
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Yang Yang,
University of Texas Health Science Center
at Houston, United States

REVIEWED BY

Agnese Filippello,
University of Catania, Italy
Lili Ding,
Shanghai University of Traditional Chinese
Medicine, China

*CORRESPONDENCE

Ze Chen

chenze19@whu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 08 February 2023
ACCEPTED 03 May 2023

PUBLISHED 19 May 2023

CITATION

Li G, Li H and Chen Z (2023) Identification
of ribosomal protein family as immune-
cell-related biomarkers of NAFLD by
bioinformatics and experimental analyses.
Front. Endocrinol. 14:1161269.
doi: 10.3389/fendo.2023.1161269

COPYRIGHT

© 2023 Li, Li and Chen. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 19 May 2023

DOI 10.3389/fendo.2023.1161269
Identification of ribosomal
protein family as immune-cell-
related biomarkers of NAFLD
by bioinformatics and
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Background: Immune cells play an integral role in the development and

progression of non-alcoholic fatty liver disease (NAFLD). This study was to identify

immune-cell-related biomarkers for the diagnosis and treatment of NAFLD.

Methods and findings: First, we introduced human liver transcriptome data from

the GEO database (GSE48452 and GSE126848) and performed a weighted gene

co-expression network analysis (WGCNA) to screen out the modules related to

immune cell infiltration and to identify immune-cell-related differentially

expressed genes (ICR-DEGs) associated with NAFLD progression. Further, the

protein-protein interaction (PPI) network of ICR-DEGs was established to obtain

hub genes and subsequently, the expression trend analysis was conducted to

identify immune-cell-related biomarkers of NAFLD. Finally, themRNA expression

of biomarkers was validated in a NAFLD mouse model induced by high-fat diet

(HFD) feeding. In total, we identified 66 ICR-DEGs and 13 hub genes associated

with NAFLD. Among them, 9 hub genes (CD247, CD74, FCGR2B, IL2RB, INPP5D,

MRPL16, RPL35, RPS3A, RPS8) were correlated with the infiltrating immune cells

by the Pearson correlation analysis. Subsequently, 4 immune-cell-related

biomarkers (RPL35, RPS3A, RPS8, and MRPL16) with the same expression

trends in GSE48452 and GSE126848 datasets were identified. These

biomarkers were enriched in immune-related pathways and had a good ability

to distinguish between NASH and healthy samples. Moreover, we constructed a

competing endogenous RNA (ceRNA) network of biomarkers and predicted

twenty potential therapeutic drugs targeting RPS3A such as taxifolin and

sitagliptin. Finally, experimental validation indicated that the hepatic mRNA

expression of Rpl35, Rps3A, and Rps8was significantly decreased in NAFLDmice.

Conclusions: This study identified four ribosomal protein genes (RPL35, RPS3A,

RPS8, and MRPL16) as immune-cell-related biomarkers of NAFLD, which may

actively participate in the immune processes during NAFLD progression and

could serve as potential targets for the diagnosis and treatment of NAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) encompasses a wide

spectrum of liver pathologies ranging from simple steatosis

(nonalcoholic fatty liver, NAFL), to nonalcoholic steatohepatitis

(NASH), which is characterized by hepatocyte ballooning and

lobular inflammation (with or without liver fibrosis), to more

advanced stages including liver cirrhosis and hepatocellular

carcinoma (HCC) (1). In parallel with the epidemics of obesity

and type 2 diabetes mellitus (T2DM), NAFLD has emerged as the

most common liver and metabolic disease worldwide, affecting

approximately 25% of the global population in 2018 (i.e., 1.7

billion individuals) (2, 3). More alarmingly, the burdens caused

by NAFLD are projected to rise rapidly over the next decade (4).

Although simple steatosis generally is not associated with a

substantial risk of liver-related adverse outcomes, up to 20%-30%

of patients with NAFL develop NASH, which can lead to cirrhosis

and end-stage liver diseases (1, 5). Notably, NASH becomes the

fastest-growing cause of HCC in the USA and Europe (6) and is

emerging as a leading etiology for liver transplantation (7).

