphology, distribution, and function. Fragmented and atypically

enlarged mitochondria were often observed in aged skeletal muscle

(81, 82), indicating that mitochondrial dynamics are compromised in

advanced age. Abnormal mitochondrial morphology and function in

aged muscles are accompanied by changes in the expression of fusion

and fission proteins, including the fusion factors, MFN1, MFN2, and

OPA1; fission factors, DPR1 and FIS1. For instance, reduced

expression levels of OPA1 (71) and MFN2 (83) have been described

in the skeletal muscle of elderly individuals.

Several recent studies have highlighted the physiological

importance of genes encoding fission and fusion machinery

components in maintaining skeletal muscle health. The absence

of MFN2 in young muscle causes mitochondrial fragmentation,

impairs mitochondrial function, enhances ROS production, and

promotes the onset of sarcopenia (84). The deletion of OPA1 in the

skeletal muscle of young mice also alters mitochondrial morphology

and function, leading to muscle loss and weakness (85, 86).

Conversely, OPA1 overexpression protects mice from acute and

chronic muscle atrophy by ameliorating mitochondrial cristae

remodeling and mitochondrial dysfunction (87, 88). Additionally,

muscle-specific ablation of DRP1 induces severe muscle wasting

and weakness, as well as abnormal morphology, function, and Ca2+

homeostasis in mitochondria (18). Another recent study revealed

that loss of FIS1 results in impaired mitochondrial function and

proteostasis in muscle, decreasing both flight capabilities and

lifespan in FIS1 mutant flies (89).

These studies mentioned above indicated the essential role of

mitochondrial dynamics in muscle aging and sarcopenia. However,

the mechanisms under these processes are still poorly understood.

Furthermore, mitochondrial dynamics machinery is closely

associated with mitophagy. Mitochondrial fission is necessary for

subsequent mitophagy to dissipate dysfunctional parts from the

mitochondrial network (90). For example, MFN2 deficiency
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promotes muscle aging, also reduces autophagy, and leads to the

accumulation of defective mitochondria (84). Therefore, further

investigation will be needed to clarify the precise molecular

mechanisms of mitochondrial dynamics alteration in aging

muscle and develop an efficient strategy to prevent or delay the

onset of sarcopenia.
3.5 Mitochondrial autophagy in sarcopenia

Another primary cause of mitochondrial dysfunction in aging

muscle is the impaired mitochondrial autophagy (mitophagy)

machinery. Mitophagy is a particular type of macroautophagy

(autophagy) and, as mentioned above, can selectively remove

dysfunctional and damaged mitochondria to maintain

mitochondrial homeostasis. Studies indicate that aging provokes

certain alternations of several key mitophagy regulators, leading to

mitophagy deficiency and subsequent accumulation of dysfunctional

mitochondria in skeletal muscle (91, 92).

Among mitophagy proteins, PINK1 and Parkin (PARK2) have

been identified as crucial components in response to mitochondrial

damage (93). loss of Parkin causes a decline in muscle force in mice, as

well as impaired mitochondrial respiratory function and increased

sensitivity to mPTP in skeletal muscle (94). In line, overexpression of

Parkin attenuates aging-related loss of muscle mass and strength,

along with improved mitochondrial biogenesis and enzymatic

activities (95). In addition, several studies have revealed the

complexities and interrelationships between the different pathways

for maintainingmitochondria fitness. PINK1 can serve as a pro-fission

signal by activating DRP1 in response to mitochondria damage (96).

Parkin inhibits refusion after mitochondrial fission upon

depolarization by inducing the proteasomal degradation of

mitofusins (97). Besides, PGC-1a overexpression reduced the

expression of PINK1 and Parkin in muscle disuse atrophy (98).

Alternatively, MFN2 deficiency in muscle during aging reduces

autophagy, which contributes to the accumulation of damaged

mitochondria and triggers age-relatedmitochondrial dysfunction (84).

