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Investigating causal
associations among gut
microbiota, metabolites, and
liver diseases: a Mendelian
randomization study

Lilong Zhang1,2,3†, Liuliu Zi1,2,3†, Tianrui Kuang1,2,3†,
Kunpeng Wang1,2,3, Zhendong Qiu1,2,3, Zhongkai Wu1,2,3,
Li Liu1,2,3, Rongqiang Liu1,2,3*, Peng Wang1,2,3*

and Weixing Wang1,2,3*

1Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
2Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China, 3Central Laboratory,
Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Objective: There is some evidence for an association between gut microbiota

and nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and

viral hepatitis, but no studies have explored their causal relationship.

Methods: Instrumental variables of the gut microbiota (N = 13266) and gut

microbiota-derived metabolites (N = 7824) were acquired, and a Mendelian

randomization study was performed to explore their influence on NAFLD (1483

European cases and 17,781 European controls), ALD (2513 European cases and

332,951 European controls), and viral hepatitis risk (1971 European cases and

340,528 European controls). The main method for examining causality is inverse

variance weighting (IVW).

Results: IVW results confirmed that Anaerotruncus (p = 0.0249), Intestinimonas

(p= 0.0237), Lachnoclostridium (p= 0.0245), Lachnospiraceae NC2004 group (p

= 0.0083),Olsenella (p = 0.0163), and Peptococcus (p = 0.0472) were protective

factors for NAFLD, and Ruminococcus 1 (p = 0.0120) was detrimental for NAFLD.

The higher abundance of three genera, Lachnospira (p = 0.0388), Desulfovibrio

(p = 0.0252), and Ruminococcus torques group (p = 0.0364), was correlated with

a lower risk of ALD, while Ruminococcaceae UCG 002 level was associated with

a higher risk of ALD (p = 0.0371). The Alistipes (p = 0.0069) and

Ruminococcaceae NK4A214 group (p = 0.0195) were related to a higher risk

of viral hepatitis. Besides, alanine (p = 0.0076) and phenyllactate (p = 0.0100)

were found to be negatively correlated with NAFLD, while stachydrine (Op =

0.0244) was found to be positively associated with NAFLD. The phenylacetate (p

= 0.0353) and ursodeoxycholate (p = 0.0144) had a protective effect on ALD,

while the threonate (p = 0.0370) exerted a detrimental influence on ALD. The

IVW estimates of alanine (p = 0.0408) and cholate (p = 0.0293) showed their
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suggestive harmful effects against viral hepatitis, while threonate (p = 0.0401)

displayed its suggestive protective effect against viral hepatitis.

Conclusion: In conclusion, our research supported causal links between the gut

microbiome and its metabolites and NAFLD, ALD, and viral hepatitis.
KEYWORDS

alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, gut microbiota,
gut microbiota-derived metabolites, mendelian randomization analysis
1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is a prevailing form of

chronic liver disease that is marked by the accumulation of hepatic

fat in patients who do not have a history of heavy alcohol intake (1).

It comprises a wide range of gradually deteriorating pathological

disorders, ranging from a straightforward case of nonalcoholic fatty

liver to a more serious case of nonalcoholic steatohepatitis (NASH),

the latter of which has a higher risk of developing cirrhosis, organ

failure, and hepatocellular carcinoma (2–4). Alcoholic liver disease

(ALD) is a disease due to chronic and excessive alcohol intake. The

accumulation of fat in the liver cells is one of the early responses to

excessive alcohol use. When alcohol abuse persists, steatosis may

develop into steatohepatitis, fibrosis, cirrhosis, and ultimately

hepatocellular cancer (5). As an inflammation of the liver,

hepatitis can either go away on its own or develop into a serious

condition that results in cirrhosis or hepatocellular cancer. Globally,

the main cause of hepatitis is viral, with hepatitis B and C virus

infections usually developing into chronic hepatitis (6). There is an

urgent need to identify potential causal risk factors for NAFLD,

ALD, and viral hepatitis since they pose a significant health

burden globally.

The gut microbiota, as the “forgotten organ”, is a dynamic and

intricate community of ecological bacteria (7). The liver is the first

organ crossed by the portal vein of the intestine. The phrase “gut-liver

axis” was coined to describe the close connection between the

intestinal flora, the immune system, and the intestinal barrier that

occurs in the gut and liver (8). Through the portal vein, the liver gets

75% of its blood from the gut. By secreting bile and other mediators, it

also gives the intestines feedback (9). Thus, various gut factors, such

as gut microbiota, bacterial composition, and gut microbiota-derived

metabolites, are deeply involved in the homeostasis of the liver.