Moreover, NAFLD is now regarded as a multisystem metabolic

disease and is closely associated with increased risks of extrahepatic

complications such as cardiovascular disease (CVD) and chronic

kidney disease (8, 9). Albeit an increasing number of early-stage

clinical trials, unfortunately, no specific drugs for NAFLD have been

approved so far (10, 11). To date, clinical management is restricted

to lifestyle interventions, which are difficult to sustain (2). Thus,

there is an imperative need to extensively investigate the

pathogenesis of NAFLD and to identify specific molecular

biomarkers for the diagnos is and treatment of this

burdensome disease.

NAFLD is considered a metabolic disorder; however, during the

progression of NAFLD, the immune system plays a pivotal role (12,

13). Indeed, the liver is a crucial immunological organ.

Inflammation in NAFLD is triggered by intrahepatic factors (e.g.,

excess metabolites, lipotoxicity, oxidative stress) and extrahepatic

factors (e.g., gut-liver axis, adipose tissue inflammation), leading to

distinct immune-mediated alterations in NAFLD (13, 14). A wealth

of data has indicated that the innate immune mechanism is a key

driver of hepatic inflammation and other pathological changes

during NAFLD progression, such as insulin resistance, lipid

accumulation, and fibrosis (14, 15). These robust innate immune

reactions are intrinsic to the liver. Kupffer cells (KCs), dendritic cells

(DCs), and lymphocytes residing in the liver form a coordinated

innate immune network. Hepatocytes and liver sinusoidal

endothelial cells (LSECs) are not formally innate immune cells,

but they can exert immune cell function when under stress (12, 15).

These cells can sense the intrahepatic and extrahepatic stimuli and

translate those signals into immune responses, leading to

pathological alterations during the progression of NAFLD (15).

Although innate immunity represents an integral element in

supporting liver inflammation, accumulating evidence indicates

the important role of adaptive immunity mediated by

lymphocytes (CD4+ T cells, CD8+ T cells, and B cells) as an

additional factor that promotes hepatic inflammation in NASH
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(16, 17). Given the key role of the immune cells in the progression of

the disease, identifying immune-cell-related molecular targets is

crucial for the diagnosis and treatment of NAFLD.

Bioinformatics methods have been widely used to mine

transcriptome data to elucidate the pathogenic mechanisms of

diseases and to screen out key molecular targets for diagnosis and

treatment (18). In the present study, transcriptome data of NAFL,

NASH, and healthy human liver samples were obtained from the

Gene Expression Omnibus (GEO) database (GSE48452 and

GSE126848). Using a series of bioinformatics analysis methods

such as weighted gene co-expression network analysis (WGCNA)

and protein-protein interaction (PPI) network analysis, we

systematically mined immune-cell-related biomarkers of NAFLD

and analyzed their potential biological functions, ability to

distinguish between disease and normal samples, and correlation

with infiltrating immune cells and NAFLD phenotypes. We further

validated the expression of biomarkers in a NAFLD mouse model

induced by a high-fat diet (HFD). Moreover, we constructed a

competing endogenous RNA (ceRNA) network and a transcription

factor (TF)-mRNA regulatory network of biomarkers and predicted

potential therapeutic drugs targeting these molecules. Overall, four

immune-cell-related biomarkers (RPL35, RPS8, RPS3A, and

MRPL16) were finally screened out, all of which belonged to the

ribosomal protein genes. These biomarkers may actively participate

in the immune process during NAFLD progression and can serve as

potential targets for the diagnosis and treatment of NAFLD.
2 Materials and methods

2.1 Data acquisition

In total, GSE48452 and GSE126848 datasets of human liver

tissue samples, including NAFL, NASH, and healthy control (HC)

groups, were collected from the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) database, which consisted of

clinical features and gene expression profiles. The GSE48452

dataset (platform: GPL11532) included 14 HC, 14 NAFL, and 18

NASH cases. The GSE126848 dataset (platform: GPL18573)

included 14 HC, 15 NAFL, and 16 NASH cases. In addition,

GSE107231 dataset (platform: GPL20115) of human liver tissues

from 5 NAFLD patients and 5 HCs was downloaded from the GEO

database and used as an external validation dataset.
2.2 Analysis of differential genes

The ‘limma’ R package (19) was used to obtain the differentially

expressed genes (DEGs) between the NASH group and the HC

group in GSE48452 dataset. The P value < 0.05 was determined as

the significance criteria. A volcano plot was applied to show DEGs

by ‘ggplot2’ package (20). The top 50 DEGs were visualized by

heatmap. Meanwhile, the same method was used to screen out

DEGs between the NAFL group and the HC group in

GSE48452 dataset.
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2.3 Weighted gene co-expression
network analysis

