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Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA

attacks the large synovial joint, including the peripheral joints and

temporomandibular joint (TMJ). As a representative of peripheral joint OA,

knee OA shares similar symptoms with TMJ OA. However, these two joints

also display differences based on their distinct development, anatomy, and

physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles,

including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins,

lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-

cell communication, which play an essential role in the progression and

treatment of OA. They are likely to partake in mechanical response,

extracellular matrix degradation, and inflammatory regulation during OA. More

evidence has shown that synovial fluid and synovium-derived EVs may serve as

OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a

therapeutic effect on OA. However, the different function of EVs in these two

joints is largely unknown based on their distinct biological characteristic. Here,

we reviewed the effects of EVs in OA progression and compared the difference

between the knee joint and TMJ, and summarized their potential therapeutic role

in the treatment of OA.
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1 Introduction

Extracellular vesicles (EVs) are nanoscale sphere-like phospholipid bilayer particles

secreted by cells in a physiological or pathological state (1, 2). EVs can inherit bioactive

substances from their host cells, including proteins, lipids, DNA, micro-RNA (miRNA),

and mRNA (3). Nevertheless, EVs are not only carriers of bioactive substances. They also
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deliver their contents to target cells by specific ligand-receptor

binding patterns or endocytosis (4). From this, EVs can mediate

the communication between cells and affect the biological behavior

of target cells (5). The diameter of EVs is generally 30-2000 nm.

Based on particle size and generation pattern, EVs can be divided

into three main types: exosomes, microvesicles, and apoptotic

vesicles (apoVs) (6, 7). Exosomes exist in daily cellular activities

and are usually considered to be intermediate between 30-150 nm.

With the stage of endocytosis, sorting endosomes and

multivesicular bodies, exosomes are finally assembled and

released to specific tissue (8, 9). The diameter of microvesicles is

larger than that of exosomes, which is about 200-1000 nm.

Compared to exosomes formed by endocytosis, microvesicles

shed directly from the cytoplasmic membrane (10). ApoVs are

produced during the process of cell apoptosis, which include

apoptotic bodies, apoptotic microvesicles, and apoptotic exosomes

(11, 12). Different from other vesicles, the diameter of apoVs is

variable and previous studies mainly focused on apoptotic bodies in

1-5 µm diameter (13–15). Recent studies show that apoptosis also

encompass apoptotic microvesicles (100-1000 nm in diameter) and

apoptotic exosomes (<150 nm in diameter) (16, 17). Emerging

evidence shows EVs widely participate in cell activity and

pathological processes.

As the population ages globally, joint trauma rate and the

incidence of osteoarthritis (OA) are increasing yearly, affecting

more than 240 million people and imposing a significant medical

burden on society (18, 19). OA is a degenerative joint disease

characterized by synovial inflammation, progressive cartilage

degradation, and subchondral bone remodeling, leading to joint

pain, deformity, and dysfunction (20). OA can affect both

peripheral joints and temporomandibular joints (TMJ), which are

synovial joints (21). The most affected peripheral joints are the

joints of the fingers, knee, and hip joints. Their symptoms can

interfere with work and normal daily activities (22). TMJ are the

two synovial joints connecting the jawbone to the skull. Similar

symptoms with peripheral and TMJ OA cause joint pain and

movement limitation. Different from peripheral joint OA, TMJ

OA is the terminal stage of TMJ disorder and often presents with

abnormal jaw movement and restricted mouth opening, partly

accompanied by tinnitus, headache, and other symptoms (23).

Traditional treatment emphasizes symptomatic treatment.

However, it showed a limited effect in reversing the destruction of

cartilage or subchondral bone (24). Although emerging stem cell

therapies can promote cartilage tissue regeneration, shortcomings

such as immune exclusion and tumorigenicity alarmed us (13, 25).

The therapeutic effects of stem cells are mainly attributed to their

paracrine effects, and EVs are one of the important components of

paracrine secretion (26). Compared with stem cell therapy, EVs have

many superiorities, including explicit pathways of effect, low

immunogenicity, low tumorigenicity, easy preservation, and no

need to consider cell survival and abnormal differentiation (27). So

EVs possess a safer and greater tissue regeneration characteristic.

