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Background:Maternally derived thyroid hormone (T3) is a fundamental factor for

vertebrate neurodevelopment. In humans, mutations on the thyroid hormones

(TH) exclusive transporter monocarboxylic acid transporter 8 (MCT8) lead to the

Allan-Herndon-Dudley syndrome (AHDS). Patients with AHDS present severe

underdevelopment of the central nervous system, with profound cognitive and

locomotor consequences. Functional impairment of zebrafish T3 exclusive

membrane transporter Mct8 phenocopies many symptoms observed in

patients with AHDS, thus providing an outstanding animal model to study this

human condition. In addition, it was previously shown in the zebrafish mct8 KD

model that maternal T3 (MTH) acts as an integrator of different key

developmental pathways during zebrafish development.

Methods: Using a zebrafish Mct8 knockdown model, with consequent inhibition

of maternal thyroid hormones (MTH) uptake to the target cells, we analyzed

genes modulated by MTH by qPCR in a temporal series from the start of

segmentation through hatching. Survival (TUNEL) and proliferation (PH3) of

neural progenitor cells (dla, her2) were determined, and the cellular

distribution of neural MTH-target genes in the spinal cord during development

was characterized. In addition, in-vivo live imaging was performed to access

NOTCH overexpression action on cell division in this AHDS model. We

determined the developmental time window when MTH is required for

appropriate CNS development in the zebrafish; MTH is not involved in

neuroectoderm specification but is fundamental in the early stages of

neurogenesis by promoting the maintenance of specific neural progenitor

populations. MTH signaling is required for developing different neural cell

types and maintaining spinal cord cytoarchitecture, and modulation of NOTCH

signaling in a non-autonomous cell manner is involved in this process.
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Discussion: The findings show that MTH allows the enrichment of neural

progenitor pools, regulating the cell diversity output observed by the end of

embryogenesis and that Mct8 impairment restricts CNS development. This work

contributes to the understanding of the cellular mechanisms underlying human

AHDS.
KEYWORDS
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1 Introduction

During the early stages of vertebrate development, the

embryonic naïve system cannot endogenously produce thyroid

hormones (TH), thus depending on a precise supply of maternal-

derived TH, which is essential for proper central nervous system

(CNS) development. Maternally produced prohormone thyroxine

(T4) must be converted locally into the active form triiodothyronine

(T3) by deiodinase 2. T3 acts in target cells by binding to thyroid

hormone receptors (TRs), which regulates target gene expression

(1). TH importantly influences neurodevelopment during the fetal

period and regulates processes involved in the formation of the

cytoarchitecture of the brain, such as proliferation, migration and

myelination and neuronal and glial cell differentiation (2–6).

Maternal TH (MTH) deprivation outcomes in offspring are

various and mainly depend on the timing and severity of the

deficiency (3, 7).

The genetic responses to T3 in specific cellular contexts have

been identified (8, 9), and several phenotypic outcomes arising from

inappropriate levels of TH supply were found (7, 10). However, the

underlying cellular and developmental mechanisms of action are

less understood. Furthermore, a key feature of TH developmental

action is the strict windows of time when the hormone acts, which

determine the biological outcome (11, 12).

The importance of MTH transport by monocarboxylate

transporter 8 (MCT8, SLC16A2), in human neurodevelopment is

highlighted by the severe global neurological impairment observed

in subjects with the rare human disease Allan-Herndon-Dudley-

Syndrome (AHDS) (13, 14). This disease is characterized by

developmental delay, reduced myelination, intellectual disability,

poor language and walking skills, hypotonia, and a reduced life span

(15), and histopathological outcomes can be identified from fetal

stages (16). The severeness of the phenotypic outcome varies among

patients (17–20), and could be related to the residual functionality

of the mutant MCT8 protein and, consequently, the efficiency of TH

transport into the target cells (21).

In the fetal and adult human brains, MCT8 is expressed in the

blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier

(BCSFB). In fetal stages, MCT8 localizes in ependymal cells,

tanycytes, neurons, and cells of the ventricular (VZ) and

subventricular (SVZ) zones, the proliferative areas of the brain

(22, 23).
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The consequences of AHDS highlight the fundamental role of

MTH on vertebrate neurodevelopment. Until recently, postnatal

treatment of these patients with TH supplementation, with the TH

analogs, TRIAC (24) or DITPA that do not require transport by

MCT8 results in better thyroid function tests, improving

hypermetabolism. However, no motor or cognitive skills

improvement was observed (25). Very recently, prenatal

treatment using levothyroxine (LT4) ameliorated the neuromotor

and neurocognitive function of an AHDS patient (26)

Zebrafish is an established model for AHDS study (27–30).

High concentrations of maternally deposited TH have been found

in fish eggs (31). Also present in unfertilized eggs are many

transcripts of components of the thyroid axis (32). Virtually all

known components of the thyroid axis have been characterized in

zebrafish, and these are structurally and functionally comparable

with higher vertebrates (33, 34). The high degree of conservation

between zebrafishmct8 and its mammalian orthologs (35), points to

a conservation of function, albeit zebrafish Mct8 specifically

transports T3 at physiological temperature (26°C) and T3 and T4

at human physiological temperature (37°C) (36). Expression of

mct8 in zebrafish is detected from 3hpf with expression increasing

through larval stages peaking at 48-96hpf (36, 37). Another

advantage of zebrafish to model AHDS is that until 60hpf, there

is no endogenous production of TH (38). In the zebrafish model, the

developmental action of MTH through Mct8 can be examined

without major compensatory mechanisms such as maternal TH

compensation, endogenous TH production, or increased uptake by

co-expressed TH transporters, as occurs in the mouse model (39),

where a similar model of AHDS was only achieved after double KO

ofMct8 and Oatp1c1 (40–42) orMct8 and D2 (43). More recently, it

has been reported the generation of a new mouse model with a

human AHDS patient-derived MCT8 mutation that presents brain

hypothyroidism alongside neuro-architectural changes (44). This

new mouse model presents similarities to already available zebrafish

AHDS models where suppressing Mct8 function (27–29) makes it

possible to reproduce many pre-natal neurological consequences

observed in human patients with AHDS (16). Previous evidence

from zebrafish Mct8 loss of function studies showed that several

neural progenitors and neurons depend on MTH for development

(27, 45). The spinal cord appears significantly reliant on MTH

action for its normal development since, in the absence of functional

Mct8, dorsal and medial neurons are mostly lost or show an
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abnormal morphology and positioning (27). In contrast, ventral

spinal cord neurons are favored and increase their number (27).

Transcriptomic analysis of zebrafish mct8 morphant embryos

revealed that MTH modulates several critical developmental

networks, like Notch, Wnt, and Hh signaling, thus working as an

integrative signal (45). Nonetheless, fundamental questions on the

action of MTH in zebrafish embryonic development and AHDS

remain unanswered. In the present work, we focused on zebrafish

spinal cord development and aimed to elucidate three fundamental

questions: 1) the developmental time window where MTH action

occurs, 2) the types of neural cell populations dependent on MTH

signaling, 3) the cellular mechanisms of MTH action.
2 Materials and methods

2.1 Zebrafish husbandry and spawning

Adult wild-type (AB strain) zebrafish were maintained in

standard conditions in the CCMAR fish facility at the University

of Algarve (Portugal). Adult fish were kept at a 14 h/10 h light/dark

cycle and 28°C. Breeding stock feeding twice daily with granulated

food (Tetra granules, Germany) and once with Artemia sp. nauplii.

One female and one male zebrafish were isolated in mating tanks

the night before egg collection. After the lights were turned on in the

morning, the separator was removed to allow fertilization.
2.2 Morpholino injection

Upon spawning, embryos were immediately collected and

microinjected within 45 min, at the 1-2-cell stage, with 1nL of

morpholino solution containing either 0.8pmol CTRLMO (control

morpholino) or MCT8MO (mct8 morpholino) as described (27).

The diffusion process of the morpholino compound is immediate

and ubiquitous throughout the embryo, and the blocking effect over

mct8 lasts robustly up to 72hpf.

Then, embryos were randomly distributed into plastic plates

containing E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl,

0.33 mM MgSO4) and incubated until sampling time at 28.5°C

(Sanyo, Germany) under 12h:12h light: dark cycles.
2.3 Analysis of gene expression

Embryos were manually dechorionated, snap-frozen in liquid

nitrogen, and stored at -80°C. Embryo staging was performed by

observing control embryos’ developmental landmarks (46). Eight

independent biological replicates (pools of 20 embryos) were

sampled at 10, 12, 18, 22, and 25 hpf (hours post fertilization),

and eight biological replicates (pool of 15 embryos) were sampled at

30, 36, and 48hpf. Total RNA was extracted from the embryos with

an OMEGA Total RNA extraction kit I (Omega Biotek, USA),

followed by treatment with Ambion Turbo DNA-free kit (Life

Sciences, USA), according to the manufacturer’s instructions.

RNA concentration was determined by spectrophotometry using
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NanoDrop ND-1000 (NanoDrop Technologies Inc., USA), and

integrity was determined by visualization in an agarose gel

stained with SYBR Green (ThermoFisher Scientific). Only total

RNA samples with a 2:1 ratio of 28s:18s rRNA were used in

the analysis.