The ‘immunedeconv’ package (version 2.0.4) was used to

calculate the infiltration ratio of seven immune cells (B cell,

macrophage, CD4+ T cell, CD8+ T cell, endothelial cell,

uncharacterized cell, and NK cell). WGCNA was performed using

the ‘WGCNA’ package (version 1.69) to build a gene co-expression

network (21). The proportion of differential immune cells was

considered a clinical trait. Firstly, we clustered the samples and

removed outliers to ensure the accuracy of the analysis.

Subsequently, sample dendrogram and trait heatmap were

constructed, and the optimal soft threshold was determined. The

similarity between genes was calculated according to the adjacency,

and the phylogenetic tree between genes was obtained. The modules

were segmented via dynamic tree cutting algorithm, and the

minModuleSize was 100. We focused on the correlation between

modules and clinical traits and screened out the module most

relevant to differential immune cells as the key module (P < 0.05).
2.4 Identification of ICR-DEGs and
functional network analysis

Immune cell-related differentially expressed genes (ICR-DEGs)

were identified with an intersection of NASH-DEGs, NAFL-DEGs,

and key module genes using the ‘VennDiagram’ package (22). Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis of ICR-DEGs was performed using R

package ‘clusterProfiler (23). P < 0.05 was used as screening criteria.

PPI network which depicts the interactions among representative

ICR-DEGs was generated using STRING website (https://string-

db.org). Then the topological features of network were visualized

using Cytoscape (version 3.7.2) (24). Genes with a degree ≥ 5 were

identified as hub genes. Finally, the correlation between hub genes

and immune cells with significant differences was analyzed by the

Pearson method.
2.5 Receiver operating characteristic curve
and nomogram creation

Principal component analysis (PCA) was conducted between

the NASH/NAFL group and the HC group. Moreover, the ROC

curve was plotted to evaluate the diagnostic value of hub genes in

GSE48452 dataset by pROC (version 1.16.2) package (25). In

addition, the nomogram comprising the key genes was drawn

using R ‘rms’ package (26). The corresponding calibration curve

was plotted to appraise the precision and reliability of the

nomogram model prediction. Furthermore, the decision curve

analysis (DCA) curve was plotted by ‘rmda’ package.
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2.6 Gene set enrichment analysis and
correlation analysis with clinical features

The KEGG pathways enriched by key genes were identified by

gene set enrichment analysis (GSEA) according to the

‘clusterProfiler’ package (version 3.16.1) (27). Age, body mass

index (BMI), leptin, adiponectin, leptin to adiponectin ratio

(LAR), liver fat, inflammation, fibrosis, and NAFLD activity score

(NAS) were included in the Spearman analysis to explore the

correlation between key gene expression and clinical and

pathological features. We also compared the expression levels of

key genes across different NAS subgroups.
2.7 Competitive endogenous RNA
regulatory network

The competing endogenous RNA (ceRNA) regulatory networks

constructed in the present study mainly included lncRNA-miRNA-

mRNA relationship pairs. The miRNAs associated with key genes

were screened by the Starbase database (https://starbase.sysu.edu.cn/

), and the screening criterion was low stringency ≥ 1. The lncRNAs

targeting miRNAs were predicted in the starbase database. The

lncRNA-miRNA-mRNA networks were constructed by Cytoscape

software (version 3.8.2). Moreover, in order to visualize the regulatory

relationships of gene transcription, NetworkAnalyst 3.0 (https://

www.networkanalyst.ca/) was applied to predict the transcription

factors (TFs) of key genes, and the TF-mRNA regulation network was

constructed by Cytoscape software (version 3.8.2).
2.8 Drug prediction targeting key genes

In order to explore the potential therapeutic drugs for NAFLD

related to biomarkers, targeted drugs associated with key genes were

predicted by the CLUE (https://clue.io/command) online database.
2.9 Animals and treatments

