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Metabolic drivers of dysglycemia
in pregnancy: ethnic-specific
GWAS of 146 metabolites and 1-
sample Mendelian randomization
analyses in a UK multi-ethnic
birth cohort
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and Michael A. Zulyniak1*

1School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom, 2Public Health
Science Division, Fred Hutchinson Cancer Center, Seattle, WA, United States, 3Leeds Institute of
Medical Research, University of Leeds, Leeds, United Kingdom, 4Leeds Institute for Data Analytics,
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Introduction: Gestational diabetes mellitus (GDM) is the most common

pregnancy complication worldwide and is associated with short- and long-

term health implications for both mother and child. Prevalence of GDM varies

between ethnicities, with South Asians (SAs) experiencing up to three times the

risk compared to white Europeans (WEs). Recent evidence suggests that

underlying metabolic difference contribute to this disparity, but an

investigation of causality is required.

Methods: To address this, we paired metabolite and genomic data to evaluate

the causal effect of 146 distinct metabolic characteristics on gestational

dysglycemia in SAs and WEs. First, we performed 292 GWASs to identify

ethnic-specific genetic variants associated with each metabolite (P ≤ 1 x 10-5)

in the Born and Bradford cohort (3688 SA and 3354WEwomen). Following this, a

one-sample Mendelian Randomisation (MR) approach was applied for each

metabolite against fasting glucose and 2-hr post glucose at 26-28 weeks

gestation. Additional GWAS and MR on 22 composite measures of metabolite

classes were also conducted.

Results: This study identified 15 novel genome-wide significant (GWS) SNPs

associated with tyrosine in the FOXN and SLC13A2 genes and 1 novel GWS SNP

(currently in no known gene) associated with acetate in SAs. Using MR approach,

14 metabolites were found to be associated with postprandial glucose in WEs,

while in SAs a distinct panel of 11 metabolites were identified. Interestingly, in

WEs, cholesterols were the dominant metabolite class driving with dysglycemia,

while in SAs saturated fatty acids and total fatty acids were most commonly

associated with dysglycemia.
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Discussion: In summary, we confirm and demonstrate the presence of ethnic-

specific causal relationships between metabolites and dysglycemia in mid-

pregnancy in a UK population of SA and WE pregnant women. Future work will

aim to investigate their biological mechanisms on dysglycemia and translating this

work towards ethnically tailored GDM prevention strategies.
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1 Introduction

Pregnancy is accompanied by a period of intense maternal

metabolic adaptation to meet the energy demands of the foetus (1–

3). Mild maternal insulin resistance (IR) is a natural adaption to

prioritise adequate glucose for the growing foetus (4). However, if

gestational IR exceeds healthy levels and glycaemia is uncontrolled,

moderate IR can progress to gestational diabetes mellitus (GDM)

(1, 5). GDM is characterised by persistent maternal and foetal

exposure to elevated levels of glucose, and places the mother and

offspring at risk during pregnancy (i.e., macrosomia and

haemorrhaging) and in later life (i.e. from obesity, type 2 diabetes

(T2D) and cardiovascular disease) (6).

Globally, GDM is the most common pregnancy complication,

affecting up to one in every seven births; however, its prevalence

varies between ethnic groups, with South Asian (SA) women at 3-

fold greater risk compared to white European (WE) women,

irrespective of BMI and country of residence (5, 7). Furthermore,

SA women are more likely to develop T2D in later life following a

GDM diagnosis (8). Factors driving this disparity in prevalence are

not fully understood but metabolism is thought to play a key role

(6), given emerging evidence demonstrating (i) differences in

metabolic profiles between GDM and non-GDM pregnancies in

an ethnic-specific manner (2, 9); and (ii) that a single dietary

strategy to manage GDM across all ethnic groups appears

ineffective (10, 11). However, heterogeneity of reported

metabolite-GDM associations between studies (due to differences

in quantification methods, GDM diagnostic criteria (12, 13), ethnic

and cultural groups), as well as residual confounding in

observational studies have prevented complete understanding

and, moreover, advancement to improved equitable care. In short,

the field requires a clear and accurate understanding of ethnic-

specific metabolic drivers of gestational dysglycemia to inform

appropriate and effective prevention and management strategies

across ethnic groups.

Mendelian Randomisation (MR) is an instrumental variable

technique that can provide estimates of causal associations between

an exposure (such as metabolites) and outcome (such as

dysglycemia) (14–16). However, no study has yet used MR to

establish the presence of casual associations between metabolites

and measures of glycaemia at or before the 28 week of pregnancy in

an ethnic-specific manner. The present study aimed to address this
02
using the multi-ethnic Born in Bradford (BiB) cohort to identify

ethnic-specific metabolic drivers of GDM.
2 Material and methods

2.1 Exposure data

BiB is a prospective longitudinal birth cohort that aimed to

recruit all mothers receiving maternity care in the Bradford Royal

Infirmary between 2007-2010 (17). Bradford, a large city in the

north of England, has high levels of deprivation and a large SA

population, predominantly of Pakistani ancestry. A total of 12,453

women (mean maternal age 27.8) were recruited, 45% of which

were of SA ancestry (17, 18). The study was not pre-registered but

(SP622) was approved by Born in Bradford. All participants

provided written consent and ethnical approval was obtained

from the Bradford Research Ethnics Committee (ref07/H1302/

112) (17).

Fasted plasma sample collection and high-throughput

metabolite quantification by automated NMR (Nightingale

Health©; Helsinki, Finland) has been previously described and

validated to a high accuracy (2). Briefly, samples were taken by

trained phlebotomists from BiB participants (26-28 weeks’

gestation) and were processed in the absence of freeze-thaw cycles

within 2.5 hours before storage at -80°C. One hundred and forty-six

absolute measures of metabolites were included in the analysis

following the removal of metabolites expressed as a percentage or

ratio to minimise redundancy. In total, 10 overarching classes of

metabolites were included in the analysis: lipoproteins (n=97),

amino acids (n=9), apolipoproteins (n=2), cholesterols (n=8),

fatty acids (n=8), glycerides and phospholipids (n=8), glycolysis

related metabolites (n=4), ketone bodies (n=2), measures of fluid

balance and inflammation (n=3) and measures of lipoprotein

particle diameter (n=3). A full list of included metabolites can be

found in Supplementary Table 1.
2.2 Outcome data

All participants were assesed prior to GDM diagnosis and the

28th week of pregnancy. Individuals were diagnosed with GDM if
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either their fasting glucose or if 2-hour post-load glucose

concentration exceeded 6.1 mmol/L or 7.8 mmol/L following a

75g oral glucose tolerance test (OGTT) (19). The OGTT was

performed in the morning following an overnight fast. To

maximise power, MR analyses were performed using continuous

metabolite values and fasting glucose and 2-hour post glucose.