Recently, there has been growing evidence that intestinal flora is

closely related to human health and is involved in the etiology of

various complex diseases, including liver diseases (9, 10). However,

there is controversy among these studies. For example, Zhu et al.

revealed a higher relative abundance of Prevotella and no distinct

alternation in Bacteroides in NAFLD patients than the control (11).

However, Boursier et al. found that, compared to healthy controls,

patients with NASH had higher levels of Bacteroides and lower

levels of Prevotella (12). Besides, when compared to controls, several

studies have demonstrated an increase in the Firmicutes to
02
Bacteroidetes ratio in NAFLD and NASH (13, 14), while others

have shown a decrease in this ratio (11, 15, 16). Confounding or

reverse causation in observational studies could be to blame for the

contradictory results in gut microbial dysbiosis in NAFLD.

As we know, confounding factors and reverse causation may

both affect the findings of current observational epidemiological

research, making causal inference difficult. The Mendelian

randomization (MR) method using genetic variants as

instrumental variables (IVs) in the epidemiological investigation

has been generally accepted to estimate the causal influence of

exposure on diseases (17). Based on the Mendelian inheritance rule,

parental genetic alleles are randomly dispersed to their offspring

during the meiotic process, which is regarded as a randomized

controlled study (RCT). This method was chosen because it was

practical, economical, and less likely to be confounded by

covariables (18). Also, since genetic variants are already set at the

time of conception, MR is less susceptible to the influence of reverse

causation. Previous genetic research has shown that host genetic

variants can affect the intestinal flora, allowing us to explore the

relationship between gut microbiota and liver diseases using the

MR approach.

Thus, in this study, the summary data from genome-wide

association studies (GWASs) was used to explore the causal

association of gut microbiota and metabolites with NAFLD, ALD,

and viral hepatitis using the two-sample MR analysis.
2 Materials and methods

2.1 Study design

MR analysis is a genetic method that infers the causal effects of

exposure on outcomes by using the random allocation of genetic

variants at conception. The SNPs employed as IVs need to meet the

following basic assumptions. First, there has to be a solid association

between the SNPs and the exposure; second, the SNPs should not be

related to the outcome via confounders; and third, the SNPs should

not impact the outcome directly. Earlier research detailed further

particulars of this method (19). The STROBE-MR guidelines were

used to design this research (20). Figure 1 shows the flowchart of the

MR study between gut microbiota and metabolites with

liver diseases.
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2.2 Exposure sources

Genetic instruments of intestinal microbiome were acquired

from the largest genome-wide meta-analysis published by the

MiBioGen consortium (21). The study contained 24 cohorts with

18,340 individuals, most of whom were of European ancestry (16

cohorts, N = 13,266). The study targeted variable regions V4, V3–

V4, and V1–V2 of the 16S rRNA gene to profile the microbial

composition and to conduct taxonomic classification using direct

taxonomic binning. For each cohort, microbiota quantitative trait

loci (mbQTL) mapping analysis included only the taxa presented in

> 10% of the samples (21). The lowest taxonomic level in this study

was genus, and 131 genera with a mean abundance > 1% were

found, including 12 unknown genera (21). Thus, 119 genus-level

taxa were obtained in our study for MR analysis. The included

cohorts all made adjustments for sex and age as covariates in their

calculations (21).

We also used summary-level data from the human metabolome

GWAS performed among subjects of European descent (TwinsUK

and KORA, N = 7824) in light of the significant roles gut

metabolites play in microbiota-host interaction (22). Then we

utilized HMDB (23) to acquire a list of 12 gut microbiota-derived

metabolite traits from all the measured metabolites in the GWAS,

such as betaine, carnitine, cholate, choline, alanine, phenylacetate,

phenyllactate, stachydrine, threonate, and ursodeoxycholate.
2.3 Outcome sources

The genetic association with NAFLD was extracted from the

newly published GWAS summary statistics by Anstee et al.,
Frontiers in Endocrinology 03
consisting of 1483 European cases and 17,781 European controls