These findings indicate that mitophagy may contribute to

sarcopenia through a complex MQC network. Notably,

mitochondrial-derived vesicles (MDVs) have also been identified

as a novel way that eliminates damaged mitochondria alternatively

of mitophagy (99). Circulating MDV-derived ubiquinone

oxidoreductase subunit S3 (NDUFS3), the reduced form of

nicotinamide adenine dinucleotide, may be a novel predictor of

sarcopenia (100). Thus, the maintenance of mitochondrial

homeostasis in aging muscles is coordinately regulated by

multiple pathways.
4 Role of 17b-estradiol and
testosterone on mitochondria

4.1 Sexual dimorphism of mitochondria

Although mitochondria are inherited maternally, as mentioned

above, almost all mitochondrial proteins are encoded in the nucleus
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and are therefore influenced by sex chromosomes and circulating

sex hormones. Increasing evidence suggests mitochondria are

highly tissue and sex-specific in males and females. For instance,

female mitochondria in the heart, liver, and brain have a higher

antioxidant capacity and produce less ROS than males (101, 102).

Similarly, females have more functional mitochondria content in

white and brown adipose tissue than males (103, 104). Conversely,

the female brain and heart mitochondria have lower Ca2+ uptake

than males (105, 106).

Additionally, previous studies have revealed that female rodents

show higher endurance capacities and anti-fatigue properties than

male rodents (107, 108). This is believed to be associated with

mitochondrial content and substrate utilization in skeletal muscle.

Compared with males, the gastrocnemius muscle of female rats

exhibits higher mitochondrial DNA/nDNA and OXPHOS capacity

(109). Moreover, female skeletal muscle has higher intracellular

lipid content than males and thus may depend on fat oxidation to

supply much more energy during exercise (110).

Other aspects of sex differences in mitochondria in different

tissues include mitochondrial biogenesis, autophagy, susceptibility

to mPTP opening, and cell apoptosis (111–113). Undoubtedly,

more systematic investigation for sex dimorphism would

contribute to further understanding the role of mitochondria in

the sex specificity of important pathologies, such as sarcopenia.

Although sexual dimorphism in mitochondrial function have

been related to the genetic interactions between sex chromosomes

and autosomes (114, 115). The more recent data, however, suggest

that sex hormones contribute to this sex specificity on

mitochondria. The effects of estrogen and androgens on

mitochondria will be discussed below.
4.2 Role of 17b-estradiol on mitochondria

17b-estradiol is the most potent and ubiquitous member of the

category of sex steroid hormones known as estrogen, primarily

synthesized in the ovaries from cholesterol. It can also be produced

locally from fat, brain, skeletal muscle, and testes by aromatization,

which converts androstenedione and testosterone to 17b-estradiol
(116, 117). The biological effects of estrogen are mainly mediated

via nuclear and membrane estrogen receptors (ERs), including

estrogen receptor a (ERa), estrogen receptor b (ERb), and G-

protein-coupled ER (GPR30 or GPER), all three bind 17b-estradiol
with high affinity in the low nM range (118, 119). 17b-estradiol
binds to ERs to regulate gene expression through genomic and non-

genomic mechanisms. In the genomic pathway, cytosol-localized

ERa and ERb act as nuclear transcription factors that typically

dimerize and translocate to the nucleus following ligand binding to

activate gene transcription and expression. In the non-genomic

pathway, membrane-localized ERa and ERb sub-population, as

well as GPER, trigger various protein-kinase (MAPK, PKB, and

PKC) cascades. A more detailed description of the genomic and

non- effects of Estrogen/ERs can be found in ref (120).

Accumulating research shows estrogen can affect mitochondrial

mass and function through both genomic and non-genomic

pathways. For instance, estrogens upregulate the expression of
frontiersin.org

https://doi.org/10.3389/fendo.2023.1156583
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tian et al. 10.3389/fendo.2023.1156583
PGC-1 and its downstream target genes via genomic ERa and ERb
to promote mitochondrial biogenesis and ATP production (121).

17b-estradiol also increases the transcription of mitochondrial

nuclear-encoded genes, and mitochondria-encoded genes through

the ERa/b mediated activation of NRF1 and TFAM (122, 123). On

the other hand, it has been reported that ERa and GPER mediate

17b-estradiol enhancement of mitochondrial respiratory capacity

and ATP production via a PKA-dependent mechanism (124).