Fasting glucose and 2-hour post glucose values were log normalised

prior to analysis.
2.3 Metabolite data

Information on metabolite data preparation has been described

in full elsewhere (9). In brief, 11,480 blood samples were

metabolically profiled from BiB, 54 of which were excluded due

to failure of any one of five Nightingale© quality control measures

leaving 11,426 samples for imputation. Missing data was imputed

via multiple imputation using the missMDA package in R (20).

After combining with postprandial glucose data, 3,693 SA and

3,377 individuals whose samples were taken before the 28th week of

pregnancy were retained before outlier removal (Supplementary

Figure 1). Outliers were removed (those outside of 1.5 x IQR) for

each metabolite in each ethnicity separately and metabolite values

were normalised by taking the log, square root or normal score

transformation (NST) as appropriate following the visual inspection

of histograms and QQ plots. Following the removal of outliers, the

number of individuals available for GWAS analysis of each

metabolite varied (Supplementary Table 2) but was relatively

consistent: for SAs the average sample size for each metabolite was

3622 (range 3472-3688), while for WEs it was 3301 (range 3158-

3345). Information on gestational age at sample collection and parity

was obtained from obstetric records. Ethnicity was self-reported or

obtained from primary care records if missing. Individuals of a SA

descent other than Pakistani were excluded from the analysis due to

the small sample sizes of these populations. Differences in the

distribution of continuous variables between ethnic groups were

assessed by Mann-Whitney tests, while differences in the

distribution of categorical variables were assessed by chi-squared

tests. Women of SA ancestry tended to be older than WE women

(27.9 ± 0.1 vs 26.7 ± 0.1 years) and were more likely to be overweight/

obese (64.5% vs 53.4%), and be on their ≥2nd pregnancy (67.1% vs

48.8%), but were less likely have smoked during pregnancy (2.9% vs

30.9%) (Supplementary Table 3).
2.4 Genetic data

Imputed genetic data were obtained from BiB. All samples were

genotyped using two chips: the Infinium Global Sequencing Array-

24 v.1 (GSA) (~640K SNPs) and the Infinium CoreExome-24 v1.1

BeadChip (~550K SNPs) (21). Genetic data from the Illumina

Global Sequencing Array (GSA) and Illumina CoreExome SNPs

were combined. Where SNPs were missing in >5% of individuals,

they were excluded (21). When evaluating imputed data, the R2

value can be a measure of quality control as it reflects to the

estimated proportion of genetic variation maintained in the
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imputed data. As a result, SNPs with an R2 <0.9 were excluded

prior to analysis.
2.5 GWAS analysis

Conventionally a GWAS assumes individuals are unrelated and

the inclusion of related individuals can potentially lead to spurious

associations (22, 23). However, the removal of individuals from the

BiB sample with close ancestry would substantially reduce the sample

size. In addition, high rates of consanguinity in the SA stratum of the

cohort makes relatedness difficult to assess (24). As such, a GWAS

mixed linear model association (MLMA) analysis was conducted in

PLINK (version 1.9) that allowed for the inclusion of related

individuals (23, 25–27). MLMA models include a fixed effect,

adjusted covariates, and an additional random effect comprised of a

variance-covariance matrix that models the correlation (here

relatedness) between individuals to be accounted for (23, 25).

GWAS MLMA models were implemented using the GCTA

(Genome-wide Complex Trait Analysis) command line tool for

each metabolite in both ethnicities (28). To increase power,

MLMA-loo (leave-one-out) analysis was used, preventing a SNP

from being included in both the fixed and random effects

concurrently, thereby avoiding double fitting (25). MLMA models

also included parity and principal components (PC) 1 and 2 to

account for population stratification (Supplementary Figure 2,

Supplementary Table 4). Gestational age, which showed little

variation, was not included in the modelling (median gestational

age SA = 184 days, IQR= 182-186.7, median gestational age WE =

184 days, IQR= 182-187). Genomic inflation factors (l) were

calculated for all models for a range of minor allele frequency

(MAF) cut-offs (MAF <0.001, 0.001≤ MAF < 0.005, 0.005 ≤ MAF

< 0.01, 0.01 ≤MAF < 0.05, 0.05 ≤ MAF < 0.1, and MAF ≥ 0.1) to

minimise data loss while also minimising false positives. l ≥ 1.1 was

considered indicative of genomic inflation (29, 30). A MAF cut-off of

<0.05 was the least stringent cut-off found to reduce l to ~1 meaning

this cut off was used in the analysis (Supplementary Table 5).

When a SNP was found to be associated with a metabolite value

in only one ethnicity, a fixed effect inverse-variance weighted meta-

analysis was implemented to assess the heterogeneity (via the I2

statistic) of identified associations between ethnicities and to see if

the SNP retained significance in a larger sample. Meta-analyses

were conducted within the command-line tool METAL (31) and

supplemented with FUMA (v1.5.2) (32) to investigate SNP function

based on their effect on phenotypes.
2.6 One-sample MR

2.6.1 Genetic instruments
One-Sample MR was conducted for all 146 metabolite values in

both ethnic groups using SNPs identified as significant at a genome-

wide suggestive level (p-value ≤ 1 x 10-5) in the GWAS. All variants

were also entered into MR-base (33) to test for other reported

known associations that may be in horizontal or vertical pleiotropy.

Metabolites were grouped into their overall classes and SNPs in
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each class were thinned by linkage disequilibrium (LD) (R2<0.2) via

the NIH LDlink online tool (https://ldlink.nci.nih.gov) reducing the

overlap of instruments in each class (34, 35). For individuals of WE

ancestry, all European (EUR) and South Asian (SAS) populations in

LD link (software that utilises 1000 Genome data) were used to

estimate LD due to the expected similarity in their LD structure

allowing for an increase sample size and resultant improvement in

the accuracy of LD estimates (36). Similarity between 1000 Genome

SA samples and BiB samples was assessed using principal

components analysis (PCA) in PLINK (version 1.9) because

Pakistani samples from BiB originate from a different region of

Pakistan (the Mirpur Region) from the 1000 Genome SA samples

(26, 27). This is of particular importance in SA as even

geographically close populations can have differing allele

frequencies due to differing Biraderi (‘Brotherhood’) membership

between population subgroups. Biraderi membership is assigned at

birth, is an indicator of male lineage as well as social-occupational

status which largely governs partner choice and can result in higher

levels of consanguinity in the population (21). PCA plots were

created using the ggplot2 package in R studio (version 4.0.2) (37,

38). No clear separation in SA BiB samples and SA 1000 Genome

(1000G) samples was identified indicating that LD estimates

obtained from 1000G was suitable for use in BiB (Supplementary

Figures 3-5).