Synthesis of cDNA with 500ng of purified total RNA was

reverse transcribed using RevertAid First Strand cDNA Synthesis

and Random Hexamer Primers (Thermo Fisher Scientific, USA).

cDNA was diluted 1/5 in ultrapure water and stored at -20°C. The

quantification method used with the RT-QPCR method was the

absolute quantification method, which determines the number of

mRNA copies in the sample from a standard curve. Primers were

designed using Primer 3 Plus using RNA-seq data (45).

Supplementary Table 1 provides primer sequences amplicon size

and RefSeq for each gene included in the analysis. The gene’s target

sequence was amplified by PCR, purified (EZNA Gel Extraction Kit,

Omega Biotek), quantified (NanoDrop Technologies Inc., USA),

and sequenced by Dye-termination to confirm identity.

Quantitative real-time PCR (qPCR) was performed in a CFX-384

well (Biorad) with 6 µL of total volume. Final concentrations of PCR

mix consisted of 1X SensiFASTTM SYBR, No-ROX Kit (Bioline,

USA), 150nM forward primer, 150nM reverse primer, and 1 µL

cDNA (1/5). The PCR amplification protocol was 95°C for 3 min,

and 44 cycles of 95°C for 10 sec and 60°C for 15 sec, followed by a

denaturation step from 60 to 95°C, 5 sec in 0.5°C increment, to

obtain product specificity. Each cDNA sample was run as two

technical replicates and averaged for expression analysis. Samples

were discarded for quantification if the difference between replicates

was over 0.5 cycles. No commonly used reference gene (18S and

gapdh) presented invariable expression during the embryonic stages

analyzed. Therefore, total RNA input was used as a normalizer

according to the criteria for qPCR quantification in such cases (47).
2.4 Immunohistochemistry

One-cell stage embryos microinjected with either 0.8pmol of

either CTRLMO (GeneTools) or MCT8MO (27) were fixed at

selected stages in ice-cold 4%PFA/PBS overnight at 4°C. Samples

were washed, depigmented when needed with PBS/0.3%H2O2/0.5%

KOH, transferred into 100% methanol, and stored at -20°C until

use. Samples in 100% MeOH were brought to room temperature

and washed using aMeOH : PBS series (100%MeOH to 100% PBS).

Embryos were hydrated, washed in PBS with 0.1% Triton X-100

(PBTr), and blocked with the addition of 10% sheep serum (Sigma-

Aldrich Aldrich). Primary antibodies used were: 1:500 rabbit anti-

HuC/D (16A11 - Invitrogen), 1:100 CF594 mouse anti-Zrf1 (ZDB-

ATB-081002-46, ZIRC) and 1:50 mouse anti-Nkx6.1 (F55A10

DSHB). Samples were washed, and secondary antibody

fluorescent labelling was carried out using 1:400 of goat anti-

mouse IgG-CF594 (SAB4600321, Sigma-Aldrich), goat anti-rabbit

IgG- Alexa 488 (111-545-047, Jackson Labs) or anti-mouse IgG-

CF488 (SAB4600388, Sigma-Aldrich). Imaging was carried out in a

Zeiss Z.1 light-sheet microscope. Images were imported into Fiji,

and a region of interest was selected in a two-somite area (8800µm2)

between somites 8-12. For neuron number determination, the 3D
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object counter in Fiji was used. Glial cell abundance was

measured by determining the stained area after maximum

intensity projection.
2.5 Riboprobe preparation and colorimetric
whole-mount in situ hybridization (WISH)

Riboprobe synthesis, hybridization, and imaging of colorimetric

WISH were performed as described in detail (27). To prepare

neurog1, fabp7a, slc1a2b, and olig2 riboprobes for in-situ

hybridization, primers (Supplementary Table 2) were designed

using as a template the sequences from the zebrafish assembled

transcriptome (45). Analysis of cell distribution pattern (her2,

fabp7a, neurog1 and slc1a2b) on transverse sections of the spinal

cord, WISH embryos were re-fixed in PFA 4%, dehydrated in

MeOH/PBS and embedded in paraffin by isopropanol/paraffin

gradient. Paraffin blocks were sectioned at 8µm and mounted on

Poly-L-Lysine covered slides. Sections of interest were dewaxed, and

coverslips were mounted with glycerol-gelatine (Sigma-Aldrich).

Images of whole mounts and sections were acquired using a Leica

LM2000 microscope coupled to a digital color camera

DS480 (Leica).
2.6 Double fluorescent whole-mount in
situ hybridization WISH

Riboprobes were generated as described in the previous

section and labeled with either digoxigenin (Dig) (mct8, thraa,

and thrab) or fluorescein (Fluo) (her2, dla, and fabp7a). A double

hybridization procedure combining one Dig and one Fluo probe

was performed in zebrafish embryos (10, 12, 18, 25, 30, 36, 48hpf)

following (27). Antibody detection and development of the signal

were carried out sequentially using a combination of antibody/

Tyramide signal amplification (Perkin-Elmer, USA).WISH was

carried out identically to (27) except hybridization was performed

in the presence of 0.5 ng/mL of both Dig- and Fluo-labelled cRNA

probes in HybMix. Stringency washes were performed as

previously described (27). For the first probe detection, embryos

were incubated overnight at 4°C in blocking solution MABTr/10%

sheep serum (Sigma-Aldrich-Aldrich)/2% Blocking solution

(Roche, Switzerland) with anti-DIG-POD Fab fragments serum

(1:500, Roche, Switzerland). Embryos were washed in PBSTw and

incubated for fluorescent color development in Alexa Fluor-594

Tyramide Reagent (ThermoFisher, USA), 1:100 in amplification

reagent (Perkin Elmer), followed by several washes in PBSTw. To

detect the second probe, the peroxidase activity of POD

conjugated anti-serum was quenched by incubating samples for

1h in 3% H2O2 in PBS. Samples were washed in PBSTr and

incubated overnight at 4°C MABTr/10% sheep serum (Sigma-

Aldrich-Aldrich)/2% Blocking solution (Roche, Switzerland) with

anti-Fluorescein-POD Fab fragments serum (1:500, Roche,

Switzerland). Embryos were washed in PBSTw and then

incubated in FITC-Tyramide (Perkin-Elmer) 1:100 in

amplification reagent (Perkin Elmer), followed by several washes
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in PBSTw. Samples were stored in PBS containing 0.1% Dabco

(CarlRoth, Germany).
2.7 Mitosis detection

Immediately after single fluorescent WISH, embryos were

subject to immunohistochemistry to detect mitotic cells. The

primary antibody used was rabbit anti-PH3 1:500 (06-570 Sigma-

Aldrich-Aldrich), and the secondary antibody was goat anti-rabbit

IgG-CF594 (SAB4600388, Sigma-Aldrich-Aldrich). Antibody

incubation and blocking steps were performed in 1xPBS:10%

Sheep serum.
2.8 Apoptosis detection (TUNEL assay)

Immediately after the single fluorescent WISH of dla and her2,

cell death detection in embryos was determined by TUNEL assay

using the in-situ cell death detection kit – TMR red (12156792910,

Roche). According to the manufacturer’s instructions, including

experimental controls. Briefly, samples were washed for 15 minutes

at RT with 1xPBS/0.1% TritonX 100 (Sigma-Aldrich)/0.1 M

Sodium Acetate pH6. Embryos were further treated for 15

minutes at RT with 1ug/mL Proteinase K (Sigma-Aldrich-

Aldrich) followed by four 5 minutes of washes in 1xPBT.
2.9 Image acquisition and analysis of
double WISH, WISH-mitosis and
WISH-apoptosis

Light-sheet Z.1 (ZEISS) microscope was used to acquire images

of double WISH, WISH-mitosis, and WISH apoptosis. Samples

were mounted in 1% low melting agarose (CarlRoth, Germany).

The total depth of the medial spinal cord was acquired using a 10x

lens with 2.5x or 1x optical zoom, according to the developmental

stage, using dual illumination and a z step of 1,69µm or 1,813 µm,

according to the optical zoom in use. In addition, dual illumination

image volumes from the Z.1 were merged by Dual Side Fusion (Zen

Black, Zeiss), and imaging and colocalization analysis were

performed in Fiji (48).

Colocalization Colormap plugin (49) was used to determine the

colocalization of Dig and Fluo cRNA probes. Briefly, ROI was

selected in a two-somite area (8800µm2) between somite 8-12. Next,

the threshold was adjusted and fixed for each gene pair for the

doubleWISH, and 3-8 individuals per condition were analyzed. The

resulting stack of the colocalization channel was then superimposed

into the original Z.1 image to create the final figures. When

necessary, stacks were resliced in y orientation to enable

lateral views.

For the WISH-mitosis and WISH apoptosis, the image

threshold was adjusted and fixed for each target pair, and a total

of 5-13 individuals per condition were analyzed. Colocalization

Colormap plugin (49) was used to determine the colocalization of

cRNA probes with mitotic marker PH3 and apoptotic marker
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TMR-red. Co-localized cells were counted manually with Fiji’s “3D

object counter” tool.
2.10 NICD overexpression

In this experiment, a variant of zebrafish notch1a, notch1a-

intracellular domain (NICD), was used, which encodes a Notch

receptor that is constitutively active in neurogenesis (50). A pCS2+

plasmid containing the cDNA coding for CAAX-GFP (membrane

label) and the Notch-intracellular domain (NICD) (50) were

linearized, and mRNAs synthesized using the mMessage Machine

SP6 transcription kit from Ambion, following the manufacturer’s

instructions. The mRNAs were phenol: chloroform purified, diluted

in RNAse-free water, and frozen at -80°C until use. The effects of

this NICD mRNA injection are attributed to high NOTCH activity

in general (50). The pCS2+ GFP-CaaX was generated after

subcloning the GFP-CaaX construct from a Tol2 kit plasmid (51).
2.11 Live imaging

Zebrafish Tg(elav3:LY-mCherry) (52) x WT AB previously

injected with CTRL or MCT8MO were used for mRNA injection.