Mesenchymal stem cell (MSC)-derived EVs have been shown to have

notable effectiveness in OA on pain relief, inhibition of inflammation,

immunomodulation, and cartilage tissue regeneration (28–31).
Frontiers in Endocrinology 02
Furthermore, EVs carrying specific substances can be used as

potential biomarkers for the diagnosis of OA and for monitoring

the progression of OA (32). EVs, as a future cell-free therapy, show

promising applications in joint diseases. It is expected to become a

better alternative to MSC therapy in tissue regeneration. Although

the significance of EVs in the pathogenesis and treatment of OA has

been reviewed elsewhere (33–36), there is still lacking a review that

summarizes the similarities and differences about EV function

between peripheral joint and TMJ OA. This manuscript mainly

compares the difference between the peripheral joints and TMJ and

reviews the role of EVs in the pathogenesis and treatment of

peripheral joints OA and TMJ OA. We also highlight the

challenges facing EVs used as a conventional biologic agent for

the treatment of OA and the significance of exploring next-

generation EV-drug in the future.
2 The difference between peripheral
joint and TMJ

2.1 The anatomy and development in TMJ
and peripheral joint

The difference between the peripheral joint and TMJ is mainly

generalized for anatomy and development. Peripheral joints include

knee, hip, shoulder, elbow, wrist, and ankle joints, most of which are

subordinate to synovial joints. The typical structure of synovial is

comprised of two opposing skeletal elements and intermediate discs

capsuled by synovial tissue, permitting a wide and low-friction

movement (37). The knee is the largest synovial joint and is studied

the most. Here, we used the knee joint as a representative to

compare with TMJ, which both belong to synovial joints. As a

typical single synovial joint, the knee comprises the patella, femur,

tibia, fibula, meniscus, and surrounding ligaments and joint capsule

(38). The TMJ also comprises the synovial joint capsule and

ligaments, temporal fossa, articular tuberosity, mandibular

condyle, and articular disc (39). Besides the typical synovial joint

structures, TMJ is the only bilaterally linked joint characterized by

sophisticated structure, precise regulation, and complicated

functions (40). The other anatomical difference is the nerve

distribution, which may be the basis for the distinct symptoms of

TMJ OA. No sensory structures are included within the 3 cm

diameter sphere centered on the meniscus of the knee. In contrast,

several important anatomical structures and sensory nerves are

within the 3 cm diameter sphere area centered on the TMJ disc,

such as the cochlea, brain, trigeminal ganglion, mandibular nerve,

and auriculotemporal nerve (41). The nerve-rich structure may be

the reason that TMJ OA patients can be more susceptible to

neurological symptoms (42).

The different growth pattern is the other reason for TMJ

specificity. TMJ is derived from the cranial neural crest in the

way of intramembranous ossification, whereas peripheral joints are

mainly derived from cell migration of lateral plate mesoderm by

endochondral ossification, which may contribute to the histological

differences between the two joints (43). The articular cartilage type
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on the surface of the condyle and the knee joints is distinguishable.

It is known that the articular surface of the knee is covered by

hyaline cartilage with varying proportions of type I and type II

collagen, whereas the surface of TMJ is covered by fibrocartilage

and is composed mainly of type I collagen (32). In addition, the

growth pattern of condylar is different from the long bones.

Condylar have ever been regarded as a semi-epiphyseal plate of

long bone, but now it has been proven to be wrong (44). The

condylar cartilage derived from the cranial neural crest is secondary

cartilage, undergoes endochondral ossification, and exhibits

characteristic developmental processes, whereas the cartilage of

long bones directly originates from embryonic cartilage primordia

(45, 46) (Figure 1).
2.2 Clinic manifestation in TMJ OA
and peripheral joint-OA

OA is a common chronic degenerative joint disease worldwide,

which is believed to be the fourth top cause of disability worldwide

(22). OA is usually associated with genetics, trauma, old age,
Frontiers in Endocrinology 03
obesity, mechanical stress, mental elements, and other factors.

However, the pathogenesis of OA is still unclear (47, 48). Typical

clinical symptoms of knee OA are often joint pain and limitation of

movement. Patients suffering from knee OA usually feel pain and

transient morning stiffness at the early stage. With the progress of

OA, a more severe lesion can be found, including subchondral bone

cysts, bone marrow lesions, and osteophytes. These changes can be

diagnosed by Cone Beam Computed Tomography (CBCT) and

Magnetic Resonance Image (MRI) with osteophytes, bone marrow

lesions, and meniscal tears (49). Despite similar joint symptoms,

mental and biopsychosocial symptoms are also crucial in TMJ OA.