2.6.2 Analysis
Genetic Risk Scores (GRS) were created in PLINK (version 1.9)

for each metabolite with each SNP receiving a weight based on its

estimated effect size on the metabolite obtained from the GWAS

(39). One-sample MR was then performed by Two-Stage Least

Squares regression (TSLS; ivpack, ivreg, and AER packages in R

version 4.0.2) to obtain a causal estimate for the effect of each

metabolite value on the log-normalised continuous measures of

fasting glucose and 2-hour post glucose following a 75g oral glucose

tolerance test (OGTT) (37, 40, 41). Here, the level of a metabolite is

regressed on its respective GRS and, subsequently, the outcome is

regressed onto these fitted GRS-metabolite values in the second

stage. All MR results have been reported according to STROBE-MR

guidelines (42).

When significant associations were identified, leave-one-out

analysis was performed. For this, SNPs were removed sequentially

from the instrument and changes to the effect estimate and F-

statistic was assessed. If the exclusion of a SNP was found to alter

either the effect estimates or F-statistic (through the visualisation of

forest plots) it is possible that the SNP is influencing the outcome

via an alternative pathway to other SNPs, potentially highlighting a

violation of the 2nd or 3rd MR assumption. To further test for

violations of these assumptions, included SNPs were searched for in

both the Phenoscanner and GWAS Catalogue databases to identify

previously identified associations (43–45) with potential

confounders in horizontal (i.e., multiple pregnancies, type-1

diabetes, deprivation index, parity) rather than vertical pleiotropy

(i.e., along causal pathway, such anthropometrics). In both
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databases a p-value ≤ 1 x 10-5 was interpreted as indicative of an

additional association. Differences between MR and linear

regression results were also evaluated via the Wu-Hausman

statistic to assess deviation of the instrumental variable estimate

from the ordinary least squares (OLS) estimate (46). Deviations in

these two measures can indicate either confounding in the OLS

estimate (indicating a need for MR) or violations of the MR

assumptions due to pleiotropy.

2.6.3 Post-hoc power analyses
For metabolites that associated with a measure of postprandial

glucose in only one ethnic group, post-hoc power analyses were

performed using the mRnd CNS genomics tool (https://

shiny.cnsgenomics.com/mRnd/) to assess whether the absence of

an association in the alternate ethnicity was due to limited power

(47). Observational and ‘true’ associations required by the tool were

obtained by performing linear regression of the outcome on the

metabolite and obtaining unadjusted and adjusted estimates

(adjusted for maternal age (years), BMI (continuous), smoking

status, multiple pregnancy, parity, and gestational age)

respectively. Due to the post-hoc nature of this analysis, additional

power analyses could be conducted assuming the MR estimate to be

the true causal effect in the MR calculation. This analysis was

performed in the non-significant population for each metabolite

associated in only one ethnicity. If power was found to be adequate

(80%) at the 5% level (a = 0.05) power was also assessed at the 1%

level (a = 0.01).
3 Results

3.1 GWAS of metabolite measures

A total of 6184 SNPs were associated with at least one

metabolite in WEs at the suggestive level (1 x 10-5), with 2616

(42.3%) SNPs being associated with a single metabolite measure.

However, no SNPs were identified below the genome-wide

significant level (p-value <5 x 10-8) in WEs.

Fewer SNPs were identified at the suggestive level in SAs, with

3685 SNP-metabolite associations in total, of which 1544 (41.9%)

SNPs being associated with only one metabolite measure. SNP

associations were identified for 138/146 (94.5%) metabolite

exposures in SAs (Supplementary Table 6). No SNP was

identified as being associated at the suggestive level in both

ethnicities, although shared genomic regions were identified

between ethnicities (Supplemental Excel). Using FUMA to

investigate SNP function based on their effect on phenotypes in

both ancestries (32), of the 85 genetic variants meta-analysed that

surpassed suggestive GWAS significance: 54 were intergenic (i.e.,

between genes), 21 were intronic (i.e., between exons of a gene), 5

were upstream (i.e., within 250 bps before transcription start site), 3

were downstream (i.e., within 500 bps after transcription start site),

and 2 (2%) were exonic (i.e., within protein coding region).
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To evaluate the possibility of shared genomic predictors of

metabolites, a pooled meta-analysis of effect estimates in both

ethnicities was performed. For 90 metabolite values, no

associations were found to exceed the genome-wide suggestive

level (p<10-5) following meta-analyses of both ethnicities. SNP

associations were identified at the suggestive level for four

metabolite measures (concentration of XL-HDL, total lipids in M-

VLDL, mean density of VLDL and citrate) despite these differing in

direction of effects in SAs and WEs. In addition, 4 SNPs were

associated with alanine, despite these SNPs initially being associated

with alanine only in the SA population. These SNPs (rs12256633,

rs17121228, rs7096521, rs12240368) are all found on chromosome

10 in the receptor gene SORCS1 and have not been associated with

alanine levels previously (48, 49).
3.2 MR Results

After LD thinning, genetic instruments were available for all

146 metabolites inWEs and for 136/146 (93.2%) metabolites in SAs.

In WEs, 1040 SNPs were retained following LD thinning including

423 (40.67%) that were unique to an individual metabolite. Fewer

SNPs were identified in SAs, where 383 SNPS remained after LD

thinning, 195 (50.9%) of which were unique to a single metabolite.

Only 2.7% of included genetic instruments (4 metabolites) in WEs

and 12.5% (9 metabolites) of included genetic instruments in SAs

had an F-statistic < 10, indicating that most instruments were at low

risk of weak instrument bias (50). The average F-statistic for WEs

instruments was 72.4, while in SAs it was considerably lower at 26.7

(Supplementary Figure 6). Screening of genomic predictors using

Phenoscanner and GWAS databases did not raise major concerns

for horizonal pleiotropy (Supplementary Table 7) but did suggest

that modification of anthropometrics is a common pathways by

which metabolites elicit their effect on dysglycemia − i.e., vertical

pleiotropy. However, where horizontal pleiotropy was a possibility

(e.g., cholesterol levels), sensitivity analyses were performed (see

3.2.1.1 and 3.2.2.1 Sensitivity Analyses). Using MR-Base, we report

that [in agreement with recent GWAS (51)], almost all SNPs

included in an instrument have been previously associated with

dysglycemia metrices or diabetes (Supplementary Table 8).

However, since most evidence of genomics-diabetes associations

are sourced from non-SA populations, these results may not

accurately reflect genetic associations in SAs.