Activation of GPER is associated with the inhibition of mPTP

opening, an effect mediated by the ERK pathway (125). Moreover,

17b-estradiol also appears to regulate multiple other aspects of

mitochondrial function through ERs, including ROS generation,

antioxidant defense, and Ca2+ handling (126–131). Interestingly, it

was found that subpopulations of ERa and ERb exist in

mitochondria, although it is still unclear if they can directly

regulate mtDNA transcription (132–134). A recent study also

showed that 17b-estradiol could direct ly reduce the

microviscosity of mitochondrial membrane and bioenergetic

function in skeletal muscle without dependence on its receptor

(135). For a detailed description of the regulation of estrogens on

mitochondrial function, see (136, 137).
4.3 Role of testosterone on mitochondria

Along with 17b-estradiol, testosterone plays an essential role in

skeletal muscle physiology. Testosterone is a representative sex steroid

hormone, mainly produced by male Leydig cells, female ovarian thecal

cells, and partly by the adrenal gland (138). In the cell cytoplasm,

testosterone is converted into its active form, dihydrotestosterone

(DHT), by 5a-reductase. The actions of testosterone are mainly

mediated by androgen receptor (AR), which binds to specific

androgen response elements (AREs) in the promoter regions of

target genes (139). As a principal anabolic hormone, testosterone

plays a crucial role in increasing protein synthesis and inhibiting

muscle proteolysis in skeletal muscle (140, 141). Additionally,

testosterone can promote muscle fiber regeneration and repair by

activating muscle satellites and increasing cellular insulin-like growth

factor-1 (IGF-1) levels (142, 143).

Similar to 17b-estradiol, testosterone can also influence

mitochondrial function in several ways, including mitochondrial

biogenesis, mitophagy, and mitochondrial ATP production. It has

been reported that knockout of AR results in the down-regulation of

PGC-1a and TFAM in the muscle of castrated rats and mice, while

the administration of exogenous androgen reversed these effects

(144, 145). Castration leads to a decrease in mtDNA copy number

in the skeletal muscle of male pigs, suggesting that testosterone is

required to maintain mitochondrial copy number (146). In

addition, Castration increases LC3 II/I ratio in the skeletal muscle

of male mice, indicating that androgen deficiency increases

mitophagy (147, 148). These studies suggest that androgens may

maintain mitochondrial mass by inducing mitochondrial biogenesis

and inhibiting autophagy. Moreover, testosterone may protect the

respiratory chain of mitochondria from oxidative damage and
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maintain a normal OXPHOS function (149). Notably, Similar to

the Localization of estrogen receptors (ERa and ERb), a recent

study has shown that besides being nuclear, AR also localizes into

mitochondria (150). However, little is known about the role of AR

in mitochondrial Localization, and further studies are needed to

elucidate the underlying mechanisms.

5 Mitochondria: a central target
for 17b-estradiol and testosterone in
age-related muscle degeneration

Based on the information discussed, mitochondria are crucial

for skeletal muscle to maintain normal metabolic function and

respond to physiological or pathological stimuli. Age-related muscle

degeneration is caused when mitochondria are defective or

abnormal and cannot be cleared or degraded effectively. Multiple

factors, including dysregulation of mitochondrial OXPHOS,

mutation or deletion of mtDNA, altered expression or function of

mitochondria-associated proteins, imbalanced Ca2+ homeostasis,

and ultrastructural defects, may cause mitochondrial dysfunction.

The decline in mitochondrial function and the reduction in

circulating 17b-estradiol and testosterone that accompany aging may

be two closely related processes. Obviously, both 17b-estradiol and
testosterone exert actions on mitochondria: 17b-estradiol and

testosterone act directly on mitochondria, also through ERs and AR

located in the organelle, and indirectly regulate nDNA-encoded

mitochondrial proteins and nuclear transcription factors that affect

mtDNA-encoded proteins. Similarly, these sex hormones indirectly

control various mitochondrial functions, such as ROS production and

apoptosis, through modulation of plasma membrane receptor-induced

kinase signaling pathways or through cytosolic signal peptides. Both

steroids trigger complex molecular mechanisms involving crosstalk

between mitochondria, the nucleus, and the plasma membrane, and

the result of this action is mitochondrial protection (Figure 2).

Therefore, the molecular components of the pathways activated by

the sexual steroids be putative targets for anti-muscle decay strategies.