TMJ OA presents hyperalgesia and neurological symptoms,

including tinnitus, headache, and psychological disabilities (50).

In addition, CBCT is relatively mild and often shows blurred and

incomplete condylar cortex, localized bone resorption defects, bone

redundancy formation, subchondral sclerosis, or cystic bone

changes (51). The current goals for treating knee and TMJ OA

are consistent, include: reducing pain in the joint area, ameliorating

joint function, and slowing the progression of OA. Most patients are

treated clinically by a combination of conservative and surgical

treatment, which requires a personalized treatment plan that
FIGURE 1

The differences between knee OA and TMJ OA. The main differences are the histological structure and functions.
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considers the patient’s situation, such as age and severity of the

disease (52). In addition to traditional treatments, such as physical

therapy, oral medications, intra-articular injections, minimally

invasive arthroscopic surgery, and surgical operation, many

emerging biological therapeutic approaches are currently under

study, such as stem cell therapy, platelet-rich plasma, stromal

vascular fraction, and EVs (53–56).
2.3 Animal models of OA and TMJ OA

OA is a multifactorial disease, mainly including aging, obesity,

anatomical factors, mechanical loading, and genetic factors

(Figure 2A). Despite all the above elements contributing to TMJ

OA. Occlusion elements, mental and biopsychosocial factors also

play an important role in the pathogenesis of TMJ OA (22, 50)

(Figure 2B). Based on these risk factors, OA animal models are

usually divided into induced, naturally occurring, and genetically

modified models, while the knee is the most used joint for the

animal OA model. Similar invasive approaches are suitable for both

knee and TMJ, including surgical induction and chemical injection

(monosodium iodoacetate, papain, collagenase). In comparison, the

surgical methods to induce knee and TMJ OA are distinguished

based on different anatomical structures (57). The differences
Frontiers in Endocrinology 04
between knee and TMJ OA models mainly display in non-

invasive methods.

Although the high-fat diet model and mechanical loading can

apply to both knee and TMJ, more specific methods are required for

TMJ OA (58, 59), including but not limited to disordered bite,

excessive mouth opening, and soft food induction (58, 60).

Intriguingly, the sleep deprivation model can be used to

reduplicate the model of TMJ OA, which further explains the

relationship between mental factors and TMJ OA (61). In

addition, naturally occurring and genetically modified models are

also used to study the progression of OA to simulate aging and

genetic factors, which have been reviewed in detail (57). OA is a

multi-factor process, and most animal models are single-factor

models. It reminds us that choosing the appropriate animal

model needs strict consideration according to the purpose of

the study.
3 The role of EV in the pathogenesis
of OA and TMJ OA

The pathogenesis of OA is complicated and diversified. It is not

only a single disease, but a common final stage of joint failure

contacted with body status, environmental impact, and triggered by
FIGURE 2

Risk factors and effects of EVs in knee OA and TMJ OA pathogenesis. (A) Risk factors in knee OA. The red pattern means inflammation and bone
destruction, and the blue pattern means healthy joint with uniform EVs. The black arrow points to abnormal EVs in the joint. (B) Risk factors in TMJ
OA. The red pattern means inflammation, and the black arrow points to abnormal EVs. (C) Schematic representation of EVs in the pathogenesis of
OA. The red typeface stands for clinical change in OA. The major effects of EVs are mainly divided into two sites, including (i) Synovial Cross-talk and
(ii) Cartilage-bone Interaction. The two sites also communicate with EVs.
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other risk factors (62–64). In current views, OA is a degenerative

disease characterized by the destruction of cartilage, synovial

inflammation, and bone remodeling increase (64–66). These

changes can be observed in the early stage of OA (49). OA

usually needs several years to develop, meaning this disease needs

long-term pathological stimulus and progresses to a worsened state.