3.2.1 White Europeans
Two metabolite values, leucine and mean density of HDL

lipoproteins (HDL_D), were associated with both fasting glucose

and 2-hour post glucose (Table 1; Supplementary Figures 7, 8).

Specifically, a 1mmol/L increase in blood leucine associated with

lower fasting glucose (-0.193 mmol/L, 95% CI -0.069, -0.319) and 2-

hour post glucose (-0.443 mmol/L, 95% CI -0.113, -0.774). Likewise,

a 1nm increase in mean diameter of HDL associated with lower

fasting glucose (-0.082 mmol/L, 95% CI 0.026, 0.138) and 2-hour

post glucose (-0.191, 95% CI 0.043, 0.339 mmol/L). No other

metabolites were associated with both measures of glucose in WEs.
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For fasting glucose, an increase of 1mmol/L total cholesterol in

M-HDL (M-HDL-C) and cholesterol esters in M-HDL (M-HDL-

CE) were associated with lower fasting glucose measures (-0.189

mmol/L, 95% CI -0.021, -0.358, and -0.327 mmol/L, 95% CI -0.069,

-0.586 respectively). For 2-hr post-glucose, 8 metabolite values were

positively associated with this (HDLC, HDL2C, HDL3C,

triglycerides in XS-VLDL, cholesterol esters in XL-HDL, total

concentration of L-HDL, total lipids in L-HDL and cholesterol

esters in S-HDL) and one (total concentration of S-LDL) was

negatively associated (Table 1). Cholesterol metabolites, measures

of total cholesterols in lipoproteins and total cholesterols in

lipoproteins were the most common types of metabolite class to

be associated with postprandial glucose in WEs, with leucine being

the only amino acid identified. Wu-Hausman p-values < 0.05

indicate deviations of the instrumental variable estimate from the

OLS estimate (Table 1).

3.2.1.1 Sensitivity analyses

For 6 of 13 metabolite values, leave-out one analyses maintained

significance (P≤ 0.05) indicating that no individual SNP was driving

the identified associations in WEs: leucine, mean diameter of HDL,

total lipids in L-HDL, cholesterol esters in S-HDL and cholesterol

esters in M-HDL (Supplementary Figure 9). For the remaining 8

metabolites, b values were consistent across leave-one-out analyses

although not all associations remained significant. Additionally, for

12/13 metabolites (all but M-HDL-CE), the F-statistic did not

substantially differ through the exclusion of individual SNPs from

the instruments, which suggests they were not substantially driven

by a single SNP (Supplementary Figure 9). The exception to this was

cholesterol esters in M-HDL, where the exclusion of rs2138011 or

rs739018 increased the F-statistic.

Three of the metabolites (leucine, L-HDL-L, L-HDL-C) that

were associated with postprandial glucose in WEs included a SNP

that previous studies have associated (p ≤ 1 x 10-5) with at least one

potential confounder (BMI, hypertension or waist circumference)

(Supplementary Table 7). The removal of these SNPs from the

instrument did not impact the significance of the associations

identified for leucine or L-HDL-L (Table 2). However, for L-

HDL-C instrument, the exclusion of two SNPs (rs5576825 and

rs6811162) previously associated with a potential confounder (waist

circumference and hypertension respectively) resulted in non-

significant association between L-HDL-C and 2-hour post

glucose. Importantly, for both SNPs, it is conceivable that the

confounders could reside on their causal pathway (i.e., vertically

pleiotropic, where L-HDL-C effects 2-hr post-prandial glucose

through its effect on weight gain) rather than be in horizontal

pleiotropy and may, therefore, violate the 2nd MR assumption (50).

3.2.2 South Asians
No metabolite was associated with both fasting glucose and 2-

hour post glucose in SAs (Supplementary Figures 7, 8). Although,

for fasting glucose, a 1 mmol/L increase in either total FAw3 or S-

HDL-C was associated with an increase of fasting glucose by 0.432

mmol/L (95% CI 0.063 – 0.798) and 1 mmol/L (95% CI 0.116 –
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1.882) respectively. No metabolite associated with a decrease in

fasting glucose in SAs.

Nine metabolites associated with 2-hour post glucose levels in

SAs. Of these, 4 metabolites, LA, FAw6, total lipids in M-VLDL (M-

VLDL-L) and total phospholipids in L-HDL (L-HDL-PL),

associated with an increase in with 2-hour post glucose, with the

largest effect being identified for L-HDL-PL. Specifically, a 1mmol/L

increase in L-HDL-PL associated with a 0.692 mmol/L increase

(95% CI 0.106 - 1.280) in 2-hour post glucose. A further 5 additional

metabolites were associated with a decrease in 2-hour post glucose:

concentration of L-LDL (L-LDL-P), total cholesterols in IDL (IDL-

C), cholesterol esters in IDL (IDL-CE) concentration, total

cholesterols in IDL (IDL-C), total lipids in small S-LDL (S-LDL-
Frontiers in Endocrinology 06
L), and total lipids in small S-HDL (S-HDL-L). The largest decrease

in 2-hour post glucose was observed for L-LDL-P where a 1mmol/L

increase in L-LDL-P associated with a 3.86 mmol/L decrease (95%

0.467 - 7.27) in 2-hour post glucose levels (Table 3).

Fatty acids were the class of metabolites most frequently

associated with postprandial glucose in SAs. All three fatty acids

(LA, FAw3 and FAw6) associations identified in SAs were of similar

magnitude: a 1 mmol/l increase of FAw3 associated with a +0.4

mmol/l increase in fasting glucose or and a 1 mmol/increase of

FAw6 and LA associated with a +0.4 mmol/l increase of 2-hour

post glucose.

No metabolite found to be associated with postprandial glucose

measures inWEswas found to be associated with postprandial glucose in
TABLE 1 Significant MR results in white Europeans.