Twenty-four 8-week-old male C57BL/6J mice were housed

under standard conditions (room temperature: 23 ± 2°C; 12 h

light/dark cycle) with free access to water and standard laboratory

food. After one week of acclimation, all mice were randomly divided

into a normal chow (NC) group and a high-fat diet (HFD) group

(n = 12 per group), each of which was fed a standard laboratory

food or a HFD (60 kcal% fat; D12492, Research Diets, New

Brunswick, NJ, USA). The NAFLD mouse model was constructed

by 12 weeks of HFD feeding (28–30). After 12 weeks of feeding, all

mice were anesthetized with 2% isoflurane and euthanized. The

serum and liver samples were collected.
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2.10 Histology, blood chemistry, and
hepatic triglyceride levels

For histological analysis, formalin-fixed mouse liver tissues

were processed, and paraffin sections of 5-mm thickness were cut

and stained with hematoxylin-eosin (H&E). NAS was used to assess

the histological characteristics (31). Serum alanine transaminase

(ALT) levels were detected using an ADVIA 2400 Chemistry

System analyzer (Siemens, Tarrytown, NY, USA) according to the

manufacturer’s instructions. TG contents in the liver were

measured by a commercial kit (#290-63701; Wako, Tokyo, Japan)

according to the manufacturer’s instructions.
2.11 Total RNA extraction and real-time
quantitative PCR analysis

Total RNA was extracted with Trizol (No. 15596026, Thermo

Fisher Scientific, Waltham, MA, USA) and then reverse-transcribed

into cDNA by using the HiScript III RT SuperMix for qPCR

(+gDNA wiper) (No. R323-01, Vazyme Biotech, Nanjing, Jiangsu,

China) following the manufacturer’s instructions. qPCR was

conducted with the QuantStudio® 5 Real-Time PCR System

(Thermo Fisher Scientific, Waltham, MA, USA) using Cham Q
™ Universal SYBR® qPCR Master Mix (No. Q712-02, Vazyme

Biotech, Nanjing, Jiangsu, China). Expression levels of target genes
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were calculated by the 2-DDCt method and normalized relative to

glyceraldehyde-3-phosphate dehydrogenase (Gapdh).
2.12 Statistical analyses

All of the analyses were performed using R (V. 4.2.2) statistical

software. Quantitative data in the experimental validation analyses

were presented as mean ± standard error of mean (S.E.M.).

D’Agostino & Pearson normality test was used to evaluate if data

followed a parametric or non-parametric distribution. For

parametric data between the NC and HFD groups, a two-tailed

Student’s t-test was applied to analyze differences. For datasets with

a skewed distribution, the Mann–Whitney U test was utilized for

two group comparisons. A P value < 0.05 (two-tailed) was

considered statistically significant.
3 Results

3.1 Identification of DEGs

As shown in Figure 1A, 1766 NASH-DEGs, including 918 up-

regulated genes and 848 down-regulated genes, were identified

between the NASH group and the HC group. The top 50 NASH-

DEGs were visualized by heatmap (Figure 1B). Similarly, 2024
D
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FIGURE 1

Identification of differentially expressed genes (DEGs). (A) DEGs between the NASH group and the healthy control group in GSE48452, with
upregulated genes indicated in red and downregulated genes in blue in the volcano plot. (B) Heatmap showing the top 50 NASH-DEGs. (C) DEGs
between the NAFL group and the healthy control group in GSE48452, with upregulated genes indicated in red and downregulated genes in blue in
the volcano plot. (D) Heatmap showing the top 50 NAFL-DEGs. *P<0.05. NS, non-significant.
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NAFL-DEGs (818 upward and 1206 downward) were obtained

between the NAFL group and the HC group (Figure 1C). The top 50

NAFL-DEGs were visualized by heatmap (Figure 1D).
3.2 Screening of differential immune cell-
related modules