EVs distribute in humor and tissues, deliver bioactive

substances, and participate in cellular activity, which plays a vital

role in the whole progression of OA. On the one hand, the serum-

derived EVs carried bioactive substances like IL-1b which activated

fibroblast-like synoviocytes (FLS) (67), and then these EV cargos

can further raise monocytes and macrophages, which usually barely

exist in normal synovial tissue. Then a low-grade inflammation can

be continuous in synovial fluid and tissue in the whole stage of OA

(68). On the other hand, synovitis is closely related to cartilage

destruction (69, 70). Activated FLS can secret more EVs carrying

inflammatory factors, micro-RNA, and matrix metalloproteinases

(MMPs) to induce the apoptosis of chondrocytes and destroy the

extracellular matrix (ECM) (71–73) (Figure 2C). So, it is essential to

understand EVs’ function in OA seriously.
3.1 Inflammation and cytokines

OA has been described as an inflammatory disease for a long

time. Many individuals with OA have joint inflammation

symptoms like stiffness and pain. In addition, low-grade

inflammation can be observed in patients during the whole

progression of OA (74). The previous study showed that OA

patients have a high level of inflammatory plasma proteins such

as albumin and acid glycoproteins in their blood and synovial fluid

(75). Recent research showed that other inflammatory factors also

maintain a high concentration in OA synovial fluid, including

complement components and cytokines (IL-1b, TNF, IL-6, IL-8)
(76–79). Furthermore, these inflammatory mediators can be

produced or overproduced by chondrocytes and synovial cells in

OA (78). These evidences showed a close relationship between

inflammation and OA.

Undoubtedly, inflammation factors are crucial in OA

progression. These cytokines possess little organizational

penetration and stability, so EVs are needed for bioactive

cytokines carry to penetrate into deep cells or tissues (34, 80, 81).

As a cell secretory mediator, EV has been demonstrated to contain

many cytokines, miRNA, and other bioactive substances. EVs can

be endocytosed by chondrocytes, FLS, and macrophages which are

the main cells in the joint cavity microenvironment (82–84). These

biological characteristics are the basis of EV to be effective. In knee

OA, a mass of EVs protein cargoes has been identified, including

inflammatory cytokines (for example, IL-1, IL-6, and TNF-a),
immunoglobulin, complement component, fibrinogen,

apolipoprotein and transforming growth factor b (35). EVs

derived from synovial fluid of severe knee OA contained higher

levels of numerous cytokines (85). Among all the cargoes of EVs in

OA, two major players, IL-1b and TNF-a, can induce cartilage

destruction and inflammation (71). It was well known that IL-1b
and TNF-a increased in synovial fluid, synovial tissue, and cartilage
Frontiers in Endocrinology 05
of OA patients (86). On the condition of OA, the plasma EVs can

carry a mass of TNF-a to participate in OA progression (87).

Similarly, the EVs in OA patients’ synovial fluid also carry many

inflammatory cytokines, including IL-1b and TNF-a (88).

Subsequently, FLS strongly expressed IL-6, IL-8, and MMP,

which can directly destroy the extracellular matrix stimulated by

activated or apoptotic T cells and macrophages EV (89). This

process demonstrated that the EVs from arthritis patients’

synovial fluid could further induce the FLS, secreting

inflammatory cytokines and chemokines (90). FLS and

immunocyte-derived EVs formed a high-concentration EV

microenvironment in synovial fluid. These EVs can further be

endocytosed by chondrocytes, which trigger chondrocytes to

produce more inflammatory cytokines and chemokines (33). The

other experiments demonstrated that the healthy chondrocytes

treated with OA-derived EVs displayed elevated expression of

inflammatory genes (88). OA is the result of the cascade reaction

of inflammation. Immunocytes, FLS, and chondrocytes can be

activated by EVs with different components and finally induce the

production of MMP and destruction of ECM. Overall, the

progression of OA in different joints is similar. The changes in

knee joint OA can also be detected in TMJ OA (91–94). More and

more evidence prove the relation between OA histological changes

and EVs. However, the mechanism between the biological changes

of EVs and synovial inflammation and cartilage loss is

still unknown.
3.2 MicroRNA

People have realized the effect of miRNA on OA progression in

recent years. miRNAs are a family of approximately 21-nucleotide-

long RNAs that can regulate genetic expression by combining the 3’-

UTR (95, 96). MicroRNA gets involved in all the known cellular

activity and widely participates in disease progression, including OA

(95). It has been demonstrated that miRNA differential expression is

the characteristic of OA and EV-microRNA is highly related to OA

progression (35, 49, 88). Compared with healthy people, the EVs

from synovial fluid of the OA knee joint showed a differential

microRNA pattern (88, 97). Recent research showed that 142

microRNAs were differentially expressed between damaged or non-

damaged articular cartilage in peripheral joint OA patients (hip and

knee) (98). Moreover, researchers collected the human synovial

fibroblasts from healthy knees to verify in vitro. Likewise,

approximately 340 miRNAs upregulated in FLS treated by IL-1b;
meanwhile, only 11 miRNA increased in FLS-derived EVs (99).