This transgenic line allows for the visualization of mature neurons,

elav3, allowing us to distinguish them from neural progenitor cells.

For mosaic overexpression of NICD, 100 pg of nicd mRNA and

50pg of gfp-caax mRNA were injected into one blastomere dorsal

right 1 - DRA1 or dorsal right 2 -DRA2, between the 16- to 32-cell

stages, which will contribute to brain and spinal cord cell fates (53).

gfp-caax mRNA was used to allow the individual cell visualization

of the cell-autonomous response to NICD in CTRL and MCT8MO

injected embryos. Hence, four groups were prepared, GFP-CaaX

injection in MCT8MO and CTRLMO; NICD and GFP-CaaX

injection in MCT8MO and CTRLMO. Embryos were left to

develop at 28°C until 22hpf when sorting and mounting for

imaging were performed.

Imaging was carried out by light-sheet microscopy, Lightsheet

Z.1 (ZEISS, Germany), as described previously (54), with minor

alterations. Briefly, embryos were anesthetized with 0.08% tricaine

pH7.4 buffered, mounted alive in 0.3% (w/v) low-melting agarose

(LMA) in E3 medium containing tricaine (0.08%) into FEP tubes

closed with a 1% LMA. Three animals per group, CTRLMO and

MCT8MO, were imaged in the same tube. Two independent

experiments were carried out. Time lapses images were taken

from 23 until 26hpf. Z-stacks ranging from the full depth of the

medial spinal cord were acquired every 15 min for 3h. The spinal

cord was imaged with an x20 lens, 2x zoom with a z-step of 1.56 mm
with single angle and dual illumination. For image analysis, dual

illumination images from the Z.1 were merged using Dual side

Fusion (Zen Black, Zeiss). Next, images were imported into Fiji, and

a region of interest was selected in a two-somite area (8800µm2)

between somite 8-12. Analysis of cell divisions was performed

manually in FIJI. Only Huc(-) cells expressing GFP were tracked

for analysis. In brief, symmetric divisions of GFP+ cells in any

group were considered if the cell division plane was 0-<30° to the
Frontiers in Endocrinology 05
ventricular side of the spinal cord. Asymmetric divisions were

considered if the cell division plane was ≥30-90° to the

ventricular side of the spinal cord (55, 56).
2.12 Generation of Mct8 loss-of-
function mutant

CRISPRScan (57) was used to design two adjacent guide RNAs

(gRNAs) against the first exon of the zebrafish mct8 gene

(GGCTGGTGGGACGCCCGGCT and GGAGCGCAAG

CTGGCCCCGG). gRNAs were purified after phenol-chloroform

extraction and were precipitated overnight at -20°C in 10uL of 3.5M

sodium acetate pH3.5 and 250uL of 100% ethanol. After

centrifugation, gRNA was purified, dried, resuspended in DEPC-

treated water, and kept at -80°C until use. The oligos for each

gRNAs were acquired (STABvida) and used for direct in vitro

transcription as described (57). On the injection day, the two

gRNAs were diluted to 300ng/uL in a 600ng/uL Cas9 protein

(Champalimaud Foundation) solution.

Adult zebrafish were made to spawn in natural conditions, and

embryos were immediately collected. 1-cell stage embryos were used to

inject 1nL of gRNAs+Cas9 (300ng/uL+600ng/uL). At 24hpf, eight

embryos per injection clutch were collected for genotyping by PCR.

Genomic DNA extraction was carried out after overnight digestion at

50°C in genomic extraction buffer (10mM Tris pH8.2, 10mM EDTA,

20mM NaCl, 0.5% SDS, 200ng/mL Proteinase K), followed by

centrifugation and washing with 70% ethanol, air dried, and

resuspended in 20uL of TE pH8. PCR was carried out with

primers (0.2uM) flanking the gRNAs binding sites (Fw –

ATGCACTCGGAAAGCGATGA; Rv – AGCAGCGAACAC

CACGACCCA) using the DreamTaq polymerase kit (Thermo).

Thermocycling was carried out as follows: 95°C for 30 seconds, 35

cycles of 95°C for 30 seconds, 60°C for 15 seconds, and 72°C for 15

seconds, followed by a 5-minute extension at 72°C. PCR products were

resolved in a 3.5% agarose/1xTAE gel. Afterwards, bands were isolated

from the gel and extracted with a gel extraction band kit (OMEGA),

followed by Sanger sequencing using the Big-dye termination method.

The isolated band sequence was confirmed after BLAST analysis

and alignment to the zebrafish mct8 locus. That ensured that

injected clutches had embryos carrying the desired genetic lesions

on the mct8 locus. Injected embryos were reared until adulthood.

After isolation, adult-inject PCR genotyped fish after fin-clipping to

identify carriers of genetic lesions on the mct8 locus. After

sequencing, only carriers of mutations that induced an early

STOP codon or a frameshift in the mct8 ORF were allowed to

cross with wild-type siblings to give rise to non-mosaic F1 carrier

lines. Adult F1 carriers were genotyped by PCR after fin-clipping

and sequenced. In-crosses were carried out to generate F2

homozygous mutants for the mct8 locus. Identified lines with

embryos with expected phenotypes were collected, genomic DNA

extracted, genotyped by PCR, and sequenced. Identified lines were

crossed to wild-type siblings. Only F3 adult carriers were used to

generate homozygous mct8 mutant embryos. That was done to

mitigate any possible non-specific genomic lesions other than in the

mct8 locus.
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2.13 Statistical analysis

All statistical analyses were carried out in GraphPad Prism

v6.01 (San Diego, USA). Values are represented as means ± SD. The

datasets’ normality was previously accessed using D’Agostino &

Pearson omnibus normality test. The levels of statistical significance

were expressed as p-values, *p < 0.05; **p < 0.01; ***p < 0.001; ns:

non-significant.

Due to the role played by the genes analyzed in embryonic

development, the present work did not intend to determine their

temporal expression patterns, only the effect of MCT8 knockdown

on their expression at specific time points. To determine gene

expression differences between CTRLMO and MCT8MO embryos,

statistical significance was determined by unpaired Students t-test:

two-sample, assuming equal variances. For image analysis

quantification, One-way analysis of variance (ANOVA) followed

by Dunnett’s multiple comparison tests or an unpaired Student’s t-

test was used when data sets presented a normal distribution.

Otherwise, a Kruskal-Wallis test followed by Dunn’s multiple

comparison tests was used. Distribution differences in symmetric/

asymmetric divisions between experimental groups were

determined by c2 analysis. Statistical difference in symmetric or

asymmetric divisions between experimental groups was determined

by one-way ANOVA followed by Holm-Sidak’s multiple

comparison post hoc analysis.
3 Results

To further guarantee the validity of our MCT8 knockdown

approach using morpholinos, its specific effects, and the lack of

unspecific morpholino effects, we developed a CRISPR/Cas9 loss-

of-function mct8 mutant (-/-) (Supplementary Figure 1). The
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mutant mct8 (-/-) has an early STOP codon in the sixth codon,

missense mutations, and a 9-bp insertion (Supplementary Figures

S1A, B). After injection of the MCT8 morpholino at 0.8pmol in

mct8 (-/-) embryos, we did not observe any additional effects

different from control morpholino injected 24hpf mct8 (-/-)

embryos (Supplementary Figure 1C). Complying with the best

practices for using morpholinos (58, 59), our morpholino-based

approach has shown to be highly specific and fully recapitulates the

loss of function in the newly developed mct8 (-/-) embryos without

non-specific effects. Together with our previous validations (27, 45),

these two converging models fully recapitulate the loss of MTH-

impaired signaling during embryonic development.
3.1 Timing of MTH action in zebrafish
embryogenesis

To determine the developmental time window of MTH action

in zebrafish embryogenesis, we analyzed genes already known from

previous transcriptomic data to have altered expression in 25hpf

MCT8MO embryos (45) (Supplementary Figure 2A). Genes shown

to be regulated by MTH involved in the early neural specification,

NOTCH signaling pathway, and neurogenesis (Supplementary

Figure 2A) were analyzed.

Genes belonging to the SoxB1 family (sox3, sox19a, and sox19b)

are recognized for their role in the specification and development of

the embryonic ectoderm into the neuroectoderm lineage (60, 61).

These candidate genes were downregulated at 25hpf in the

MCT8MO RNA-seq data (Supplementary Figure 2A), indicating

a possible role for MTH in maintaining the neuroectodermal

progenitor pool. Analysis by qPCR (Figure 1 and Supplementary

Figure 2B-D) revealed that the expression of these genes did not

change in MCT8MO embryos during early neurodevelopment
FIGURE 1

Expression of MTH-responsive genes reveals 22-31hpf as the developmental time more sensitive to MTH. Zebrafish developmental stages analyzed
by qPCR are depicted by camera lucida drawings adapted from (46). Heatmap representation of gene expression levels of sox3, sox19a, sox19b,
notch1a, notch1b, her2, her4, dla, dld, jag2a, and neurog1, determined after RT-qPCR in MCT8MO and CTRLMO during embryonic development.
Data are represented as fold change of MCT8MO expression relative to the CTRLMO. Statistical differences were evaluated between MCT8MO and
CTRLMO for each time point using a t-test after normal distribution was confirmed (D’Agostino & Pearson test). N = 8 (*p<0.05; **p<0.01).
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(10hpf-18hpf). The results suggest that MTH does not play a role in

maintaining B1 Sox gene expression during neural plate

establishment and neural induction. However, expression of

sox19a and sox19b is significantly lower in MCT8MO embryos at

22hpf (t-test, p<0.05), while sox3 and sox19b show a decreased

expression also at 25hpf (Figure 1), in accordance with RNA-seq

data (45), although this change does not reach statistical

s ignificance in the qPCR assay (t-test , p=0.083, and

p=0.079, respectively).