Class Metabolite Outcome F statistic b estimate
(95% CI) WuH

Lower Glucose

S-LDL S-LDL-P 2-hour post 41.7
-1000

(-20, -1984)
0.017

Amino Acids Leucine

Fasting glucose

67.3

-0.193
(-0.069, -0.319)

0.005

2-hour post
-0.443

(-0.113, -0.774)
0.008

M-HDL

M-HDL-CE Fasting glucose 62.4
-0.327

(-0.069, -0.586)
0.043

M-HDL-C Fasting glucose 117
-0.189

(-0.021, -0.358)
0.117

Increase Glucose

Lipoprotein Density HDL_D

Fasting glucose

131

0.082
0.026, 0.138)

0.004

2-hour post
0.191

(0.043, 0.339)
0.024

L-HDL

L-HDL-P 2-hour post 108
220

(41.3, 397)
0.02

L-HDL_L 2-hour post 131
0.264

(0.062, 0,464)
0.014

L-HDL-C 2-hour post 120
0.279

(0.012, 0.544)
0.048

Cholesterol

HDL2C 2-hour post 103
0.288

(0.007, 0.583)
0.025

HDLC 2-hour post 90.6
0.296

(0.007, 0.583)
0.047

HDL3C 2-hour post 66.6
1.58

(0.002, 3.15)
0.074

XL-HDL XL-HDL-CE 2-hour post 109
0.541

(0.079, 1.00)
0.039

XSVLDL XS-VLDL-TG 2-hour post 87.8
0.841

(0.098, 1.58)
0.042

S-HDL S-HDL-CE 2-hour post 41.9
1.78

(0.448, 3.11)
0.007
frontie
Glucose measures are expressed as mmol/L. HDL_D, mean diameter of HDLs (nm); HDLC, total cholesterol in HDL (mmol/L); HDL2C, total cholesterol in HDL2 (mmol/L); HDL3C, total
cholesterol in HDL3 (mmol/L); L-HDL-C, total cholesterols in L-HDL (mmol/L); L-HDL_L, total lipids in L-HDL (mol/L); L-HDL-P, concentration of L-HDL (mol/L); M-HDL-C, total
cholesterol in M-HDL (mmol/L); M-HDL-CE, cholesterol esters in M-HDL (mmol/L); S-HDL-CE, cholesterol esters in S-HDL (mmol/L); S-LDL-P, concentration of S-LDL (mol/L); XL-HDL-
CE, cholesterol esters in XL-HDL (mmol/L); XS-VLDL-TG, triglycerides in XSVLDL (mmol/L); WuH, Wu-Hausman p-value.
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SAs. However, in both populations, members of the S-HDL and L-HDL

class were found to be associated with increased postprandial glucose.

3.2.2.1 Sensitivity analyses

Six instruments in SAs were comprised of a single SNP meaning it

was not possible to perform a leave-one-out analysis for these

metabolites. For the remaining 5 metabolites, associations were

consistent across each leave-one-out analyses (Supplementary

Figure 9). Likewise, no large differences in F-statistics following the

removal of individual SNPs were identified (Supplementary Figure 10).

Just as in WEs, 3 metabolites identified in SAs included SNPs

associated with cholesterol or hypertension, which are potential

confounders of the association between metabolites and

dysglycemia (Supplementary Table 7). Significance was

maintained following the removal of SNP rs7486176 (found

within the C12orf76 gene) from the total phospholipids in L-HDL
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instrument. For the LA and FAw6 exposures, the removal of SNP

rs12720820 (found within the APOB gene) resulted in a non-

significant association indicating that this SNP was the main

driver of the identified association (Table 2). In leave-one-out

analyses, the removal of SNP rs58865405 from the FAw6

instrument resulted in non-significance, although the biological

role of this SNP remains unknown.
3.3 Post-hoc analysis: analysis of
metabolite classes

Numerous SNPs were found to be associated with more than

one metabolite measure, particularly for metabolites in the same

metabolite class (Supplementary Figures 11-12). This was

anticipated since many metabolomic pathways are biologically
TABLE 2 Removal of potentially pleiotropic SNPs.

Ethnicity Metabolite SNP Gene Associated confounder

Initial Confounder
removal

b esti-
mate

(95% CI)
WuH

b esti-
mate

(95% CI)
WuH

WE

Leucine rs2984433 ACTG1P9 BMI, Obesity class 1, weight

-0.193
(-0.319,

-0.068) FG
0.004

-0.203
(-0.339,

-0.068) FG
0.006

-0.443
(-0.774,

-0.113) 2H
0.024

-0.547
(-0.909,

-0.185) 2H
0.002

L-HDL_L rs6811162 ENPEP
Self-reported hypertension, diagnosed high blood

pressure

0.264
(0.062,
0.464)

0.014
0.301
(0.092,
0.510)

0.006

L-HDL-C

rs5576825
LINC01621
ELOVL4

Waist circumference

0.279
(0.012,
0.544)

0.048

0.323
(0.0456,
0.602)

0.107

rs6811162 ENPEP
Self-reported hypertension, diagnosed high blood

pressure

0.241
(-0.037,
0.519)

0.026

rs5576825 +
rs6811162

- -
0.287
(-0.004,
0.578)

0.063

XL-HDL class rs5576825
LINC01621
ELOVL4

Waist circumference
-0.285
(-0.552,
-0.018)

0.015
-0.244
(-0.528,
0.040)

0.135

SA

LA rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.477
(0.013,
0.939)

0.030
0.335
(-0.982,
0.763)

0.459

FAw6 rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.445
(0.094,
0.794)

0.007
0.223
(-0.398,
0.843)

0.105

L-HDL-PL rs7486176 C12orf76
Systolic blood pressure, diagnosed high blood pressure,

hypertension

0.692
(0.106,
1.28)

0.021
0.853
(0.170,
1.54)

0.013

Fatty Acid
class

rs12720820 APOB
Self-reported high cholesterol, coronary artery disease,

treatment with cholesterol lowering medication

0.172
(0.018,
0.327)

0.018
0.142
(-0.049,
0.334)

0.119
frontie
2H, 2-hour post glucose; FAw6, Total n-6 fatty acids; FG, fasting glucose; LA, 18,2 linoleic acid (mmol/L); L-HDL-C, total cholesterols in L-HDL (mmol/L); L-HDL_L, total lipids in L-HDL
(mmol/L); L-HDL-PL, phospholipids in L-HDL (mmol/L); SA, South Asian; WE, White European; WUH, Wu-Hausman p-value.
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intertwined. To minimise the risk of violation of the third MR

assumption (that the genetic instrument must only influence the

outcome via the exposure and not via an alternative biological

pathway) (14), the collective effect of an entire class of metabolites

on postprandial glucose measures was examined. A composite score

for each metabolite class was created by placing all metabolites in a

single class (e.g. all LDL metabolites), conducting a PCA and

extracting PC1. This was only possible for 20 classes in WEs and

21 classes in SAs that had > 2 metabolites and ≥70% of the class

variation was explained by PC1 (Supplementary Table 9). To assess

the impact of outliers on PCA, outliers were defined and removed

based on two cut-offs: standard (1.5 X IQR from the median) and

stringent (3 x IQR from the median). For all classes, PC1 and PC2

scores were comparable after removal of both types of outliers so

only 3xIQR outl iers were removed prior to analyses

(Supplementary Table 10).