The synovial fluid-derived EV-miRNA can be endocytosed by

chondrocytes and stimulate inflammation in cartilage (88). Since

EV-miRNA penetrated into cells, they can directly bind to specific

mRNA or proteins to regulate cellular behaviors. Present research

mainly focused on knee OA. For example, miR-181a-5p is a critical

mediator involved in the cartilage destruction by promoting

inflammatory, catabolic, and cell death activity (100, 101).

Notably, not all the OA patients have the same EV-miRNA

changes; EV-miRNA in OA displays a gender-specific pattern

(88). Only one miRNA (miR-504-3p) were upregulated in both
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genders, which may promote cell apoptosis (88, 102). The other

downregulated miRNAs were associated with cell adhesion

molecules, whereas the upregulated miRNAs were related to

biotin metabolism signaling. The female-specific EV-miRNAs

most participate in estrogen pathway (35), which may explain the

high incidence rate of OA in female (22).

TMJ OA also has similar mechanisms that microRNA can

anchor target pathways to regulate OA progression, including Wnt,

Smad/TGF-b, and PTEN (103–106). Like knee OA, TMJ OA also

displays a high incidence rate in females, which may attribute to EV-

miRNAs gender-specific expression. However, TMJ OA is different

from knee joint OA, such as gender incidence rate and symptoms,

and there is little research to detect the difference in TMJ OA.
3.3 Mechanical stimulation

It is undisputed that the mechanical factor is the key to OA

progression. The joint is the force-bearing structure of our bodies.

Owing to the existence of synovial fluid and disc, bone can move

with very low friction. Even so, the response of different joints to

force-loading is usually discrepant. For example, the knee usually

bears a relatively large force, four times more than body weight in

jogging, while TMJ can undergo a body weight when people bite

(107, 108). Different function determines different mechanical

adaptation, and overuse may cause joint structural changes. So,

articular inflammation mainly concentrates on the functional joints

like the knee, hip, hand, and TMJ (49). With further validation, we

gradually realize that the mechanical factors are not just the physical

“erosion” from the previous studies (109). It is a complicated system

composed of mechanically sensitive pathways and functional

proteins. In the early stage of OA, the microfracture began to

emerge, and the cartilage was the first to appear in the

microarchitectural changes with chondrocyte mitochondrial

dysfunction (110, 111). The mechanical loading may further

impact the chondrocyte, which secreted EVs containing

mechanically sensitive substances like miR-221-3p to regulate cell

communication in bone remodeling (112). However, the impact of

mechanical is usually self-limiting. If we intervene timely, the

cartilage dysfunction will recover and rebalance.

In the process of force loading, overuse or abnormal loading can

cause cartilage loss and subchondral bone marrow lesions with

meniscus degeneration or severe tears. Unlike the knee joint, TMJ

are two linkage joints having a more precise mechanical system.

Recent studies showed that increased loading force led to a thicker

calcified cartilaginous layer of TMJ and caused osteochondral

interface stiffness with mild disc displacement or perforation (110,

113). Although there is a difference in symptoms between the two

joints, the initial mechanical response systems are both

chondrocytes and ECM. EVs are one of the most important

components in ECM and mediate cell-to-cell interaction in this

system (114). In fact, it can detect a mass of apoVs in the ECM

collected from knee OA (115, 116). ApoVs were also observed in the

apoptotic chondrocytes of TMJ OA (117). Except for apoVs, the

other EVs are mainly from articular cartilage that contains over

1700 bioactive substances, including type II transglutaminase, COL
Frontiers in Endocrinology 06
II, aggrecan, big-H3 (TGFb-induced protein), and GAPDH (80,

118). These EVs form the ECM and regulate the communication

between cartilage and bones (119). In the process of knee OA, as the

force loading, ECM-derived EVs respond to mechanical effects and

are released by chondrocytes, and then interact with the

surrounding cells by activating bone morphogenetic proteins

(BMPs) and transforming growth factor-b (TGFb). These changes
will further activate downstream pathways, including Wnt and

MAPK signaling pathways (109). Finally, these ECM-derived EVs

can take away the ECM components, which contains lots of

cytokines and cathepsin, such as MMP-2, causing cartilage loss

and bone lesions (120). In addition, not only the cargos but EVs’

mechanical properties also impact the progression of OA. Studies

showed that EVs in OA become inhomogeneous and soft (121),

which indicated that mechanical loading may change the

mechanical properties of EVs derived from cartilage and bone.