(24). The top 5 genetic principal components and genotyping batch

were corrected during the analysis (24). GWAS summary-level data

for ALD (2513 European cases and 332,951 European controls) and

viral hepatitis (1971 European cases and 340,528 European

controls) were downloaded from FinnGen consortium R8 release

data (25). During the analysis, age, sex, the first 10 principal

components, and the genotyping batch were corrected (25).
2.4 Genetic instrument selection

To satisfy the above MR assumption, we selected IVs with

linkage disequilibrium r² < 0.001 and distance > 10,000 kb and

attaining genome-wide significance (p < 1.0×10-5) (26). The linkage

disequilibrium reference panel was established utilizing the 1000

Genomes Project European sample (27). Each IV’s strength was

determined utilizing the F statistics = beta2/se2 (28). For adequate

strength to be determined, the F-statistics had to be >10.
2.5 Statistical analysis

The primary statistical analysis method was the inverse variance

weighted (IVW) method under random effects. This method was

supplemented with weighted median analysis (29), MR-Egger

regression (30), and MR-PRESSO methods (31). IVW assumes

that all genetic variation SNPs are valid IVs with an overall bias

of zero. As for the weighted median analysis, this estimate is

consistent even if up to half of the weights are from invalid
FIGURE 1

The study design of the present MR study of the associations of gut microbiota and metabolites and liver diseases. MR, Mendelian randomization;
SNP, single nucleotide polymorphism; NAFLD, non-alcoholic fatty liver disease; ALD, alcoholic liver disease; GWAS, genome-wide association study;
IV, instrumental variables.
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instruments. Besides, MR-Egger analysis can identify horizontal

pleiotropy through the intercept (p < 0.05 for the intercept indicates

pleiotropy) (30). The MR-PRESSO method can detect possible

outliers and generate causal estimates after the removal of

outlying IVs (31). To measure the degree of heterogeneity, the Q-

value from Cochrane was applied. The causal relationship is

considered significant if: 1) the p-value of the IVW method is less

than < 0.05; 2) the estimations obtained using the MR-Egger,

weighted median, and IVW methods all have the same direction;

and 3) neither the MR-Egger intercept test nor the MR-PRESSO

global test has statistical significance (p > 0.05) (32). Furthermore,

in addition to meeting the 3 conditions mentioned above, for the

connection between gut microbiota or metabolites and liver

diseases, a Bonferroni-adjusted IVW p (pFDR) value of 4.2 × 10-5

(p = 0.05/119) or 5 × 10-4 (P = 0.05/10) was employed as the cut-off

for statistical significance. p < 0.05 but more than the Bonferroni

corrected significance level was seen as suggestive of evidence for a

potential association (33, 34). Each test was two-sided and

conducted utilizing the TwoSampleMR and MR-PRESSO

packages in the R software (version 4.2.1) (31, 35).
Frontiers in Endocrinology 04
3 Results

3.1 Causal effect of gut microbiota
on NAFLD

The results of IVW analyses demonstrated that Anaerotruncus

(OR = 0.595, 95% CI: 0.378-0.937, p = 0.0249), Intestinimonas (OR

= 0.726, 95% CI: 0.550-0.958, p = 0.0237), Lachnoclostridium (OR =

0.523, 95% CI: 0.297-0.920, p = 0.0245), Lachnospiraceae NC2004

group (OR = 0.676, 95% CI: 0.505-0.904, p = 0.0083), Olsenella (OR

= 0.770, 95% CI: 0.623-0.953, p = 0.0163), and Peptococcus (OR =

0.817, 95% CI: 0.669-0.998, p = 0.0472) were negatively associated

with NAFLD (Table 1 and Figure 2), indicating a protective impact

of the above genera on NAFLD (Table 1). The results of IVW

analyses revealed that Ruminococcus 1 (OR = 1.833, 95% CI: 1.142-

2.940, p = 0.0120) was positively related to NAFLD, suggesting a

detrimental effect on NAFLD (Table 1 and Figure 2). These

associations were also supported by the MR-PRESSO method, as

shown in Table 1. Besides, the MR estimates of the weighted median

analysis showed similar results in Anaerotruncus (OR = 0.519, 95%
TABLE 1 Association of genetically predicted gut microbiota with non-alcoholic fatty liver disease.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Anaerotruncus