138 SNPS remained after LD thinning in WEs, 87 (63.04%) of

which were unique to a single metabolite class exposure. 19/20 (95%)

of the metabolite classes examined inWEs had an F-statistic ≥10 (the

only exception being the MHDL class). 54 SNPS remained after LD

thinning in SAs, 42 (77.78%) of which were unique to a single
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metabolite class. Screening of metabolite class predictors in

Phenoscanner and GWAS databases did not raise concerns for

horizonal (Supplementary Table 11). Despite the lower number of

SNPs identified in SAs,17/20 (85%) of the metabolite classes

examined had a F-statistic ≥10 indicating that instrument strength

was still sufficient, for all classes except for the non-branched amino

acids, LLDL class, and all VLDL classes. On average, the mean F-

statistic of metabolite class instruments was 19.83%. On average

genetic instruments of composite measures of the metabolite classes

were weaker than the instruments for individual metabolites in both

WEs and SAs (Supplementary Figure 13).

In WEs, 4 metabolite classes were associated with a glucose

measure: S-LDLs associated with fasting and 2-hour post glucose;

M-LDL and all LDLS (i.e. the collective grouping of HDLs, MDLs

and SDLs) were associated with fasting glucose, and XL-HDLs were

associated with 2-hour post glucose (Table 4). In SAs, the fatty acid

metabolite class were associated with 2-hour post glucose levels. No

other associations were identified in SAs.

As with the sensitivity analyses of individual metabolites, the

removal of individual SNPs was not found to greatly impact the F-

statistic of most instruments (Supplementary Figures 14-15).
TABLE 4 Significant MR results from the analysis of metabolite classes.

Ethnicity Metabolite class Outcome F statistic b estimate
(95% CI) WUH

White European

XL-HDL 2-hour post glucose 96.2 -0.285 (-0.018, -0.552) 0.015

M-LDL Fasting glucose 95.5 -0.048 (-0.004, - 0.091) 0.024

S-LDL
Fasting glucose 98 0.084 (0.007, 0.162) 0.024

2-hour post glucose 98 -0.249 (-0.016, -0.482) 0.066

All LDL Fasting glucose 95 0.038 (-0.005, -0.068) 0.016

South Asian Fatty Acids 2-hour post glucose 32.8 0.172 (0.018, 0.327) 0.0184
frontie
Glucose measures are expressed as mmol/L. WuH: Wu-Hausman p-value.
TABLE 3 Significant MR results in South Asians.

Class Metabolite Outcome F statistic b estimate
(95% CI) WuH

Lowers Glucose L-LDL LDL-P 2-hour post 11.7 -2238 (-4828 -193.7) 0.024

S-LDL SLDL-L 2-hour post 11.1 -3.86 (0.467, -7.27) 0.015

IDL
IDL-C 2-hour post 10.9 -1.19 (-0.12, -2.27) 0.021

IDL-CE 2-hour post 11.8 -1.34 (-0.144, -2.55) 0.023

S-HDL S-HDL-L 2-hour post 11.4 -1.23 (-0.137, -2.32) 0.012

Increases Glucose

Fatty Acids

LA 2-hour post 20.9 0.477 (0.013, 0.939) 0.030

FAw3 Fasting glucose 10 0.432 (0.063, 0.798) 0.008

FAw6 2-hour post 33.4 0.445 (0.094, 0.794) 0.007

M-VLDL M-VLDL-L 2-hour post 68.4 0.046 (0.009, 0.083) 0.008

L-HDL L-HDL-PL 2-hour post 43.3 0.692 (0.106, 1.28) 0.021

S-HDL S-HDL-C Fasting glucose 22 1 (0.116,1.882) 0.012
Glucose measures are expressed as mmol/L. FAw3, total n-3 fatty acids; FAw6, total n-6 fatty acids; IDL-C, total cholesterols in LDL (mmol/L); IDL-CE, cholesterol esters in LDL (mmol/L); LA,
18,2 Linoleic Acid (mmol/L); LDL_P, concentration of LDL particles (mol/L); L-HDL-PL, phospholipids in L-HDL (mmol/L); M-VLDL-L, total lipids in M-VLDL (mmol/L); S-HDL-C, total
cholesterols in S-HDL (mmol/L); S-HDL-L, total lipids in S-HDL (mmol/L); S-LDL-L, total lipids in S-LDL (mmol/L); WuH, Wu-Hausman p-value.
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However, for the fatty acid metabolites class, the exclusion of

rs12720820 or rs7159441, and for ‘XL-HDL’, the removal of

rs55768285, resulted in non-significant associations, suggesting

that these SNPs are key drivers of the association. (Table 4;

Supplementary Table 10).
3.4 Power analysis

R2 values were consistently lower in the ethnic group where an

effect was not detected but all genetic instruments for the metabolite

values had an F-statistic ≥ 10, indicating that weak instrument bias

was not responsible for the absence of significant effects. Where an

association was identified in one ethnic group but not another, to

determine whether the absence of an association was potentially due

a lack of power in the other ethnicity rather than an ethnic-specific

effect, post-hoc power analyses were performed.

When using MR estimates as an estimate for the true causal effect

both the analyses of FAw3 and the overall fatty acid class inWEs were

adequately powered to detect the observed MR effect in both

populations. Therefore, the absence of an effect of FAw3 in WEs is

unlikely due to inadequate power (Supplementary Table 12). The

analysis of HDL2C and HDL3C in SAs was also sufficiently powered

to detect the observed MR effect in WEs.
4 Discussion

This study has identified ethnically distinct associations

between a range of metabolites and postprandial glucose

measures taken during pregnancy in SAs and WEs, with notably

no shared associations were identified. Fourteen metabolites were

found to be associated with postprandial glucose measures in WEs.

Whereas, a distinct set of 11 metabolites were associated in SAs. In

WEs, cholesterols and lipoproteins were the metabolite classes

associated with postprandial glucose measures, while in SAs fatty

acids were the most commonly associated.

Furthermore, through an extensive GWAS of metabolites, this

study identified novel genome-wide significant associations in

relation to acetate (1 SNP, rs10945476) and tyrosine (15 SNPs, all

on chromosome 17) in SAs. No previous associations have been

identified for SNP rs10945476, found within the non-coding

transcript gene PRDM15 in relation to acetate or any

other exposure.

Interestingly, 3 of the 15 SNPs associated with tyrosine are

found in a transmembrane transporter gene, SLC13A2. Moreover,

an additional 10 of the newly identified 15 SNPs associated with

tyrosine were found in the FOXN gene, a transcription factor that

has previously been identified to be associated with ceramide levels

(a lipid metabolite) in a GWAS from a Chinese cohort (52).