The TMJ OA showed a similar pathological process with knee

OA by abnormal mechanical stress stimulation. These EVs and

changes can also be found in TMJ OA, including TGFb, BMPs,

Wnt, and FGF pathways (60, 122). However, there are still some

differences between TMJ OA and knee OA. Considering they have

different origins and growth patterns, the expressions of the same

genes also cause different endings. For example, small leucine-rich

proteoglycans (biglycan/fibromodulin) are one of the ECM

components, participating in both knee OA and TMJ OA (123).

Intriguingly, TMJ OA was observed four months later than knee

OA in biglycan/fibromodulin double-deficient mice (124, 125).

Although we have reviewed current research, the specific

pathways of knee and TMJ OA are still unclear. Overall, more

direct evidence should be presented in mechanical-induced OA.
3.4 Genetic factor

OA is regarded as an idiopathic disease; however, genetic factor is

also an important reason for OA development. OA shows the

characteristic of familial aggregation, and the heritability rate of OA

is around 35%-65% depending on different joints (126, 127). OA is a

polygenic disease that cannot attribute to any single gene. Gene

detection was done to analyze the susceptible gene including growth

differentiation factor 5 (GDF5) and human leukocyte antigen (HLA)

class II/III locus (126, 128). A European genome-wide association

study (GWAS) confirmed two genes were related to knee pain in

171561 people, which were close to GDF5 and COL27A1 (129).

Compared with the early industrial and prehistoric eras, the OA

prevalence rate of modern people has doubled (130). These genes

have so low odds ratios that they are less responsible for OA.

However, the paradoxical evidences seem unreasonable to explain

the familial aggregation and mother-daughter inheritance patterns in

OA. Recent research showed that mothers suffering from OA were

more likely to pass it on to their offspring compared with fathers

(131). Mother-to-child transmission patterns contain mother-to-

embryo, which mainly depends on EVs except for gene

recombination. Since mothers are inflammation sufferers, EVs can

carry these inflammatory cytokines (IL-1b, TNF-a) and

environmental factors, pass through the placental barrier into the
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fetus (132). These studies added EV regulatory factors to explain why

OA presents as a matrilinear inheritance with a low-degree effect of

susceptible genes. However, further studies are needed to elaborate.
4 The role of EVs in the treatment of
peripheral OA and TMJ OA

The treatment of OA is always challenging. Currently,

conservative and surgical treatments are used to treat OA, but

there is no golden therapy for OA. The mild OA lesions can be

treated with drugs or splints, while the severe ones may need

surgical therapies. In 1957, the first hemiarthroplasty knee device

was designed by McKeever, while Christensen designed a fossa-

eminence prosthesis for TMJ hemiarthroplasty six years later (133,

134). Till now, knee arthroplasty and hip arthroplasty have been

well developed, but TMJ arthroplasty rarely achieves satisfactory

results (135, 136). With the progression of OA research, people have

gradually realized the importance of biological factors in OA

treatments. In 1985, IL-1 receptor antagonist (IL-1Ra) was first

reported to find in human macrophages and synovial macrophages

in OA patients (137). Autologous conditioned serum (ACS)

therapy, mainly working through IL-1Ra, was studied in the mid-

1990s (138). The preparation of autoserum is a mature

technological process, and the autologous platelets can produce

IL-1Ra and various kinds of cytokines in cell degranulation (139).

People realize that IL-1Ra was not the only one in OA, and platelet-

rich plasma (PRP) was studied subsequently (140).