Accumulating evidence reveals that 17b-estradiol and testosterone
play important roles in regulating mitochondrial homeostasis in

skeletal muscle. However, controversy remains regarding indications

for exogenous 17b-estradiol or testosterone supplementation in aging

people due to a shortage of clinical trials demonstrating these steroids’

benefits and adverse effects. Data from the Women’s Health Initiative

(WHI) shows several risks of menopausal hormone therapy among

healthy postmenopausal women, including an excess risk of coronary

heart disease, stroke, and breast cancer (151). In this context, oral

intake of natural food sources containing phytoestrogens may be a

good alternative. For example, intakes of soymilk containing

isoflavones, an active estrogen-like substance, improve muscle

weakness in OVX mice (152). Similar to 17b-estradiol replacement

treatment, several investigators found the potential risks associated

with androgen therapy (153, 154). However, these researchers

reported that low-intensity physical exercise combined with

exogenous testosterone supplementation improves grip strength,
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spontaneous movement, and breathing activity (155). Interestingly,

our previous studies have shown that exercise training can upregulate

the expression of aromatase in rat skeletal muscle and increase the

level of 17b-estradiol in skeletal muscle, which may be related to

exercise improving skeletal muscle mass in OVX rat (117). Therefore,

a better understanding of the role of endogenous hormones in skeletal

muscle may be a direction worthy of attention in future research.
6 Conclusions

Overall, sarcopenia is a complex geriatric condition associated

with multiple negative health-related outcomes, such as frailty,

hospitalization, and mortality. However, despite the efforts made

towards development, to date, there are still no authorized drugs for

managing sarcopenia (156). Evidence suggests that sarcopenia can

be prevented and possibly reversed through lifestyle interventions

such as resistance exercise and proper nutritional support (157,

158). While neither exercise nor nutrition can entirely treat the age-
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associated decline in muscular mass and strength, it can certainly

slow down the development and reduce the rate of sarcopenia (158).

Nonetheless, there is a rising interest in clinical trials for drug

treatments aimed at reducing sarcopenia. These treatments focus on

enhancing muscle mass by administering testosterone injections,

selective androgen receptor modulators (SARMS), and growth

hormones, while efficacy and safety are still being investigated

(159). Obviously, additional work is needed before we completely

understand the etiology of sarcopenia.

We contend that mitochondrial-regulated apoptosis is central

to initiating the signal for age-related skeletal muscle deterioration.

The impaired mitochondrial function and its associated

mitochondrial signaling events activate apoptotic signaling in

muscle cells and motor neurons. Therefore, it is crucial to

maintain the health and functionality of mitochondria during

aging. This largely depends on effective MQC machineries such as

proteostasis, biogenesis, dynamics, and mitophagy, which work

together to ensure that damaged or dysfunctional mitochondria

are eliminated and replaced with healthy ones. We outlined that

errors in any MQC process steps could ultimately contribute to the

age-associated decline of muscle mass and function.

It is becoming increasingly clear that estradiol and testosterone

co-regulate mitochondrial biogenesis, dynamics, and autophagy to

maintain mitochondrial function in skeletal muscle. We propose that

age-related decline in both sex hormones may trigger sarcopenia

by initially impairing mitochondrial function rather than being

an independent factor. A comprehensive understanding of

the molecular mechanisms elicited by both steroids at the

mitochondrial level and their effects on skeletal muscle mass and

function will lead to a better understanding of sarcopenia and

facilitate more appropriate therapeutic interventions.
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FIGURE 2

Schematic illustrating the roles that 17b-estradiol and testosterone
play in mitochondrial protection of skeletal myocytes. Signals of
17b-estradiol and testosterone affect mitochondria function through
multiple pathways. In the genomic pathway, 17b-estradiol or
testosterone binds to its receptor, thereby inducing receptor
dimerization and translocation of the entire complex to the nucleus.
In the nucleus, the dimer of the receptors binds to estrogen
response elements (ERE) or androgen response elements (ARE) and
affects the transcription of nuclear-encoded mitochondrial genes.
ERs and AR have been shown to localize in mitochondria, but it is
yet unclear if the complex can directly regulate the transcription of
mtDNA-encoded genes. The “nongenomic pathway” involves rapid
activation of various kinases by membrane-associated ERs or AR,
which in turn can affect mitochondrial function. Both 17b-estradiol
or testosterone regulate different parameters of MQC, such as
proteostasis, biogenesis, dynamics, and mitophagy. A consequence
of the action of these sex hormones is mitochondrial protection,
although the specific mechanism of action has not yet been
elucidated.
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104. Nadal-Casellas A, Bauzá-Thorbrügge M, Proenza AM, Gianotti M, Lladó I.
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