Notch ligand-receptor combinations that coincide during

development in zebrafish are essential for adequate brain

development and cell diversity (62). Gene expression analysis by

qPCR revealed that only notch1a was significantly downregulated in

MCT8MO at 22hpf (Figure 1; Supplementary Figure 2E; t-test,

p<0.05) and continues to be lower than CTRLMO, in MCT8MO

embryos until 36hpf, although not statistically significant (Figure 1;

Supplementary Figure 2E). A similar trend occurs for the expression

of the notch1b receptor; however, this decrease between 22-36hpf is

not statistically significant (Figure 1; Supplementary Figure 2F, t-

test, p>0.05).

The expression of NOTCH direct targets her2 and her4, which

are involved in the maintenance and proliferation of

neuroprogenitor cells (63–65), was analyzed (Figure 1).

Expression of her2 is downregulated in MCT8MO embryos at 12,

22 and 25hpf (Figure 1; Supplementary Figure 2G, t-test, p<0.05).In

zebrafish, her4 is involved in primary neuron development under

Notch 1 signaling (65).Her4 downregulation at 22, 25, and 30hpf in

MCT8MO suggests the involvement of MTH in regulating the

development of some primary neurons (Figure 1; Supplementary

Figure 2H, t-test, p<0.05).

Notch ligands dla and dld, which are expressed in differentiating

neural cells and are involved in the specification of progenitor pool

size domains (66), showed a significant decrease in expression in

MCT8MO embryos at 25hpf (Figure 1; Supplementary Figures 2I, J,

respectively, t-test, p<0.05). The downregulation of dla is observable

by 12hpf (Figure 1; Supplementary Figure 2I, t-test, p<0.05) during

primary neurogenesis and occurs at 22 and 25hpf (Figure 1;

Supplementary Figure 2I, t-test, p<0.001 and p<0.05, respectively).

On the other hand, the decrease in dld expression (Figure 1;

Supplementary Figure 2J) only occurs later in neurogenesis at 22

(t-test, p<0.01), 25 (t-test, p<0.05), and 30hpf (t-test, p<0.05).

In contrast with dla and dld, the Notch ligand jag2a is upregulated

in MCT8MO embryos (Figure 1; Supplementary Figure 2K, t-test,

p<0.05). The temporal pattern of expression of jag2a was opposite to

the delta ligands, dla, and dld, since it was upregulated at 18hpf

(Figure 1 p<0.05) and again at 36hpf (t-test, p<0.05).

To further understand how MTH is involved in neuron

progenitor specification, we analyzed the expression of neurog1, a

pro-neural gene expressed by intermediate neuronal precursors and

neuron-committed cells. No differences in neurog1 expression

occur from 10-18hpf between CTRL and MCT8MO embryos

suggesting MTH is not involved in the differentiation of these

cells (Figure 1 and Figure 1 and Supplementary Figure 2L).

However, at 22 and 25hpf (Figure 1 and Supplementary

Figure 2L, t-test, p<0.05), neurog1 expression decreased,

suggesting a possible role for MTH in the maintenance/
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differentiation of neuron progenitor populations from these stages

of neurogenesis while no differences in expression were found at

later stages (Figure 1 and Supplementary Figure 2L, t-test, p>0.05).
3.2 Impaired MTH action has a time-
dependent effect on spinal cord
neural development

We interrogated if gene expression changes are paralleled with

neurogenesis and gliogenesis changes, focusing on the spinal cord

since it provides a simplified version of neural development.

Immunostaining for Elav3 (HuC/D) of CTRLMO and MCT8MO

zebrafish, which labels all post-mitotic neurons from 15-48hpf,

revealed a time-dependent topology and abundance of neurons

(Figure 2). Notably, in all developmental stages analyzed, the

distribution of neurons in the three regions of the spinal cord

(dorsal, medial, and ventral) present different HuC/D staining

profiles between CTRLMO and MCT8MO embryos (Figure 2A).

From as early as 15hpf, neurogenesis was impaired, as can be seen

by the decrease in post-mitotic neurons in MCT8MO (Figure 2B; t-

test, p<0.05). The most affected spinal cord neuron population in

MCT8MO embryos is medial, as can be observed in lateral and

transversal sections (Figure 2A). As development progresses, at

22hpf, there are fewer neurons, and the distribution is different in

MCT8MO embryos (Figures 2A, B; t-test, p<0.05). That is especially

evident in the lateral view, where medial and ventral neurons seem

to be particularly affected. By 25hpf, and although neuron numbers

have recovered (Figure 2B; t-test, p>0.05), MCT8MO neuron

distribution is more compact (Figure 2A transversal view) with an

apparent accumulation of dorsally located neurons, some of which

appear to be out of the spinal cord scaffold (Supplementary

Figure 3). The different distribution of the cells between

CTRLMO and MCT8MO embryos is exacerbated at 36hpf, where

dorsal neurons seem to increase with a simultaneous decrease in

medial and ventral neurons. Additionally, at 36hpf, neurons are

decreased in MCT8MO (Figure 2; t-test, p<0.0001). By 48hpf, the

distribution of neurons in any view of the spinal cord is different in

CTRLMO and MCT8MO embryos, especially evident dorso-

ventrally (Figure 2A lateral and transversal views), but there is no

difference in the neuron number (Figure 2B; t-test, p>0.05).

We also interrogated how spinal cord gliogenesis was affected by

impaired MTH signaling (Figure 3). To this end, embryos were

immunostained with an anti-GFAP serum, and the stained volume of

a 2 myotome section of the spinal cord was determined. We observed

a time-dependent effect of impaired MTH action on gliogenesis up to

25hpf in MCT8MO (Figure 3). At 15hpf, there is a noticeable

reduction of GFAP staining in MCT8MO embryos (Figure 3, t-test,

p<0.001) with a very restricted GFAP signal (Figure 3A). In contrast

to CTRLMO embryos, in MCT8MOmorphants, the ventral signal of

GFAP at 15hpf was spread along the left-right axis of the spinal cord.

In contrast, medial and dorsal staining was mostly lost (Figure 3A,

transversal). By 22hpf, the topology of GFAP staining was different

between groups (Figure 3A), and the overall stain by GFAP was lower

in MCT8MO (Figure 3B, t-test, p<0.01). By this time, the GFAP

signal in MCT8MO embryos increased in the lateral basal edge of the
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spinal cord, and little to no signal was found in the apical region. At

25hpf, the signal distribution in any axis differs between the two

experimental groups (Figure 3A). In contrast, in CTRLMO, GFAP

staining lined the basal edge of the spinal cord, while in MCT8MO

embryos, it was scattered throughout the basal-apical orientation
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(Figure 3, transversal). However, the stained volume of GFAP in the

spinal cord is similar in both groups (Figure 3B, t-test, p>0.05). The

observation argues that MTHmodulates gliogenesis, determining the

position of glial cells and likely the cell diversity generated in this

neural population.
A

B

FIGURE 2

Compromised number and distribution of HuC/D neurons in MCT8MO embryos at specific stages of development. (A) Representative maximum
projection images of the pan-neuronal marker HuC/D immunostaining (white) in the spinal cord between somite 8-12. Comparison of the pattern of
neuron distribution in the spinal cord between CTRLMO and MCT8MO embryos at different stages of development. Red highlight - dorsal views,
anterior spinal cord up. Blue highlight - lateral view, anterior spinal cord right. Green highlight -transversal view, dorsal spinal cord up. Scale bars
represent 25 µm. (B) Quantification of the number of HuC/D single positive cells in a 2-myotome length of the spinal cord. n=9-17. CTRL
(CTRLMO); MO (MCT8MO). Results are presented as mean ± SD; Statistical significance determined by t-test: two-sample, assuming equal variances:
*p<0.05; ***p<0.001.
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To further dissect which cell populations in the spinal cord are

affected by lack of MTH, we analyzed the expression of genes involved

in neural progenitor specification (her2, Figure 4A), neuron committed

progenitors (neurog1, Figure 4B), radial glial cells (fabp7a, Figure 4C),

astrocyte-like cells (slc1a2b, Figure 4D), oligodendrocytes (olig2,

Figure 4E) and motorneurons (Nkx6.1, Figure 4F).

her2+ neural progenitors are lost from as early as 18hpf in

MCT8MO, and dorsal populations are most affected (Figure 4A).

Cells expressing her2 become more spaced, suggesting that some
Frontiers in Endocrinology 09
but not all her2+ progenitors are more susceptible to impaired

MTH signaling than others (Figure 4A).