Moreover, ceramide has been shown to induce tyrosine

phosphorylation in membrane proteins meaning it is plausible

that a gene associated with ceramide is also associated with

tyrosine levels in an Asian population (51). Interestingly,

ceramide has been proposed as a mediator of the interaction
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between saturated fat and insulin resistance and has been

associated with T2D and cardiovascular disease (53). To the best

of our knowledge tyrosine levels have not previously been

associated with either FOXN SLC13A2. The remaining 2 of the 15

SNPs identified as being associated with tyrosine in SAs, are

currently not in any known genes. All 15 SNPs identified as being

associated with tyrosine in SAs are in LD with each other in 1000G

SA populations (all R2 ≥ 0.38). In agreement with a recent GWAS of

GDM and T2D (54), almost all SNPs included in an instrument

significantly associated with either outcome (fasting glucose or 2-

hour post glucose) have previously been associated with a diabetes

related disease outcome, providing additional evidence for their

validity as instrumental variables. However, since most evidence of

genomics-diabetes associations are sourced from non-SA

populations, these results may not accurately reflect genetic

associations in SAs.
4.1 Identified associations in white
Europeans (WEs)

4.1.1 Leucine
Branched chain amino acids (BCAAs), including leucine, are

predominantly metabolised in skeletal muscles where they regulate

protein synthesis and mitochondrial functions (55). In addition,

BCAAs are hormonal signalling regulators and are expected to

module insulin resistance (IR) through increasing insulin secretion

in human pancreatic b-cells (56, 57). Our study found leucine to be

negatively associated with both fasting glucose and 2-hour post

glucose levels during pregnancy in WEs; with 1 mmol/L of leucine

associated with a decrease of 0.193 mmol/L in fasting glucose and

0.327 mmol/L 2-hour post glucose respectively. Although few

studies have investigated the role of leucine in glucose regulation

during pregnancy, interestingly the ratio of leucine/isoleucine was

similarly found associated with reductions in fasting glucose in the

HAPO study, a multi-ethnic cohort of pregnant women of Afro-

Caribbean, Mexican American, Northern European, and Thai

ancestry (58). Common dietary sources of leucine include meat

products and cheese, with smaller amounts also being present in

other dairy products (such as dairy and yoghurt), fish and in certain

legumes and nuts, such as dried raw broad beans and pine nuts (55).

Hence, dietary interventions aimed at increasing leucine levels

during pregnancy, possibly through a dietary intervention

promoting the consumption of lean animal protein, low-fat dairy

and nuts, may help improve pregnancy hyperglycaemia in WEs.
4.1.2 Cholesterols
HDL cholesterol is colloquially described as ‘good cholesterol’

due to its role in the removal of cholesterols from atherosclerotic

plaque, thereby reducing an individual’s risk of CVD (59).

Furthermore, low HDL levels have commonly been associated

with diabetes in humans, with HDL shown to increase insulin

secretion and b-cell survival (60, 61). We identified four

associations between HDL cholesterol and postprandial glucose
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measures in WEs. Herein, 1 mmol/L increase in S-HDL-CE confers

a 1.78 mmol/L increase (95% CI 0.49 – 3.11) in 2-hour post glucose.

This is consistent with previous evidence from a Finnish sample of

overweight and obese women where cholesterol esters in S-HDL

were higher in the serum samples of GDM cases at ~14 weeks

gestation (62). Discrepancies in the direct effect of HDL cholesterol

on dysglycemia have also been identified in the genetic literature

(61), with a recent review highlighting that while a genetic study

utilising linear relation analysis did find HDLs to have a protective

effects against T2D (n cases = 2,447) (63), the same effect was not

been replicated in an MR setting (n cases= 47,627) (64). When

considering LDL cholesterols, only S-LDLs was found to be

significantly associated with a postprandial glucose measure

(fasting glucose) in WEs. Additionally, in our composite analysis

of metabolite classes, S-LDLs were associated with fasting glucose

and 2-hour post glucose inWEs, whereas the M-LDL and all LDL (a

combined measure of S-LDLs, M-LDLs and HDLs) classes were

associated with fasting glucose. Unfortunately, because composite

scores were comprised of PC1 coordinates the direction of effect of

these associations could not be evaluated. To our knowledge, no

previous study has conducted an MR of metabolites on dysglycemic

predictors of GDM.

4.1.3 Triglycerides
Triglycerides are an abundant class of lipid particles found in

the blood, originating from either from the consumption of dietary

fats or as a result of hepatic metabolism (65, 66). Once in the blood,

triglycerides can be incorporated into HDL and LDL cholesterol

particles. In addition to dietary triglyceride consumption, dietary

fatty acids can be converted into triglycerides before they enter

circulation, highlighting the complex relationship between

triglyceride, cholesterol, and fatty acid levels (65).

Our results suggest triglycerides in XSVLDL (XS-VLDL-TG)

associate with increased 2-hour post glucose (0.841 mmol/L) in

WEs. In agreement with these findings, increased triglycerides in

XSVLDL levels have also previously been associated with increased

likelihood of GDM in a Finnish population (62). No other

triglyceride was found to be associated with in WEs. One

explanation no additional associations were detected could be due

to the average BMI of the WEs in BiB. For example, an analysis of a

prospective Irish cohort (~94% WE) found that triglyceride levels

were only associated with GDM in obese individuals, a higher

average BMI than that observed in the BiB cohort (67). Further

confirmation of these findings of increased triglycerides in XS-

VLDLs would suggest that this association is, at least in part,

responsible for the identified associations between diets high in

fats and increased prevalence of GDM in WEs (10).
4.2 Identified associations in South
Asians (SAs)

4.2.1 Fatty acids
Polyunsaturated acids (PUFAs) are consumed in the diet and

can be converted to long-chain PUFAs (LC-PUFAs) through a

process of desaturation and elongation reactions that
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predominately occur in the liver (68). Changes in dietary patterns

can have a large impact on fatty acid composition in the body and

with-it disease risk. For example, a western dietary pattern, which

has high levels of n-6 fatty acids, has been associated with GDM risk

(10, 69). In a cohort of Chinese adults, total n-6 fatty acids and 18:2

n-6 levels at baseline in venous blood samples were both found to

associate with an increased risk of T2D after ~8 years of follow up,

while increased n-3 fatty acid levels were protective (70). However, a

recent two-sample MR suggested only a negligible effect of n-6

PUFA synthesis on T2D in a predominantly WE cohort (71).

Moreover, the relationship between n-3, n-6, n-9 fatty acids and

GDM remains inconclusive, and in a recent (2021) systematic review

none of the identified studies (n=15) was conducted in a SA

population (69), highlighting the need for more studies exploring

the role of fatty acids in GDM development in Asians (72).