IVW 13 0.595 0.378-
0.937

0.0249

-0.003, 0.952 11.377, 0.497 0.494

Weighted
median

13 0.519 0.273-
0.985

0.0449

MR-Egger 13 0.625 0.119-
3.301

0.5914

MR-PRESSO 13 0.595 0.382-
0.926

0.0400

Intestinimonas

IVW 17 0.726 0.550-
0.958

0.0237

0.010, 0.761 18.312, 0.306 0.337

Weighted
median

17 0.787 0.544-
1.140

0.2049

MR-Egger 17 0.651 0.308-
1.376

0.2785

MR-PRESSO 17 0.726 0.550-
0.958

0.0380

Lachnoclostridium

IVW 13 0.523 0.297-
0.920

0.0245

-0.087, 0.234 18.982, 0.089 0.107

Weighted
median

13 0.429 0.225-
0.816

0.0099

MR-Egger 13 1.893 0.237-
15.130

0.5593

MR-PRESSO 13 0.523 0.297-
0.920

0.0441

(Continued)
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CI: 0.273-0.985, p = 0.0449), Lachnoclostridium (OR = 0.429, 95%

CI: 0.225-0.816, p = 0.0099), and Olsenella (OR = 0.743, 95% CI:

0.562-0.982, p = 0.0370) (Table 1 and Figure 2). Whereas, for

Lachnoclostridium and Olsenella, MR-Egger analysis results were in

the opposite direction to IVW and weighted median analysis results

(Table 1 and Figure 2). Detailed statistics for the remaining genera

are shown in Table S1. We do not find significant heterogeneity

across these results using Cochrane Q statistics (Table 1). The

estimation of the intercept that was generated from the MR-Egger

regression was centered around 0 and did not offer definitive

evidence of horizontal pleiotropy (Table 1). No outliers were
Frontiers in Endocrinology 05
found by MR-PRESSO. The average F-statistic was 21.386,

ranging from 17.045 to 28.784, revealing that there was no weak

IV bias (Table S2).
3.2 Causal effect of gut microbiota on ALD

In the IVW method, we found that the genetically predicted

higher relative abundance of three genera, Lachnospira (OR = 0.568,

95% CI: 0.332-0.971, p = 0.0388), Desulfovibrio (OR = 0.744, 95%

CI: 0.574-0.964, p = 0.0252), and Ruminococcus torques group (OR
TABLE 1 Continued

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Lachnospiraceae NC2004 group

IVW 9 0.676 0.505-
0.904

0.0083

-0.046, 0.542 7.121, 0.524 0.464

Weighted
median

9 0.694 0.455-
1.058

0.0891

MR-Egger 9 0.998 0.290-
3.466

0.9967

MR-PRESSO 9 0.676 0.514-
0.889

0.0233

Olsenella

IVW 11 0.770 0.623-
0.953

0.0163

-0.060, 0.405 4.987, 0.892 0.897

Weighted
median

11 0.743 0.562-
0.982

0.0370

MR-Egger 11 1.257 0.410-
3.854

0.6979

MR-PRESSO 11 0.770 0.663-
0.895

0.0067

Peptococcus

IVW 12 0.817 0.669-
0.998

0.0472

0.023, 0.690 14.159, 0.224 0.265

Weighted
median

12 0.941 0.736-
1.203

0.6284

MR-Egger 12 0.683 0.283-
1.646

0.4156

MR-PRESSO 12 0.817 0.669-
0.998

0.0472

Ruminococcus 1

IVW 10 1.833 1.142-
2.940

0.0120

-0.023, 0.670 7.555, 0.580 0.897

Weighted
median

10 1.800 0.920-
3.523

0.0862

MR-Egger 10 2.435 0.635-
9.332

0.2305

MR-PRESSO 10 1.833 1.188-
2.826

0.0228
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
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= 0.621, 95% CI: 0.398-0.970, p = 0.0364), was correlated with a

lower risk of ALD (Table 2 and Figure 3); while, the genetically

predicted Ruminococcaceae UCG 002 level was associated with a

higher risk of ALD (OR = 1.263, 95% CI: 1.014-1.572, p = 0.0371)

(Table 2 and Figure 3). The results of the MR-PRESSO analysis were

similar to those of the IVW method (Table 2). The IVW test,

weighted median method, and MR-Egger test were all in the same

direction, which strengthened the confidence in the true causal
Frontiers in Endocrinology 06
associations. Detailed statistics for the remaining genera are shown

in Table S3. No significant heterogeneity was observed across these

results (Table 2). MR-Egger regression confirmed that there was no

horizontal pleiotropy between IVs and outcomes (Table 2).