A similar situation is observed for neurog1+ neuron committed

progenitors (Figure 4B). At 18hpf, there are significantly fewer neurog1

+ cells inMCT8MO (Figure 4B), leading to a primarily complete loss of

dorsal neurog1+ cells by 25hpf s (Figure 4B). This pattern continues at

32hpf. Additionally, gaps are observed in neurog1+ cell staining (green

asterisk in Figure 4B). That observation suggests that specific neurog1+

progenitors at specific spinal cord locations depend more on MTH
A

B

FIGURE 3

MCT8MO embryos have altered glial cell development during early neurogenesis. (A) Representative maximum intensity projection images of the
spinal cord between somite 8-12 after glial cell labelling with ZRF-1 immunostaining (white, labelling GFAP fibers). In control embryos, at 15hpf glial
cell fibers are organized in the developing ventral spinal cord; in MCT8MO embryos, the development of these cells is delayed, and only some
scattered GFAP fibers are detected in the ventral-most neural tube. At 22hpf, the neural tube is closed, and glial cells can be detected throughout
the spinal cord of CTRLMO and MCT8MO embryos; at 25hpf, the patterning of glial cells is altered in MCT8MO embryos. Red highlight - dorsal
views, anterior spinal cord up. Blue highlight - lateral view, anterior spinal cord right. Green highlight - transversal view dorsal spinal cord up. All
scale bars represent 25 µm. Dashed yellow lines denote spinal cord boundaries. (B) Quantification of the area of GFAP staining in a 2-myotome
length of the spinal cord. n=9-17. CTRL (CTRLMO); MO (MCT8MO). Results are presented as mean ± SD; Statistical significance determined by t-
test: two-sample, assuming equal variances: **p<0.01.
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C

FIGURE 4

MTH is necessary for developing and correctly positioning neural cells in the spinal cord. WISH expression pattern of (A) her2, (B) neurog1,
(C) fabp7a, (D) slc1a2b, (E) olig2, (F) IHC for Nkx6.1 in the spinal cord (SC) of zebrafish during embryonic development in MCT8MO and CTRLMO
embryos. (A) Green asterisk in 25hpf MCT8MO represents absence of her2 expression. (B) Green asterisk in 32hpf MCT8MO highlights absence of
neurog1 expression. (C) Green arrowheads at 32hpf CTRLMO, indicate the dorsal fabp7a+ cells which are lost in MCT8MO. Red arrowheads indicate
increased fabp7a staining in the ventral domain in MCT8MO. At 48hpf, green arrowheads indicate fabp7a+ cells in the CTRLMO SC dorsal domain,
which are less evident in MCT8MO. (D) At 25hpf, green arrowheads indicate misplaced slc1a2b+ cells in the ventral SC of MCT8MO. At 32hpf, the
expression of slc1a2b is less abundant in MCT8MO. At 48hpf MCT8MO display reduced slc1a2b signal in cells at the most ventral and dorsal regions
of the neurocoelom. The green arrowhead in the CTRLMO inset indicates an area where slc1a2b expression is less abundant in MCT8MO. (E) In
CTRLMO, olig2+ cells were present in the most ventral region of the SC. At 25hpf, the green arrowhead indicates the position of olig2+ cell clusters,
and the asterisk denotes the absence of cells in MCT8MO. (F) Nkx6.1 immunofluorescence detection at 20, 25, and 32hpf. A minimum of 10
individuals/conditions/gene or protein were analyzed. Images represent a lateral view of the SC (unless specified) between somites 8-12 with rostral
orientation located to the left; Green dashed line represents the ventral limit of the SC; Scale bars represent 50 µm. Insets in (B–D) at 48hpf are
transverse sections; Green dashed line represents the outermost boundary of the SC; Scale bars represent 20 µm.
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than others. By 48hpf, neurog1+ progenitors inMCT8MO embryos are

restricted to the more ventricular region of the spinal cord surrounding

the neurocoelom (inserts in Figure 4B).

At 25hpf fabp7a+ radial glial cells seem to be highly dependent on

MTH for their development, given their almost absence inMCT8MO

embryos (Figure 4C). By 32hpf, some fabp7a+ cells are found;

however, these are primarily ventral (red arrowheads in Figure 4C).

In contrast, dorsal fabp7a+ cells are lost (green arrowheads in

CTRLMO embryos in Figure 4C). This effect is accentuated at

48hpf where no dorsal fabp7a+ cells (green arrowheads in

CRTLMO embryos in Figure 4C) are found in MCT8MO embryos.

However, the ventral expression field of fabp7a+ in MCT8MO

embryos is more extensive and presents a different spatial

distribution than in CTRLMO embryos (inserts in Figure 4C).

Astrocyte-like cells expressing slc1a2b+ are also affected in

MCT8MO embryos (Figure 4D). Already by 25hpf, there is a decrease

in expression of slc1a2b in the dorsal spinal cord of MCT8MO embryos

(Figure 4D) with a less dense row of cells present, while concomitantly

with the development of ventral located slc1a2b+ cells (green arrowheads

in Figure 4D) which are absent in control embryos. By 32hpf and 48hpf,

there is a general decrease of slc1a2b+ cells inMCT8MO embryos’ spinal

cord (Figure 4D), which at 48hpf is accompanied by a restriction of the

expression field, which confines to the most dorsal and ventral regions of

the spinal cord canal (inserts in Figure 4D).

In MCT8MO embryos, olig2+ cells in the spinal cord

decrease from as early as 25hpf (Figure 4E). This reduction is

even more apparent at 32hpf but slightly recovers by 48hpf

(Figure 4E). Nonetheless, olig2+ staining is always lower in

MCT8MO than in control embryos (Figure 4E), suggesting the

loss of some cells.

The Nkx6.1+ motorneuron cells are strongly decreased in

MCT8MO embryos as early as 20hpf. That is still noticeable at

25hpf, but at 32hpf, there is an expansion of the Nkx6.1+ domain in

MCT8MO embryos that is broader than in control embryos

(Figure 4F). Moreover, a medial to a dorsal expansion of Nkx6.1

cells occurs in MCT8MO embryos, while in control embryos these

are primarily concentrated in a ventral position (Figure 4F),

suggesting that the identity of these Nkx6.1+ cells may not be

identical in CTRL and MCT8MO embryos.
3.3 MTH is essential for a subset of neural
progenitor cells to survive and proliferate

The previous results suggest that MTH is involved in specifying

distinct neural populations. The decrease in her2, neurog1, and

fabp7a expression in mct8 morphants suggest that the function of

MTH in the generation of cell diversity in the zebrafish spinal cord

arises already at the progenitor level, either by restricting the fate of

daughter cells or restricting the diversity within the progenitor

pool itself.

All components of T3 cellular signaling (i.e. mct8, thraa, and

thrab) are already present in the zebrafish neuro-epithelium from as

early as 12hpf and widely expressed in the spinal cord up until

48hpf (Supplementary Figure 4). At 25hpf, several MTH sensitive

(mct8+) her2+ neural progenitors are present in a scattered pattern
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more frequently in the ventral half of the spinal cord (Figure 5A). In

a receptor-specific pattern, thraa is mostly co-expressed with her2

dorsally (arrow) and continuously expressed anterior-posteriorly

(Figure 5A). thrab/her2 co-expression also appears anterior-

posteriorly; however, it is present in bands separated by regions

of no co-expression (Figure 5A). These thrab/her2 co-expression

bands spawn the dorsal-ventral axis but are more frequent in the

medial region of the spinal cord. In MCT8MO embryos, co-

expression of her2 with the receptors is not lost. However, it

decreases and presents different distributions (Figure 5A). In

MCT8MO embryos, thraa/her2 co-expression becomes more

ventral (arrowhead) and medial, even though some dorsal co-

expression is visible (Figure 5A). thrab/her2 co-expression loses

the anterior-posterior pattern of defined bands, becoming

continuous and more restricted to the medial region of the spinal

cord (Figure 5A).

These findings indicate the existence of at least six her2+ neural

populations dependent at some point on MTH signaling

components during spinal cord development: MTH+/thraa/

+thrab+, MTH+/thraa+/thrab-, MTH+/thraa-/thrab+, MTH-/

thraa+/thrab+, MTH-/thraa+/thrab- and MTH-/thraa-/thrab+.

At 25hpf, MTH sensitive cells (mct8+) dla+ cells are restricted

to the medial region of the spinal cord. No mct8/dla co-expressing

cells are detected in the spinal cord’s most dorsal and ventral

regions (Figure 5B). At this time, spinal cord thraa/dla co-

expression has a very defined anterior-posterior expression

pattern in bands that spawns dorso-ventrally but is more frequent

medially (Figure 5B). In contrast, thrab/dla co-expression has an

anterior-posterior decrease in frequency (asterisks) but is uniformly

distributed dorso-ventrally and in large clusters (Figure 5B). At

25hpf, mct8 morphant embryos’ co-expression of dla with thraa or

thrab is severely decreased, and its distribution changed compared

to control siblings (Figure 5B). In these embryos, thraa/dla

colocalization loses the pattern found in control siblings and is

scattered with some larger clusters found in discrete dorsal, medial

and ventral regions of the spinal cord (Figure 5B). In turn, thrab/dla

colocalization still presents a decreased anterior-posterior

expression (asterisk) but is almost lost dorsally and medially

(Figure 5B). Although decreased compared to CTRLMO embryos,

the co-expression of thrab/dla is more frequent at a ventral position

(arrowheads in Figure 5B). These observations indicate that only

a fraction of the dla+ cells depend on MTH, since most thraa+/dla+

co-expression is lost in MCT8MO. In the MTH-sensitive, mct8

+/dla+ population cells, thraa is likely the primary receptor

mediating the genomic action of the hormone. In MCT8MO a

similar situation occurs for thrab+/dla+ co-expression, although

not so widespread. Moreover, comparing the co-expression patterns

between groups indicates that: i) in most dorsal and ventral regions

of the spinal cord, thrab/dla+ cells are likely mostly irresponsive to

MTH and ii) most MTH sensitive thrab+/dla+ cells have a medial

localization (Figure 5B).