Because of their preparation process, ACS and PRP retain lots

of blood-derived EVs, which showed therapeutic effects in OA (141,

142). It was reported that blood-derived EVs partook the substance

exchange and cell communication (141). Blood-derived EVs can

inhibit inflammation and elicit chondroprotective gene expression

(142). In addition, a recent study showed that blood-derived CD34+

EVs were the potential therapeutic targets for OA. Blood-derived

CD34+ EVs were the only subpopulation that significantly

correlated between plasma and synovial fluids containing lots of

functional mitochondria and little pathogenic cytokines such as

TNF-a and IFN-g (143, 144). EVs from autologous blood-derived

products may be the core components of treating OA. Although

ACS and PRP showed significant effects in animal models, the

complexity of autologous blood-derived products caused

controversial clinical efficacy (145, 146). More biotherapies have

been studied, including MSC therapy and EV therapy (34, 147).

Compared with traditional stem cell therapy, EV administration

does not have the risks of allogeneic and xenogeneic immunological

rejection and malignant transformation, so it has opened a new era

of stem cell therapy.
4.1 Stem cell therapy for OA

With the development of regenerative medicine, stem cell

therapy was gradually studied. OA is a degenerative disease, so

researchers mainly focused on tissue regeneration and

immunoregulation, and stem cell meets requirements. MSCs have
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the characteristics of self-renew, multiple differentiation, and

immune regulation, which contribute to tissue repair of OA (148–

151). The clinical trial also showed that stem cell therapy could

effectively treat knee OA (152). A recent multicenter randomized

controlled clinical trial (phase I/II) demonstrated that bone marrow

MSC (BMMSC) therapy could safely alleviate the symptoms of knee

OA (153). In contrast, the successive clinical trial showed no

significant difference between PRP therapy (154). In the

treatment of TMJ OA, stem cells from different sources showed

therapeutic effects and promoted condylar cartilage regeneration

(24, 155–158). In addition, up to 2,021 randomized clinical trials of

stem cell therapy showed a statistically significant superiority over

hyaluronan in pain relief and mandible mobility (159). However,

stem cell therapy has disadvantages, including immunogenicity and

unstable phenotype, so it reminds us whether there is an alternative

approach in biotherapy which can be more effective for OA (27).
4.2 EV treatment for peripheral joint OA

Compared to cells, EVs show lower immunogenicity. Therefore,

it is safer to apply EVs in OA treatment than cells (160). EVs from a

variety of sources, including synovial MSCs (SMSCs) (161–163),

adipose-derived MSCs (ADMSCs) (164, 165), BMMSC (166), and

human umbilical cord MSCs (hUMSCs) (167, 168), has been

proved to be beneficial for peripheral joint OA treatment.

Perturbed balance of the local immune system is the key factor

that causes clinical symptoms and organic damages in OA. During

knee OA development, immunological cells exert proinflammatory

factors, such as IL-1, IL-6, IL-8, and MMP-3, thereby inducing

synovial inflammation and cartilage degradation (169). MSC-EVs

have immunomodulatory effects in peripheral joint OA treatment.

MSCs-EVs generate large amounts of anti-inflammatory cytokines,

such as IL-10 and TGF-b1, and simultaneously suppress the

production of the proinflammatory factors IL-1, IL-6, TNF-a,
and IL-12. Moreover, MSC-EVs inhibit macrophage activation

and induce the proinflammatory M1 phenotype to convert to the

anti-inflammatory M2 phenotype. Together, MSC-EVs decrease

local inflammatory reactions in knee OA (170).

Inflammatory response causes cartilage degeneration in

peripheral joint OA, including cell death, matrix degradation, and

finally, a loss of structure and function (160, 171). MSC-EVs

prevent chondrocyte apoptosis (170) and facilitate cell migration

and proliferation in peripheral joint OA (172). By mediating the

expression of fibroblast growth factor (FGF)-2, survivin, and Bcl2/

Bax, EVs directly promote chondrocyte proliferation or eliminate

the inhibitory effect of pro-inflammatory factors like TNF-a and IL-

1b (167, 170, 173, 174). Besides, MSCs-EVs can also control

chondrocyte proliferation and migration by releasing miRNAs

(164, 175, 176).

MSC-EVs induce the expression of matrix protein, while inhibit

the expression of matrix-degrading enzymes, thereby promote ECM

synthesis. MSC-EVs can reduce the expression of MMP-1, MMP-3,

MMP-13, and ADAMTS-5 and increase COL II production (165).

Previous research has elucidated that MSC-EVs regulate the

expression of cartilage formation-related genes such as aggrecan,
frontiersin.org

https://doi.org/10.3389/fendo.2023.1158744
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2023.1158744
SRY box gene-9 (SOX9), COL9A1, COL2A1, and cartilage oligomeric

matrix protein (COMP) while decreasing the expression of

COL10A1, Runt-related transcription factor 2 (Runx2), and MMP-

13, with their cargos, including miRNAs and proteins (177). Besides

the natural EVs, there are emerging types of engineered EVs.