Moreover, neither outliers nor any indication of pleiotropy were

observed in the MR-PRESSO analysis (Table 2). The F-statistics of

IVs ranged between 18.53 and 31.28, indicating no evidence of weak

instrument bias (Table S4).
B

C D

E F

G

A

FIGURE 2

Causal relationship between gut microbiota and the risk of non-alcoholic fatty liver disease. Each point represents the SNP effects on Anaerotruncus
(A), Intestinimonas (B), Lachnoclostridium (C), Lachnospiraceae NC2004 group (D), Olsenella (E), Peptococcus (F), Ruminococcus 1 (G) and non-
alcoholic fatty liver disease. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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3.3 Causal effect of gut microbiota on
viral hepatitis

As shown in Figure 4 and Table 3, we observed that Alistipes

(OR = 1.720, 95% CI: 1.160-2.550, p = 0.0069) and

Ruminococcaceae NK4A214 group (OR = 1.460, 95% CI: 1.063-

2.006, p = 0.0195) were related to a higher risk of viral hepatitis. The

results of the MR-PRESSO analysis supported the above findings.

Detailed statistics for the remaining genera are shown in Table S5.

None of the MR-Egger regression intercepts deviated from null, and

no outliers were detected with the MR-PRESSO test, suggesting no
Frontiers in Endocrinology 07
evidence of horizontal pleiotropy (Table 3). Besides, the F statistic

was larger than 10, and the Cochrane Q statistic results revealed no

significant heterogeneity (Tables 3, S6).
3.4 Causal effect of gut microbiota-derived
metabolites on liver diseases

As shown in Tables 4, S7, and Figure 5, alanine (OR = 19.586,

95% CI: 2.206-173.934, p = 0.0076) and phenyllactate (OR = 0.212,

95% CI: 0.065-0.689, p = 0.0100) were found to be negatively
TABLE 2 Association of genetically predicted gut microbiota with alcoholic liver disease.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Ruminococcaceae UCG 002

IVW 20 1.263 1.014-
1.572

0.0371

-0.030, 0.196
13.997,
0.784

0.797

Weighted
median

20 1.337 0.980-
1.824

0.0670

MR-Egger 20 1.812 1.024-
3.206

0.0561

MR-PRESSO 20 1.263 1.046-
1.524

0.0252

Lachnospira

IVW 6 0.568 0.332-
0.971

0.0388

0.149, 0.148
6.680,
0.246

0.278

Weighted
median

6 0.672 0.355-
1.273

0.2227

MR-Egger 6 0.049 0.003-
0.745

0.0956

MR-PRESSO 6 0.568 0.332-
0.971

0.0454

Desulfovibrio

IVW 10 0.744 0.574-
0.964

0.0252

0.025,
0.532

4.043,
0.906

0.907

Weighted
median

10 0.772 0.553-
1.077

0.1272

MR-Egger 10 0.584 0.271-
1.260

0.2076

MR-PRESSO 10 0.744 0.625-
0.885

0.0087

Ruminococcus torques group

IVW 7 0.621 0.398-
0.970

0.0364

0.006, 0.910
1.726,
0.943

0.945

Weighted
median

7 0.571 0.319-
1.022

0.0592

MR-Egger 7 0.574 0.146-
2.259

0.4633

MR-PRESSO 7 0.621 0.489-
0.789

0.0080
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1159148
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1159148
correlated with NAFLD, while stachydrine (OR = 2.228, 95% CI:

1.109-4.474, p = 0.0244) was found to be positively associated with

NAFLD in the IVW and MR-PRESSO methods. The IVW estimate

indicated that phenylacetate (OR = 0.496, 95% CI: 0.258-0.953, p =

0.0353) and ursodeoxycholate (OR = 0.662, 95% CI: 0.476-0.921, p

= 0.0144) had a protective effect on ALD; while threonate (OR =

1.570, 95% CI: 1.028-2.397, p = 0.0370) exerts a detrimental

influence on ALD (Tables 5, S8, and Figure 6). Besides, the IVW
Frontiers in Endocrinology 08
estimate of alanine (OR = 3.348, 95% CI: 1.052-10.655, p = 0.0408)

and cholate (OR = 1.560, 95% CI: 1.046-2.327, p = 0.0293) showed

its suggestive harmful effect against viral hepatitis; and threonate

(OR = 0.621, 95% CI: 0.385-0.971, p = 0.0401) displayed its

suggestive protective effect against viral hepatitis (Tables 6, S9,

and Figure 7). No heterogeneity and horizontal pleiotropy were

observed in these analyses (Tables 4–6). The F-statistics of IVs

ranged between 17.64 and 88.97 (Tables S10–12).
B

C

D

A

FIGURE 3

Causal relationship between gut microbiota and the risk of alcoholic liver disease. Each point represents the SNP effects on Desulfovibrio
(A), Lachnospira (B), Ruminococcus torques group (C), Ruminococcaceae UCG 002 (D), and alcoholic liver disease. MR, Mendelian randomization;
SNP, single nucleotide polymorphism.
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4 Discussion

According to our knowledge, this study is the first to estimate

the causal relationships between gut microbiota, gut microbiota-

derived metabolites, and liver diseases using MR analysis. Our

results revealed that multiple gut microbiota and metabolites play
Frontiers in Endocrinology 09
significant roles in the development of liver diseases, 5 suggestive

microbial taxa (Anaerotruncus, Intestinimonas, Lachnospiraceae

NC2004 group, Peptococcus, and Ruminococcus 1) and 3

suggestive metabolites (Alanine, Phenyllactate, and Stachydrine)

in NAFLD, 4 suggestive microbial taxa (Ruminococcaceae UCG

002, Lachnospira, Desulfovibrio, and Ruminococcus torques group)
B

A

FIGURE 4

Causal relationship between gut microbiota and the risk of viral hepatitis. Each point represents the SNP effects on Alistipes (A), Ruminococcaceae
NK4A214 group (B), and viral hepatitis. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
TABLE 3 Association of genetically predicted gut microbiota with viral hepatitis.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Alistipes

IVW 12 1.720 1.160-
2.550

0.0069

-0.024, 0.686 4.704, 0.920 0.951

Weighted
median

12 1.490 0.891-
2.494

0.1288

MR-Egger 12 2.538 0.390-
16.521

0.3527

MR-PRESSO 12 1.720 1.330-
2.225

0.0017

Ruminococcaceae NK4A214 group

IVW 13 1.460 1.063-
2.006

0.0195

0.014, 0.735 7.206, 0.844 0.869

Weighted
median

13 1.531 1.004-
2.335

0.0479

MR-Egger 13 1.224 0.429-
3.493

0.7134

MR-PRESSO 13 1.460 1.142-
1.868

0.0108
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
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and 3 suggestive metabolites (Phenylacetate, Threonate, and

Ursodeoxycholate) in ALD, 2 suggestive microbial taxa (Alistipes

and Ruminococcaceae NK4A214 group) and 3 suggestive

metabolites (Alanine, Cholate, and Threonate) in viral hepatitis.

Notably, the MR test p values for both gut microbiota and

metabolites and liver diseases were greater than pFDR.

Anaerotruncus and Intestinimonas were revealed to be butyrate-

producing bacterium in the intestine (36–39). Intestinimonas is

generally recognized as beneficial bacteria with anti-inflammatory

and anti-obesity properties (40). Rodriguez-Diaz et al. (41) found a

significant decrease in the abundance of Intestinimonas in patients

with NAFLD compared to the healthy population. Supplementation

with Adzuki beans has been shown to significantly reduce high-fat

diet-induced obesity and lipid accumulation, as well as

lipopolysaccharide levels, and alleviate liver function impairment

and hepatic steatosis (42). Besides, it significantly reversed the

imbalance of gut microbiota caused by high-fat diets and

significantly increased the abundance of Lachnoclostridium (42).

As for Olsenella, Zhong et al. showed that probiotic-fermented

blueberry juice significantly reduced low-density lipoprotein

cholesterol levels and fat accumulation, ameliorated insulin

resistance, and improved the abundance and diversity of

intestinal microbial communities in high-fat diet mice (43). The

blueberry juice-treated mouse showed a relatively high abundance
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of lean bacteria (Olsenella and Bifidobacterium) and a lower

abundance of obesity-associated bacteria (Oscillibacter and

Alistipes) compared to the high-fat diet-fed mouse (43).