We further looked at fabp7a colocalization with mct8, thraa,

and thrab at 48hpf, a time of extreme sensitivity of radial glial cells

(RGC) to MTH (Figure 4C). In CTRLMO, colocalization of mct8

+/fabp7a+, is primarily located on the most dorsal (arrow) and

ventral (arrowhead) regions of the spinal cord (Figure 5C). Most
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fabp7a+ cells co-express thraa and or thrab (Figure 5C), indicating

that RGCs are highly dependent on MTH regulated transcription.

That becomes even more evident when we look at MCT8MO

embryos, where there is a drastic decrease in the frequency of

fabp7a co-expression with thraa and thrab (Figure 5C). In fact,

dorsal co-expression of fabp7a and thrab is almost entirely lost

(Figure 5C). Ventrally, in the MCT8MO, a different scenario is

found. Although most co-expression of fabp7a with thraa and thrab

is lost, fabp7a expression increases (Figure 5C). Notably, the

remaining co-expression fields of fabp7a with either thraa or

thrab are in clusters on the dorsal portion of the most ventral

third of the spinal cord (cyan arrows in Figure 5C). Nonetheless, the

superimposition of the two co-expression fields does not retire the
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possibility that in some fabp7a+ cells, MTH action occurs via both

receptors (Figure 5C). Together these observations indicate that: i)

dorsal developing fabp7a+ RGC rely more on MTH to differentiate

than ventral RGC; ii) ventrally MTH action might be more

important in RGC fate decisions and diversity (specialization)

generation than general RGC fabp7a+ development; iii) most

fabp7a+ RGC are dependent on MTH genomic action, but a

small portion of RGC depend on thyroid receptor aporeceptor

function to develop.

To further understand how MTH acts on spinal cord her2+ and

dla+ neural progenitors’ development, we carried out assays to

understand if these cells stop proliferating or undergo apoptosis

when MTH uptake by MCT8 is blocked (Figures 6, 7). We analyzed
A B C

FIGURE 5

MTH is directly involved in the development of discrete her2, dla, and fabp7a cells. Colocalization of zebrafish thraa, thrab, and mct8 with her2 and
dla expressing cells at after double WISH. thraa, thrab and mct8 (green); her2, dla and fabp7a (red) and colocalization (yellow). (A) At 25hpf, thraa/
her2 colocalization in CTRLMO embryos (arrow) is increased in the apical spinal cord, while in MCT8MO thraa/her2 colocalization has a more
medial distribution in the spinal cord (arrowhead). (B) At 25hpf, thrab/dla colocalization is less predominant in MCT8MO embryos, and asterisks
denote decreased colocalization along the anterior-posterior axis of the spinal cord. Arrowheads indicate the increased colocalization of thrab/dla+
in cells of the ventral spinal cord in MCT8MO embryos. (C) At 48hpf, mct8/fabp7a colocalization in CTRLMO occurs scattered through the spinal
cord with an arrow indicating colocalization in the dorsal spinal cord and arrowhead colocalization in the ventral spinal cord. Colocalization of
fabp7a with thraa and thrab in MCT8MO embryos is more restricted to the ventrally located fabp7a+ cells (blue arrowheads). All images depict a
spinal cord section between somite 8-12; rostral is left and dorsal up. White dashed lines show the boundary of the spinal cord. A minimum of 3
individuals/conditions was analyzed. The scale bar represents 20µm.
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FIGURE 6

Impaired MTH signaling decreases her2+ neural progenitor cells undergoing mitosis in the spinal cord. (A) Analysis of her2 expression by fluorescent
in situ hybridization (green) and mitotic cells (phosphohistone 3 antibody; red) in CTRLMO) and MCT8MO embryos. (B) Box-and-whiskers plot
depicting quantification of the number of her2+ mitotic cells (her2+/PH3+) in the spinal cord at 18, 22, and 25hpf. (C) Analysis of her2 expression by
fluorescent in situ hybridization (green) and colocalization with apoptotic cell detected using a TUNEL assay (red). (D) Box-and-whiskers plot
depicting the quantification of the number of her2+ apoptotic cells in the spinal cord. The images represent a lateral view of the spinal cord
between somite 8-12; rostral is to the left in all images; the scale bar represents 50 µm. Colocalization was quantified in the volume of 2 myotomes
within this spinal cord region. n=10-15. Statistical significance determined by t-test: two-sample, assuming equal variances. **p<0.01; *** p<0.001.
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FIGURE 7

Impaired MTH signaling affects proliferation and apoptosis of dla+ spinal cord cells in a time-restricted manner. (A) Analysis of dla expression by
fluorescent in situ hybridization (green) and colocalization with cell mitosis (phosphohistone 3 immunostaining, red) in CTRLMO) andMCT8MO
embryos. (B) – Box-and-whiskers plot of quantification of the number of dla+ mitotic cells in the spinal cord at 18, 22, and 25hpf in control and
MCT8MO injected embryos. (C) Analysis of dla expression by fluorescent in situ hybridization (green) and colocalization with apoptotic cell detected
using a TUNEL assay (red). (D) Box-and-whiskers plot quantifying the number of dla+ apoptotic cells in the spinal cord at 18, 22, and 25hpf in
control and MCT8MO injected embryos. The images present a lateral view of the spinal cord between somite 8-12, rostral is to the left, and dorsal
up in all images. The scale bar represents 50 µm. Colocalization was analyzed in 2 myotome volume sections within this spinal cord region (n=10-
15). Statistical significance determined by t-test: two-sample, assuming equal variances. **p<0.01.
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embryos between 18hpf and 25hpf when qPCR analysis showed

that her2 and dla expression was more responsive to MTH

(Figure 1). In general, cell proliferation (as measured from mitotic

index labeling PH3) is decreased by ~50% on average at 18 to 25hpf

in MCT8MO (Supplementary Figure 5A, p<0.0001). On the other

hand, in all developmental stages analyzed, apoptosis is increased 2-

fold in MCT8MO relative to CTRLMO embryos (Supplementary

Figure 5B, p<0.001). As previously reported (27), this increase in

apoptosis is specific to the lack of MTH and cannot be rescued by

p53 signaling abrogation, thus indicating a specific effect of

impaired MTH.

At 18 and 22hpf, her2+ mitotic cells decreased ~50% in

MCT8MO embryos (Figures 6A, B, p<0.01; Supplementary

Figures 6A-a”). At 25hpf, there are no differences between the

two groups. These results parallel the data obtained for general PH3

staining and suggest that about one-quarter of her2+ mitotic cells

depend on MTH to proliferate (Figure 6B; Supplementary

Figure 5A). Loss of her2+ mitotic cells in mct8 morphants occurs

more frequently in medium and ventral regions of the spinal cord at

18 and 22hpf (Figure 6A). By 25hpf, there is an evident increase in

her2+ mitotic cells in these regions of the spinal cord in mct8

morphants (Figure 6A; Supplementary Figures 6A-a”).

Apoptosis of her2+ cells in MCT8MO is only higher at 22hpf

(p<0.001) but not at 18 and 25hpf (Figures 6C, D; Supplementary

Figure 6B-b”). The divergence of her2+ apoptotic cells from general

spinal cord apoptosis indicates that only a small subset of her2+

arising at 22hpf are likely dependent on MTH to develop.

Irrespective of any experimental group, apoptotic her2+ cells are

more frequent dorsally, especially at 22 and 25hpf (Figure 6C).

Together, these observations indicate that from 18 until 22hpf,

about one-quarter of her2+ progenitors depend on MTH to survive.

The evidence argues that the major role of MTH on her2+

progenitors is likely involved in cell fate decisions and cellular

diversity generation.

The proliferation of dla+ cells depends on MTH only at 22hpf

(Figures 7A, B, p<0.01). At that time, only one-sixth of dla+ cells are

proliferating; of these, only half seem dependent on MTH

(Figure 7B; Supplementary Figure 7A-a”). Notably, dla+

proliferating cells do not follow the same frequency observed for

general proliferation in the spinal cord for CTRLMO and

MCT8MO embryos (Figures 7A, B; Supplementary Figure 5A).

At 22hpf, dla+ MTH-dependent proliferating cells in control

embryos are mostly ventrally localized and mostly lost in the

MCT8MO (Figure 7A).

In contrast to cell proliferation, dla+ apoptotic cells in the

MCT8MO are increased only at 25hpf (Figures 7C, D, p<0.01;

Supplementary Figure 7B-b”), accounting for twice as much as

those found in control embryos. Moreover, dla+ apoptotic cells in

control embryos only represent about 20% of all apoptotic cells in

the spinal cord at 25hpf, thus suggesting that in MCT8MO,

apoptotic dla+ cells might represent a different dla+ population

than the one found in control siblings (Figure 7D and

Supplementary Figure 5B). Notably, dla+ cell death does not

follow the same distribution for overall spinal cord apoptosis

(Figure 7D and Supplementary Figure 5B). In both control and

MCT8MO embryos, most dla+ cells are found in the most dorsal
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region of the spinal cord at 18 and 22hpf (Figure 7C). In contrast, to

control embryos, at 25hpf in mct8 morphants, dla+ apoptotic cells

locate mainly in the medial and ventral regions of the spinal cord.