This study provides evidence of an association between LA and

total FAw6 levels and an increase in 2-hour post glucose levels

during pregnancy in SAs. In addition, the fatty acid class associated

with 2-hour post glucose in SAs. Through a leave-out-one

sensitivity analyses for the FAw6 and LA instruments, the

removal of the SNP rs12720820 (found within the APOB gene)

resulted in non-significant associations for both exposures,

indicating that this rs12720820 was the largest contributor to the

identified associations and has previously been associated with

cholesterol levels and the use of cholesterol lowering drugs (73).

Interestingly, FAw3 also associated with increased 2-hour post

glucose in SAs; however, with only one SNP potential pleiotropy

could not be explored.

It is well established that fatty acid profiles can impact blood

cholesterol levels (74–76). In addition, increased dietary cholesterol

has previously been associated with an increased risk of GDM in a

systematic review of observational studies (77). Taken together, our

data confirm that fatty acids and cholesterol metabolites are in

vertically pleiotropy and are likely impacting gestational

dysglycemia via the same causal pathway. Unlike horizontal

pleiotropy, vertical pleiotropy does not result in a violation of the

2nd MR assumption as cholesterol is not acting as a confounder,

meaning MR estimates are still valid (Figure 1). Furthermore, it is

also possible that this interaction between fatty acids and

cholesterols may be ethnic-specific due to the absence of

associations identified between fatty acids and postprandial

glucose measures in WEs. In addition to possible variations in

cholesterol metabolism, it is plausible that variations in fatty acid

synthesis are also partially responsible for the increased GDM risk

experienced by SAs. For example, variants within the FADS genes

impact LC-PUFA conversion (78, 79). Current evidence suggests

that SAs are likely to synthesise LC-PUFA more quickly than WEs,

which could contribute to elevated risk of prolonged exposure to

elevated LC-PUFA levels (namely, w6) and risk of dysglycemia (78,

79). If these ethnic differences in fatty acid metabolism are

confirmed to be linked to disease risk, it would aid in the

development of tailored GDM prevention strategies that focus on

modifying fatty acid profiles in an ethnic-specific manner.

The analyses found no association between triglycerides and

dysglycemia in SAs. This agrees with a recent meta-analysis that

concluded, although triglyceride levels associated with likelihood of
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GDM (I2 ≥ 84%) (80), after stratification by culture/geographical

location, they found no association between triglyceride levels and

likelihood of GDM. The reasons for this are unclear but it has also been

shown that SAs have a higher prevalence of hypertriglyceridemia than

WEs and at lower BMI levels, meaning it is possible that the difference

in triglyceride levels and in SA GDM cases and controls is less

pronounced than in WEs (81).
4.3 Strengths and limitations

This analysis has several strengths. Firstly, this study involved a

large and comprehensive panel of metabolites allowing for the

relationships between metabolites and postprandial glucose to be

thoroughly investigated. Secondly, this is the first MR study to

investigate dysglycemia during pregnancy while also being one of

the few MR studies to be conducted in a SA population. Finally,

through leave-one-out analyses and the searching of both

Phenoscanner and GWAS Catalog databases, violations of the 2nd

and 3rd MR assumptions were thoroughly investigated meaning

that it was possible to conclude that identified robust associations

between genetic variants and outcomes (1st assumption of MR) may

not be subjected to horizontal pleiotropy and that identified causal

associations are valid due to the absence of detectable violations of

the MR assumptions.

Nonetheless, this study has some limitations. Firstly, metabolites

are highly correlated meaning it is not possible to confidently

interpret that an individual metabolite is independently associated

with a postprandial outcome measure. To account for this limitation

MR analyses were performed on composite measures of each

metabolite class (when PC1 explained ≥70% of the variation in the

metabolite class) to assess the overall impact of each metabolite class

on pregnancy dysglycemia. Secondly, MR also assumes the level of

genetically conferred exposure from conception to the time of

measurement is constant, which is unknown when studying

metabolites − therefore, we cannot presume that these associations

would be observed outside of pregnancy. Thirdly, limited sample size

may have led to some underpowered analyses and combined with
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high consanguinity persuaded us to use statistical modelling to

account for ‘relatedness’ (rather than participant pruning) to

preserve analytical power and study integrity. We acknowledge that

this strategy has limitations, and tested for their effect (i.e., LOO

analysis) (25), and look forward to the future when larger SA

prospective cohort are available, and we can validate these results

with increased confidence. In addition, the limited sample size meant

that further adjustment could not be made at the GWAS stage since

missing data in certain variables would further reduce sample size

(e.g., age) and some associations may have been underpowered to

detect an effect. However, a post hoc power analyses found that for

some metabolite values significant effects only identified in one

ethnicity were possible to detect in the alternate ethnicity. Fourthly,

some genetic instruments included only one SNP meaning it was not

possible to evaluate the impact of pleiotropy for any identified

associations involving these instruments. Fifthly, it was not possible

to fully assess the presence of associations between SNPs included in

significant instruments, potential confounders and T2D traits in SAs

due to the limited number of GWAS conducted in SAs. Although it is

likely that many of the associations in WEs are also present in SAs, it

is possible that not all associations identified inWE are present in SAs

and that some SA-specific pleiotropic associations are unknown.

Lastly, due to limitations in data availability in SAs a two-sample MR

could not be conducted meaning it was not possible to assess the

generalisability of these findings.
5 Conclusions

The presence of causal relationships between a comprehensive

set of distinct metabolites and metabolite families with postprandial

glucose measures (fasting glucose and 2-hour post glucose) in mid-

pregnancy has been established in a UK SA and WE population.

This study has found a range of metabolite values to be associated

with postprandial glucose measures in WEs and high-risk SA

women, although more associations were identified in WEs

despite these individuals being at lower risk of GDM. In high-risk

SA women, total n-6 fatty acids and the n-6 fatty acid, LA appear to
A

B

FIGURE 1

Schematic of potential horizontal and vertical pleiotropy in relation to fatty acid and cholesterol metabolites and postprandial glucose measures. (A)
Illustration of horizontal pleiotropy. (B) Illustration of vertical pleiotropy. Vertical pleiotropy does not result in a violation of the 2nd MR assumption
because the metabolites progress along a single linear causal pathway.
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increase postprandial glucose levels suggesting that fatty acids may

be responsible for a large proportion of metabolically driven risk for

GDM experienced by this population. Future work in a larger

sample (potentially using a two-sample MR) and a larger panel of

metabolites is needed to investigate our findings and hypotheses

more closely, ideally over the course of a pregnancy in order to aid

in GDM prevention in this high-risk population.
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