Interestingly, Li et al. revealed that the gut formation of propionic

acid and acetic acid is related to an increase in Olsenella in pectin-

fed mice (44). Recently, Pan et al. diagnosed 21 chronic hepatitis B

and 42 NAFLD patients with the classic damp-heat (DH) syndrome

group and identified 29 chronic hepatitis B and 28 NAFLD patients

as the non-DH syndrome group. They found a decreased relative

abundance of the Lachnospiraceae NC2004 group in patients with

the DH syndrome compared to the non-DH syndrome (45). Taken

together, these studies were in agreement with our MR analysis that

this aforementioned genus plays a protective role in NAFLD. In

contrast, Pung et al. demonstrated that Ulva prolifera

polysaccharide greatly slowed high-fat diet-induced weight gain,

ameliorated metabolic disturbances in high-fat diet-fed mice, and

improved intestinal flora disorders, as evidenced by the growth in

Bifidobacterium abundance and downregulation of Ruminococcus 1

abundance (46). This implies that Ruminococcus 1 may play a

negative role in NAFLD.

Alistipes is mainly found in the intestines of healthy humans

(47, 48). However, Alistipes has also been isolated from the

bloodstream, appendiceal, and abdominal, highlighting its

possible opportunistic pathogenic involvement in human
TABLE 4 Association of genetically predicted gut microbiota derived metabolites with non-alcoholic fatty liver disease.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Alanine

IVW 33 19.586 2.206-
173.934

0.0076

-0.005 0.896 66.480, 0.001 0.067

Weighted
median

33 3.814 0.289-
50.406

0.3095

MR-Egger 33 33.147 0.010-
110573

0.4041

MR-PRESSO 33 19.584 2.206-
173.934

0.0118

Phenyllactate

IVW 17 0.212 0.065-0.689 0.0100

-0.006, 0.873 22.769, 0.120

Weighted
median

17 0.384 0.093-1.588 0.1863

0.183
MR-Egger 17 0.289 0.005-

15.218
0.5486

MR-PRESSO 17 0.212 0.065-0.689 0.0203

Stachydrine

IVW 6 2.228 1.109-4.474 0.0244

-0.052, 0.237 13.221, 0.104

Weighted
median

6 2.211 0.898-5.444 0.0843

0.454
MR-Egger 6 3.148 0.228-

43.387
0.4398

MR-PRESSO 6 2.228 1.109-4.474 0.0342
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
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B

C

A

FIGURE 5

Causal relationship between gut microbiota-derived metabolites and the risk of non-alcoholic fatty liver disease. Each point represents the SNP effects on
Alanine (A), Phenyllactate (B), Stachydrine (C), and non-alcoholic fatty liver disease. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
TABLE 5 Association of genetically predicted gut microbiota derived metabolites with alcoholic liver disease.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Phenylacetate

IVW 9 0.496 0.258-
0.953

0.0353

0.025, 0.274 4.928, 0.765 0.656

Weighted
median

9 0.399 0.166-
0.958

0.0399

MR-Egger 9 0.335 0.133-
0.841

0.0526

MR-PRESSO 9 0.496 0.297-
0.828

0.0278

Threonate

IVW 18 1.570 1.028-
2.397

0.0370

-0.013, 0.333 6.562, 0.989
Weighted

median
18 1.885 1.018-

3.490
0.0436

0.972

(Continued)
F
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TABLE 5 Continued

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

MR-Egger 18 1.965 1.066-
3.619

0.0457

MR-PRESSO 18 1.570 1.206-
2.042

0.0037

Ursodeoxycholate

IVW 11 0.662 0.476-
0.921

0.0144

-0.004, 0.851 4.814, 0.903

Weighted
median

11 0.696 0.425-
1.137

0.1480

0.931
MR-Egger 11 0.693 0.392-

1.224
0.2381

MR-PRESSO 11 0.662 0.527-
0.833

0.0055
F
rontiers in Endocrin
ology
 12
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
B

C

A

FIGURE 6

Causal relationship between gut microbiota-derived metabolites and the risk of alcoholic liver disease. Each point represents the SNP effects on
Phenylacetate (A), Threonate (B), Ursodeoxycholate (C), and alcoholic liver disease. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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disorders (48). Feng et al. found that Alistipes could promote the

development of colorectal cancer via the interleukin-6/signal

transducer and activator of transcription 3 pathway (49). As for

Ruminococcaceae UCG 002, there was significant enrichment of

Ruminococcaceae UCG 002 abundance in prostate cancer patients

compared to the healthy population, suggesting a pathogenic role

(50). These studies support our conclusions. We found that

Ruminococcaceae UCG 002 and Alistipes play a pathogenic role in

ALD and viral hepatitis, respectively.