The results indicate that only a small subset of dla+ cells depend on

MTH for proliferation and survival. Moreover, this dependence

seems restricted to dorsally located cells and well-defined

developmental times (Figure 7).

The previous evidence further supports that NOTCH signaling

mediates MTH action in zebrafish spinal cord neural progenitor

cells. Furthermore, our evidence supports that the dependence of

NOTCH signaling on MTH is highest between 18-30hpf. To further

understand if this action of MTH can be cell-autonomously rescued

by activated NOTCH signaling, each morpholino group was

injected with either GFP mRNA or NICD+GFP mRNA, live

imaging of the spinal cord was carried out between 23-26hpf

(Figure 8A) and quantified symmetric and asymmetric GFP+ cells

divisions in that period (Figures 8B–F). The NICD construct will

activate the Notch signaling (50). No differences in the overall cell

division of GFP-expressing cells between any of the experimental

groups were observed (Figure 8C). However, there were significant

differences in the proportion of symmetric/asymmetric divisions in

control embryos with other experimental groups (Figure 8D; c2, p ≤
0.05). Nonetheless, symmetric divisions occurred more frequently

in NICD+CTRLMO, MCT8MO, and NICD+MCT8MO

experimental groups, although these were not statistically

significant from the CTRLMO (Figure 8E, t-test p>0.05). In

contrast, asymmetric divisions in MCT8MO and NICD

+MCT8MO experimental groups were significantly less frequent

compared to the CTRLMO group (Figure 8F, One-way ANOVA

p<0.01, Sidak, p<0.05) but not the NICD+CTRLMO or between

themselves. These results argue that NOTCH overexpression

cannot rescue the lack of MTH signaling in these progenitor cells

in a cell-autonomous manner.
4 Discussion

In the present work, we use an established zebrafish AHDS,

MCT8 knockdown model and provide further evidence of a critical

developmental time of MTH action. We reveal that in zebrafish, the

period between 18-30hpf (~pharyngeal stage) is the most dependent

on MTH based on the T3-responsive gene expression. This

zebrafish developmental period corresponds to 8-24 weeks of

human gestation, where MTH action in human embryonic

development is essential for neurodevelopment (2, 3). Together,

this data establishes a parallel action of MTH on neurodevelopment

in humans and zebrafish.

Our analysis strongly supports that MTH action on target cells

depends on tissue/cellular context. In zebrafish, as in mammalian

systems, T3 is involved in the differentiation and proliferation of a

wide variety of cell types, and this action depends on the cell

identity, developmental state, and cellular context (27, 45, 67).

The data argue that MTH is not involved in neuroectoderm

induction via B1Sox genes. However, at 12hpf, there a decrease in

expression of Notch ligands dla and her2 in the mct8 morphants is

observed, pointing out that a subset of neural progenitor cells
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FIGURE 8

Effect of impaired MTH signaling and NICD overexpression on progenitor cell division. (A) At the start of imaging, representative images of the spinal cord of
experimental Tg(elav3:LY-mCherry) embryos at 23hpf. Neurons (mCherry) are shown in white. Embryos were injected at the one-cell stage with either
CTRLMO or MCT8MO followed by injection at the 16-cell stage in one blastomere with gfp mRNA only or nicd and gfp mRNA. Cells overexpressing NICD
(and GFP) are labelled in magenta. Dorsal views of single slices between somite 8-15 are shown, anterior spinal cord up. The scale bar represents 50 µm.
(B) Upper panel: Detail of symmetric division originating 2 morphologically similar GFP+ cells. A cell undergoing symmetric mitosis (yellow arrow), and the
originating daughter cells (yellow arrowheads); Lower panel: Representative images of asymmetric division. A dividing cell (yellow arrow) originates two
daughter cells (yellow arrowheads). Scale bar in B represent 20 µm. In all panels, the spinal cord basal limit is indicated by a dashed yellow line and the pial
limit by dotted yellow lines. (C–F) (C) Percentage of analyzed GFP+ cells that underwent division. (D) Distribution of GFP+ dividing cells relative to all GFP+
cells observed in the period from 23-26hpf. c2 analysis showed differences in the distribution of the number of cells undergoing symmetric or asymmetric
divisions amongst experimental groups and CTRLMO (p<0.05). (E) Percentage of a cell undergoing symmetric division. (F) Percentage of cells undergoing
asymmetric division. The results in C, D, and F are presented as the mean ± SD; results in D depict the ratio of cell division type in all GFP+ dividing cells
analyzed. N =5-6 individuals per group (number of cells evaluated by group: CTRLMO/GFP=56; MCT8MO/GFP=77; CTRLMO/NICD/GFP=93; MCT8MO/
NICD/GFP=46); Statistical significance in (C, E, F) was determined by a one-way ANOVA followed by a Holm-Sidak’s multiple comparison post hoc analysis,
*p<0.05, **p<0.01, ***p<0.001.
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already responds to MTH early in neurodevelopment. The identity

of these early MTH-responsive cells and their progeny remains to

be confirmed.

We demonstrate that MTH is essential for the proliferation and

survival of both neural stem cells, her 2+, and committed neuron

and glial progenitors, dla+. That argues that MTH regulation of

neural diversity is likely achieved by modulation of the output from

various progenitor cells. Inhibition of MTH uptake via mct8

transporter during zebrafish spinal cord neurodevelopment

mainly affects the expression of dorsal her2 + neural stem cells,

neurog1+ intermediate neuron progenitors, fabp7a+ and pax6a+

(45) radial glial progenitors, and olig2+ motoneuron and

oligodendrocyte progenitor cells. Cells arising from these

progenitors, such as slc1a2+ astrocyte-like cells, Nkx6.1+

motoneurons, and gad1b+ inhibitory interneurons (45), also show

restricted development in their dorsal domains. The action of T3 on

neuron development and survival has been described in chickens

where mct8 knockdown leads to impaired optic tectum

development, depletion of neuroprogenitors, and impaired

neurogenesis with reduced neuron numbers and diversity (68). In

in vitromammalian cells, T3 is directly involved in the development

of granule neurons by, on the one hand affecting the survival and

differentiation of these cells (69) but also by preventing their

apoptosis (70). Impaired maternal thyroid hormone signaling

during mammalian neurodevelopment caused by mutations in

thyroid hormone receptors giving resistance to T3 (71–74),

congenital hypothyroid athyroid pax8 mutants, or double-

knockdown Mct8/Oatp1c1 (40, 75, 76), present similar cellular

effects to the ones observed in zebrafish mct8 morphant embryos

( (27, 45), present study). In the developing cortex of Mct8/Octp1c1

double-KO embryonic mice (40, 41, 76), Hr and gad67

(respectively, homologs of zebrafish her2 and gad1b) expressing

cells are mostly lost in the dorsal region, suggesting that in

vertebrates MTH is an essential factor for dorsal specification of

neuronal cell identities. Most notably, inhibitory neuron

development seems particularly dependent on MTH action in

mice (41, 76) and zebrafish (27, 45). In rat embryos, T3

deficiency decreases the proliferation and delays the maturation

of the precursors of cerebellar GABAergic interneurons, with effects

on the number of mature GABAergic neurons and GABAergic

terminals (76, 77). A similar situation is found in a new mice AHDS

model. Here a human AHDS-related mutation was introduced in

theMct8 gene (P253L) and presented altered neuroarchitecture and

impaired GABAergic neuron development, but no TH-target genes

expression change is found at P90 (44). Notably, in zebrafish mct8

morphants, a decrease in dorsal spinal cord neurons was observed

simultaneously with an increase in ventral motoneurons (27). These

suggest that the increase in excitatory neurons and depletion of

GABAnergic interneurons contribute to the cellular basis of

impaired locomotion observed in mct8 morphants (27, 28) and

human AHDS patients (78–80). Above all, a key observation in

zebrafish mct8 morphants is the recovery of spinal cord neuron

numbers at 25 and 48hpf. However, these neurons’ identity,

topology, and morphology are not identical to control morphants.

That indicates that other neuron types assume their positions/

locations in the loss of MTH-dependent neuron development,
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thus anticipating a compensatory mechanism. A similar

compensatory mechanism was observed in Xenopus

neurodevelopment. Here impaired NOTCH signaling leads to

delayed neurogenesis, which is later compensated at the expense

of impaired cell diversity (81). In human AHDS patients,

microcephaly is rarely observed (79), strongly suggesting that

impaired development of some neuron types leads to overgrowth

from other types. The increased distribution domain of Nkx6.1+

neurons in MCT8MO suggests an alternate nature of Nkx6.1+

neurons. Indeed, in chicken embryonic retinal development, mct8

knockdown leads to a shift towards increased blue cones at the

expense of green/red cones (82), confirming that in vertebrates,

MTH is involved in generating neural cell diversity and the

adequate balance between neuron types, in order to develop a

fully functional central nervous system. In the adult mouse cortex

SVZ, a similar role for T3 was found and mediated by TRa1,where

the hormone balances the maintenance of the neurogenic

progenitor pool and neuron differentiation (83).