Engineered EVs are designed for targeted therapy or controlled

release and have better therapeutic properties, which have drawn

increasing attention of researchers (34, 178, 179) (Figure 3).
4.3 EV treatment for TMJ OA

Studies on TMJ OA are relatively stagnant compared with knee

OA (41). To date, few studies have demonstrated the effect of EVs on

TMJ OA treatment. Based on current understanding, the

mechanisms of EV therapeutic effect on TMJ OA are rather similar

to OA. BMMSC-derived EVs could induce cartilage reconstruction in

TMJ OA via the autotaxin–YAP signaling axis in chondrocytes (180).

MSC-EVs activate AKT and ERK signaling in chondrocytes and then

enhance the proliferation and migration of chondrocytes. The EVs

can also activate AMP-activated protein kinase (AMPK) signaling,

which contributes to restoring and maintaining chondrocyte matrix

homeostasis (181). Moreover, MSC-EVs promote s-GAG synthesis

and COL II protein expression, and suppress NO and MMP-13

production, to restore stromal homeostasis in a TMJ-OA, enhancing

cartilage regeneration in chondrocytes (182).
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4.4 Limitations of EV therapy in OA

EV therapy in OA still has limitations, including but not limited

to the unclear mechanism, targeting and stability, and EV production.

Although the engineered EVs exhibit targetable and stable properties,

it is still unclear whether they may cause other problems (183).

Moreover, there are difficulties in the preparation and preservation of

EVs. The contamination from the EV separation process reduces the

purity of EVs, and these confounding factors hamper EV usage in

clinical practice (184, 185). Solving these problems is challenging, and

more efforts should be devoted to EV research.
5 Conclusion and perspective

In summary, researchers have gradually realized the crucial

function of EVs in OA progression. The effect of EV in OA is

multiplex. EV-carried bioactive substances mediate cell-to-cell

communication, and so does inflammation. Inflammation is passed

and aggravated by EVs. Differed from Rheumatoid arthritis, which

has a heavier inflammatory burden stimulated by immunocomplex

than OA. EVs in OA cannot cause much stronger inflammatory

storms, which may be attributed to their relatively low

immunogenicity. The changes in EVs’ mechanical properties may

limit joint movement. Meanwhile, the EV-carried bioactive substance

may determine the fate of FLS and chondrocytes. This evidence
FIGURE 3

Schematic illustration of EV therapies for OA. EV therapy usually collects EVs from autologous EVs and engineering EVs. The autologous EVs are
mainly derived from (i) Autologous conditioned serum (ACS) and (ii) platelet-rich plasma (PRP). The latter needs (iii) components filter and then
produces four types of EV suspension. The engineering EVs are mainly derived from MSCs. Two strategies are used to modify the MSC-derived EVs,
including (iv) chemical and (v) genetic modification. The modified MSC-secreted specific EVs contain miRNA and proteins in OA treatment.
Autologous or engineering EVs are usually delivered by (vi) injection and (vii) material-loading.
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suggests that OA is not only an inflammatory disease but also an EV-

related disease.

There is no specific therapy for OA so reducing the risk factor is

crucial to OA treatments. Although the joint replacement therapy

succeeded in knee and hip, it was mainly for later period OA patients,

and the treatment in TMJ failed. EV therapies may be a promising

treatment for OA in peripheral joints and TMJ because of their low

immunogenicity, low cytotoxicity, and long-term stability

characteristics. Recently, the EVs from modified cells or loaded with

drugs showed therapeutic effects in OA (182, 186, 187), which are

attractive for this field. There are three forms of EVs, and the recent

research of EV therapy mainly focused on exosomes, which showed

therapeutic effects in OA treatment (188). Compared with exosomes,

apoVs can be easier to obtain from tissues. It also contains more

bioactive substances suitable for immunomodulation and regeneration

(189, 190). Although there is currently no study in the treatment of

OA with apoVs, considering its biological characteristics, we believe

apoVs may be a potential candidate for OA therapy. However, the side

effects of EVs are still unclear, which impels us to conduct a long-term

safety assessment before the clinical transformation.
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