Lachnospira was significantly lower in all disease cohorts

(multiple sclerosis, inflammatory bowel disease, and rheumatoid

arthritis) relative to healthy controls (51). Due to its reduced

abundance, studies suggest that Lachnospira may have a

protective effect under inflammatory conditions (51, 52).

Desulfovibrio was negatively related to the host body mass index,

waist, triglyceride, and uric acid, which are signs of obesity or

metabolic disorders (53–56). The abundance of Desulfovibrio was

positively related to the diversity of flora, favoring microbiome

stability and host health (57, 58). Besides, Desulfovibrio was

positively correlated with the beneficial bacteria Oscillospira,
Frontiers in Endocrinology 13
Phascolarctobacterium, Prevotella, Coprococcus, Dialister,

Ruminococcus, Akkermansia, Roseburia, Faecalibacterium, and

Bacteroides and negatively correlated with the harmful bacteria

Streptococcus, Clostridium, Escherichia, Klebsiella, and Ralstonia

(59–68). Previous studies have shown a positive correlation

between the Ruminococcus torques group and short-chain fatty

acid levels by studying some people who ingested less starch in

order to lose weight (69). Recently, Wan et al. found that

improvement in colit is was associated with a higher

Ruminococcus torques group, suggesting that the Ruminococcus

torques group may have another application as a potential

probiotic in the anti-inflammatory response (70). The above

studies revealed their beneficial role in human diseases and

supported our findings.

This work also has some limitations. First, because only people

of European heritage were included in the GWAS, the conclusions

of this study might not apply to people of other racial or ethnic

backgrounds. Second, the sequencing of the 16S rRNA genes only

permitted resolution from the genus to the phylum level, not at a

more specific level, and the results were skewed when certain
TABLE 6 Association of genetically predicted gut microbiota derived metabolites with viral hepatitis.

Methods IVs OR 95% CI p
value

Egger intercept, p
value

Heterogeneity (Q, p
value)

MR-PRESSO (Global test p
value)

Alanine

IVW 37 3.348 1.052-
10.655

0.0408

0.021, 0.323 31.059, 0.703 0.719

Weighted
median

37 3.948 0.783-
19.904

0.0962

MR-Egger 37 1.098 0.005-
29.948

0.6788

MR-PRESSO 37 3.348 1.142-
9.812

0.0341

Cholate

IVW 9 1.560 1.046-
2.327

0.0293

-0.023, 0.475 14.834, 0.062

Weighted
median

9 1.291 0.798-
2.086

0.2976

0.135
MR-Egger 9 1.989 0.936-

4.223
0.1168

MR-PRESSO 9 1.560 1.046-
2.327

0.0410

Threonate

IVW 18 0.621 0.385-
0.971

0.0401

-0.012,
0.406

10.826, 0.865

Weighted
median

18 0.709 0.346-
1.453

0.3472

0.883
MR-Egger 18 0.769 0.387-

1.528
0.4648

MR-PRESSO 18 0.621 0.424-
0.908

0.0249
IV, instrumental variables; OR, Odd Ratio; IVW, inverse variance weighted; Bold represents p < 0.05.
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specific species affected the risk of liver diseases. Third, our results

are not significant after the Bonferroni adjustment. However,

multiple statistical corrections may overlook GM taxa with a

potential causal connection to liver diseases because they are

excessively tight and cautious. Furthermore, although the

Mendelian randomization analysis was comparable to the level of

evidence from the RCT study, further animal experimental

confirmation is necessary.

5 Conclusion
In conclusion, our research supported causal links between the

gut microbiome and its metabolites and NAFLD, ALD, and viral

hepatitis. It is necessary to conduct further population-based

research on the potential mechanisms of gut microbiota and liver

disease development.
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