The cellular mechanisms of TH action during neurodevelopment

were also approached by determining the expression of TH machinery

in neural spinal cord cells. In CTRLMO zebrafish embryos, co-

expression of her2 with mct8 resembles mostly her2 co-expression

with thraa, suggesting that in her2+ progenitors, effectuation of MTH

signaling is thraa driven. Indeed, in mct8 morphants, thraa co-

expression with her2 is mainly lost in dorsal spinal cord cells,

whereas it is maintained chiefly ventrally. That argues that her2+

dorsal NSC populations depend on MTH action via thraa, whereas

ventral populations rely on thraa unliganded aporeceptor function to

differentiate. A similar but not predominant situation appears with

thrab since medial spinal cord co-expression with her2+ is mainly

maintained inmct8morphants but lost dorsally. From our analysis, the

loss of dorsal her2+ MTH-dependent progenitors is likely due to

apoptosis since TUNEL staining strongly co-localizes with her2+

cells in mct8 morphants. A similar situation is found in the

embryonic mouse cortex, where impaired MTH supply leads to

decreased cell cycle length and apoptosis of progenitor cells (9, 84,

85). Moreover, in cultured rat pituitary tumor granule cells, T3-induced

cell proliferation is mediated by changes in G1 cyclin/cyclin-dependent

kinase levels and activity (86).

Previous transcriptomic analysis in zebrafish mct8 morphants

shows a steep decrease in the expression of cell-cycle genes (45),

further strengthening this possibility. However, from our analysis,

one cannot discard that decreased her2+MTH-dependent cells

diminished their numbers after reduced proliferation due to

precocious differentiation and exit from the cell cycle. Therefore,

another possibility is that the lack of MTH leads these progenitors

into senescence. That was previously observed in the neural stem

cells of adult Mct8/Octp1c1 double-KO mice mutants (87).

Our data also suggest that different progenitor populations

respond to MTH differently. Although co-expression of her2 and

dla was previously observed by single-cell analysis in wild-type

zebrafish embryos (88), the effect of MTH absence on proliferation

and apoptosis of her2 and dla expressing cells is unequal. dla is

expressed in neural precursors and transiently in post-mitotic

neurons at 11.5hpf (89). The increased cell death of progenitor

cells, especially at an early stage of neurogenesis, can contribute to
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reducing progenitor pools leading to compromised neurogenesis.

That is the case for oligodendrocyte progenitor populations in the

zebrafish spinal cord development (90). In the case of dla+ cells,

regulation by MTH seems to depend on two different mechanisms

where thraa and thrab have different roles in different spinal cord

locations, suggesting the existence of at least three different dla+

populations: one dependent onMTH and relies on thraa, one dorsal

thrab+ population dependent on MTH, and a ventral population

that is positive to thrab but likely irresponsive to MTH.

Nonetheless, and a limitation of this study, it is not yet possible

to determine the identity and the progeny arising from these

different dla+ cell populations, and cell lineage studies are

required to elucidate this aspect fully.

Interestingly, our data suggest that in zebrafish development,

fabp7a+ radial glial cells are highly dependent on MTH and that

both trhaa and thrab are fundamental for the response of these cells

to MTH. A similar situation occurs in the developing mouse

hippocampus and cerebellum, wherein the hypothyroid embryo’s

GFAP expression was markedly reduced in a time-dependent

manner (91). Again, in MCT8MO, dorsal localized fabp7a+ RGC

are almost entirely lost while an expansion of fabp7a+ RGC cells in

the ventral domain occurs. In this ventral fabp7a+ domain,

colocalization with thraa or thrab is maintained in MCT8MO.

Interestingly, in mct8 morphants, pax6a+ is also lost dorsally but

less ventrally (45), further arguing for a differential dorsal-ventral

role of MTH in RGCs development. From these observations, MTH

is involved in the specification of different fabp7a+ RGCs in the

spinal cord, which is then reflected in the restricted development of

slc1a2b+ astrocyte-like cells in mct8 morphant embryos. Our data

indicate that MTH is essential to establish the correct combination

of glial cell types that allow the development of adequate

cytoarchitecture of the spinal cord. The observation further

supports the finding that in zebrafish mct8 morphants, neurons

develop outside of the dorsal spinal cord, a region where the most

significant loss of RGCs is observed.

The developmental genetic mechanisms underlying MTH

control of development are poorly understood. Notwithstanding,

our previous findings indicate that MTH regulates zebrafish

neurodevelopment by modulating critical genetic signaling

pathways, most notably WNT, SHH, and NOTCH (45). In

zebrafish neurodevelopment, the NOTCH pathway appears

especially responsive to MTH signaling, as major system

components respond time-dependently to the hormone (Figure 1,

present study). NOTCH plays a fundamental role in regulating

animal neurodevelopment (revised in (92)), most notably by lateral

inhibition, where it promotes cell fate specification of neural

progenitors and daughter cells. However, the only examples of T3

control of the NOTCH pathway come from studies in mice (93) and

Xenopus (94) postnatal intestinal development. In these models, T3

regulates several components of the NOTCH pathway, including

receptors and ligands, in intestinal progenitor cells in a time and cell-

context-dependent manner, hence functioning as a cell fate

determinant (93, 94). Our findings point to a similar mode of

action of MTH on the NOTCH pathway by regulating neural

progenitor proliferation, survival, and developmental output during

zebrafish neurodevelopment (discussed above). We use live imaging
Frontiers in Endocrinology 18
to show impaired MTH signaling decreases asymmetric divisions

during zebrafish spinal cord development while symmetric divisions

are unaffected. In the developing nervous system, symmetric

divisions are associated with progenitor pool amplification or

terminal differentiation of progenitors (55, 56). In contrast,

asymmetric divisions are related to the acquisition of new cell fates

by daughter cells or asymmetric terminal differentiation giving rise to

different daughter cells and, in this way, increasing cell diversity (55).

An excellent example is the lack of development of inhibitory pax8

neurons that are lost in the spinal cord of mct8 morphants (27).

Furthermore, cell-autonomous activation of the NOTCH pathway,

accomplished by mosaic overexpression of NICD, cannot rescue the

consequences of impaired MTH signaling in neural progenitor cells.

This observation reinforces the hypothesis that MTH likely functions

in neurodevelopment as an integrative signal that allows for balanced

NOTCH signaling that gives rise to the different neural cell types in a

time and cell-context-dependent manner and that cannot be rescued

in a cell-autonomous manner. The observation that impaired T3

signaling impacts delta and jagged ligands expression in opposing

manners ( (45), present study) suggests that the hormone functions as

a balance and integrator that enables the appropriate input from

NOTCH ligands and the developmental outcome that arises from

that. That is of extreme significance given that new studies indicate

that NOTCH ligand dynamics are fundamental for mice multipotent

pancreatic progenitor cell output and the fate of daughter cells arising

from the division of these progenitors (95). Such an integrative

function of MT3 in neurodevelopment supports the observations

that both excess and impaired hormone signaling have profound

effects on central nervous system development and function.

Nonetheless, new studies are necessary to further dissect MTH’s

role on NOTCH signaling modulation and neural progenitor

output in zebrafish and human neurodevelopment. Another

important aspect of this evidence is that MTH action is

modulated by tissue and cellular context. Engraftment of human

patient-derivedMCT8(-/-) iPSCs cells into euthyroid neonatal mice

corpus callosum and cerebellum can differentiate into

oligodendrocytes and myelinate adjacent fibers. In contrast, if

these patient-derived cells are injected into an Mct8(-/-);Oatp1c1

(-/-);Rag2(-/-) hypothyroid neonatal mice corpus callosum and

cerebellum human MCT8(-/-) iPSCs cells remain in an

undifferentiated progenitor state (96). That is reminiscent of our

present results with NOTCH and argues that MTH action in

neurodevelopment depends highly on cell and tissue context.

The implications of present findings for the comprehension

of ADHS, and the development of putative therapies, are

significant. It has been suggested that the pathogenesis

associated with MCT8 deficiency arises from impaired TH

transport across the blood-brain barrier (97, 98). Here we

show that the effect over neural cell progenitors occurs before

blood-brain-barrier development in zebrafish, suggesting that

MTH entering through Mct8 of CNS-residing cells regulates

their development.

In conclusion, our data support that the restricted temporal action

of MTH is critical for vertebrate neurodevelopment. MTH acting

through Mct8 is essential to sustain neural progenitor cells’ survival

and proliferation, allowing them to reach the full potential of cell
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diversity during neurogenesis and gliogenesis. That is likely achieved by

MTH regulation of particular neural progenitors’ developmental

output (i.e. fate decisions) reflecting neuronal and glial cell

populations. In zebrafish mct8 morphant embryos, the overall

neurodevelopmental effects of MTH impairment arise from the lack

of a direct action ofMTHon target gene transcription and relief of gene

expression repression by unliganded thyroid receptors. In both cases,

the likely cause behind this impaired development is decreased

differentiated neural cell diversity due to the loss of lineage-

committed progenitors. Given this evidence, two non-mutually

exclusive hypotheses arise to explain how MTH regulates vertebrate

neurodevelopment: 1) MTH acts in neural progenitors to allow

particular cellular states that enable the generation of the full

potential cell fates arising from these progenitors, and 2) MTH acts

by allowing final differentiation and survival of neural progenitors

committed to a given cell fate generation.
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Impaired MTH signaling affects mitosis and apoptosis in the spinal cord.
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Colocalization analysis of her 2 expression by wish with cell mitosis by

immunohistochemistry with phosphohistone 3 (PH3) and apoptotic cell

labelling (TUNEL) of a 22hpf CTRLMO zebrafish.
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Colocalization analysis of dla expression by wish with cell mitosis by

immunohistochemistry with phosphohistone 3 (PH3) and apoptotic cell
labeling (TUNEL) of a 22hpf CTRLMO zebrafish.
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