To investigate the features of the immune cells in NAFLD, a

comprehensive heatmap was generated to illustrate their expression

patterns. Among 7 immune cells, CD4+ T cell and CD8+ T cell

showed higher abundance compared with other immune cells

(Figure 2A). We also observed that the infiltration abundance of

4 immune cells (CD4+ T cell, CD8+ T cell, macrophage, and NK

cell) was significantly different between the NASH and NAFL

groups (Figures 2B, C). To seek out key module genes associated

with four differentially infiltrating immune cells (CD4+ T cell, CD8

+ T cell, macrophage, and NK cell), we conducted a WGCNA. The

results of sample clustering indicated that there were no outlier

samples. The sample dendrogram and trait heatmap were shown in

Supplementary Figure 1. The optimal soft threshold was chosen 10

to ensure the network was close to scale-free distribution

(Supplementary Figure 2). A total of 9 modules were obtained by
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the dynamic tree cut algorithm (Figure 2D). Among the 9 modules,

the brown module was most closely related to 4 differentially

infiltrating immune cells (Figure 2E). The correlation coefficient

between the genes within the brown module and CD 4+ cell was

0.65, CD 8+ T cell was 0.24, macrophage was 0.73, and NK cell was

0.29 (P < 0.05, Figures 2F–I). Therefore, a total of 1862 differential

immune cell-related genes within the brown module were obtained.
3.3 Identification of ICR-DEGs
and biomarkers

In total, 66 ICR-DEGs were obtained by overlapping NASH-

DEGs, NAFL-DEGs, and key module genes correlated with 4

differentially infiltrating immune cells (Figure 3A). In order to

uncover potential mechanisms for ICR-DEGs associated with

NAFLD, we proceeded with functional enrichment analysis. The

top GO items under each classification were shown in Figure 3B.

We observed that the above ICR-DEGs were principally linked to

‘lymphocyte differentiation’, ‘nuclear−transcribed mRNA catabolic

process’, and ‘cotranslational protein targeting to membrane’. In

addition, the KEGG results indicated that these ICR-DEGs were

mainly enriched in the ‘ribosome’, ‘B cell receptor signaling
D
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FIGURE 2

Screening of differential immune cell-related modules. (A) The infiltration of seven immune cells (B cell, macrophage, CD4+ T cell, CD8+ T cell, endothelial
cell, uncharacterized cell, and NK cell). (B) Heatmap showing the infiltration abundance of seven immune cells in healthy control, NAFL, and NASH groups.
(C) The infiltration ratio of CD4+ T cell, CD8+ T cell, macrophage, and NK cell in healthy control, NAFL, and NASH groups. (D) Gene dendrogram and
module colors in WGCNA. (E) Trait heatmap showing the correlation between genes within modules and immune cells. (F–I) The scatter plot of the
correlation between genes within the brown module and CD4+ T cell (F), CD8+ T cell (G), macrophage (H), and NK cell (I).
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pathway’, and ‘T cell receptor signaling pathway’ (Figure 3C).

Moreover, the PPI network of ICR-DEGs was constructed,

including 38 nodes and 64 edges (Figure 3D). Thirteen hub genes

were obtained by analyzing the topological structure of genes

(Supplementary Table 1). The Pearson correlation analysis was

performed between the hub genes and key immune cells, and 9 hub

genes (CD247, CD74, FCGR2B, IL2RB, INPP5D, MRPL16, RPL35,

RPS3A, and RPS8) exhibited significant correlations with CD4+ T

cell, CD8+ T cell, and macrophage (Figures 3E–H). As shown in

Supplementary Figure 3, PCA suggested that the 9 hub genes could

distinguish control and disease samples, indicating the hub genes

had a certain diagnostic ability for NAFL and NASH. ROC curve

results showed that all 9 hub genes had good diagnostic values

(AUC > 0.7) for NAFLD (Figure 3I, Supplementary Table 2). Next,

we observed that the ROC curve results of the external validation

dataset (GSE126848) were consistent with those of the GSE48452

dataset (Figure 3J, Supplementary Table 2). At the level of gene

expression, we found that MRPL16, RPL35, RPS3A, and RPS8

showed the same expression trend in the two datasets

(Figures 3K, L). Therefore, we defined these four genes as

immune-cell-related key genes associated with NAFLD

progression, namely biomarkers.
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3.4 Diagnostic nomogram model
of biomarkers

In order to evaluate the role of four biomarkers in NASH

diagnosis, the nomogram containing four biomarkers (MRPL16,

RPL35, RPS3A, and RPS8) was generated (Figure 4A), and the

calibration curves proved that the performance of the prediction

model was effective (Figure 4B). In addition, DCA results showed

that the nomogram model was clinically feasible (Figure 4C).

Furthermore, the clinical influence curve further revealed that the

nomogram model had accurate prediction ability (Figure 4D).
3.5 Functional enrichment and
correlation analysis between biomarkers
and clinical features

All biomarkers (RPL35, RPS8, RPS3A, and MRPL16) belonged

to the ribosomal protein genes. To further study the potential roles

of four biomarkers in NAFLD, we performed GSEA on each

biomarker in GSE48452. The results of GSEA showed that

‘ribosome’ pathway was enriched in the groups with a high
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FIGURE 3

Identification of immune-cell-related differentially expressed genes (ICR-DEGs) and biomarkers. (A) Venn diagram obtained 66 ICR-DEGs by
overlapping NASH-DEGs, NAFL-DEGs, and key module genes correlated with 4 immune cells. (B) The top GO items under biological process (BP),
molecular function (MF), and cellular component (CC). (C) The most enriched KEGG pathways. (D) Protein-protein interaction (PPI) network of ICR-
DEGs. (E–H) Pearson correlation analysis between the hub genes and CD4+ T cell (E), CD8+ T cell (F), macrophage (G), and NK cell (H). (I) Receiver
operator characteristic (ROC) curve of 9 hub genes in dataset GSE48452. (J) ROC curve of 9 hub genes in the external validation dataset
GSE126848. (K, L) The expression level of 9 hub genes in healthy control, NAFL, and NASH groups of GSE48452 (K) and GSE126848 (L), respectively.
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expression ofMRPL16, RPL35, RPS3A, and RPS8, while ‘chemokine

signaling pathway’ was associated with a low expression of

MRPL16, RPL35, and RPS8 (Figures 5A–D). We also generated a

correlation cycle diagram to illustrate the relationships of four

biomarkers (MRPL16, RPL35, RPS3A, and RPS8) with different

clinical and pathological features. The four biomarkers were

negatively correlated with five factors (BMI, leptin, LAR, NAS,

and liver fat), whereas positively correlated with age and

adiponectin (Figure 5E). In addition, the expression of RPL35 and

RPS8 was significantly lower in the NAS 5-7 group compared to the

NAS 0-2 group (P < 0.05, Figure 5F).
3.6 The ceRNA network and
TF-mRNA regulatory network based on
four biomarkers

To explore the regulatory mechanisms of biomarkers, the

ceRNA network based on MRPL16, RPL35, RPS3A, and RPS8 was

constructed. The two pair groups (lncRNA-miRNA pairs and

mRNA-miRNA pairs) were matched to yield a ceRNA network

‘lncRNA-miRNA-mRNA’, which consisted of 20 lncRNA, 3

mRNA, and 14 miRNA. This network had 37 nodes and 51 edges

(Figure 6A). The ceRNA network showed that AC120036.4 might

regulate RPL35 through hsa-miR-877-5p, AC240565.2 or

LINC02381 might regulate RPS3A through hsa-let-7a-5p, and

MIAT might regulate RPS8 through hsa-miR-181a-5p or hsa-

miR-181b-5p. Furthermore, the transcription factors of 4
Frontiers in Endocrinology 07
biomarkers were predicted, and seven transcription factors

(GTF2B, MYNN, TAF7, ZNF639, POLR2H, GTF2E2, GTF2A2)

that were significantly and differentially expressed in the NASH and

NAFL groups were obtained (Figure 6B). The TF-mRNA regulatory

network had 10 nodes and 10 edges (Figure 6C), in which RPL35

and RPS8 were mutually associated with MYNN.
3.7 The key gene-drug network

In order to explore the potential therapeutic drugs for NAFLD

related to biomarkers, the compounds targeting the protein

encoded by RPS3A were identified (Figure 6D, Supplementary

Table 3). There were 20 drugs with potential therapeutic effects

on RPS3A, including taxifolin, sitagliptin, otenzepad, famotidine,

and JNJ-7706621, etc.
3.8 Validation of the immune-cell-
related biomarkers

To further verify the reliability of the obtained immune-cell-

related biomarkers in NAFLD, we assessed the expression of these

biomarkers in an external validation dataset (GSE107231) and a

NAFLD mouse model induced by 12-week HFD feeding. In

GSE107231, the expression of RPL35, RPS3A, and RPS8 was

significantly decreased in NAFLD livers compared to the healthy

controls (Supplementary Figure 4). In animal experiments, the
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FIGURE 4

Diagnostic nomogram model of biomarkers. (A) Nomogram containing four biomarkers for the diagnosis of NASH. (B) Calibration curve of the
nomogram model. (C) Decision curve analysis (DCA) curve of the nomogram model. (D) Clinical influence curve of the nomogram model.
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H&E staining showed marked hepatic steatosis and sporadic

inflammation in the HFD group (Figure 7A). Compared with the

NC group, the HFD group showed significantly increased NAS,

hepatic TG levels, and serum ALT concentrations (P < 0.01,

Figures 7B–D, Supplementary Table 4). Moreover, the mRNA

expression of inflammatory markers (Tnf-a, Mcp-1, Ifn-g, and Il-

6) was significantly higher in the HFD group compared to that in

the NC group (P < 0.05, P < 0.01, Figure 7E). The validation of the

mRNA expression of 4 biomarkers showed that the expression of

Rpl35, Rps3a, and Rps8 was significantly decreased in the HFD

group compared to the NC group (P < 0.05, P < 0.01), which was

consistent with the human transcriptome data. However, the

expression of Mrpl16 was not significantly changed (Figure 7F).

Further detection on the mRNA expression of the 7 predicted TFs

(Znf639, Taf7, Polr2h,Mynn, Gtf2e2, Gtf2b, Gtf2a2) showed that the
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expression of all 7 TFs was significantly decreased in the HFD group

compared to the NC group (Figure 7G).
4 Discussion

NAFLD has become the most common liver and metabolic

disease worldwide and placed a tremendous burden on public

health (2). Immune cells and immune-related genes play an

integral role during the progression of NAFLD (13). Identifying

immune-cell-related molecular biomarkers is crucial for the

diagnosis and treatment of NAFLD. In the present study, we

applied a series of bioinformatics methods to analyze the

transcriptome data and found that the infiltration abundance of 4

immune cells (CD4+ T cell, CD8+ T cell, macrophage, and NK
D
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FIGURE 5

Functional enrichment and clinical correlation analysis based on the biomarkers. (A–D) Gene set enrichment analysis (GSEA) of MRPL16 (A), RPL35
(B), RPS3A (C), and RPS8 (D) in GSE48452. (E) Correlation cycle diagram illustrating the relationships of four biomarkers (MRPL16, RPL35, RPS3A, and
RPS8) with different clinical and pathological features, including adiponectin, age, BMI, liver fat, liver fibrosis, liver inflammation, leptin to adiponectin
ratio (LAR), leptin, and NAFLD activity score (NAS) in GSE48452. (F) The expression of biomarker genes across the NAS 0-2, 3-4, and 5-7 groups.
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cells) was significantly different between the NASH and NAFL

samples. Moreover, four immune-cell-related biomarkers (RPL35,

RPS8, RPS3A, and MRPL16) were screened out, all of which belong

to the ribosomal protein genes. Validation in both an external GEO

dataset and in a mouse model showed that the hepatic mRNA

expression of RPL35, RPS3A, and RPS8 was significantly decreased

in NAFLD. These immune-cell-related biomarkers might actively

participate in the immune process during NAFLD progression and

could serve as potential targets for the diagnosis and treatment

of NAFLD.

Immune cell infiltration exerts critical effects during the

development and progression of NAFLD (15). Cell type

identification is very helpful for deciphering the pathogenesis of

various diseases (32). In the present study, we systematically

estimated the relative infiltration abundances of different immune

cell types by transcriptome analysis and found differences in

infiltration abundances of 4 immune cells (CD4+ T cell, CD8+ T

cell, macrophage, and NK cells) between the NASH and NAFL liver

samples. These immune cells are considered important effector cells

in NAFLD, and their cell frequencies and roles in the pathogenesis

of NAFLD have been summarized in some elegant reviews (12, 13,

15, 33). In this study, CD4+ T cells showed the highest infiltration

abundance and their infiltration was significantly higher in the

NASH group compared to the NAFL group. The balance of CD4+ T

helper (Th) cells, which can be broadly categorized into Th1, Th2,

Th17, and regulatory T cells (Tregs), is important to maintain

hepatic immune tolerance (13). The imbalance of regulatory and

effector T helper cells is a hallmark of multiple chronic liver diseases

(34). Many studies have indicated that Th1 and Th17 cells are

increased in NASH patients (35). An animal study found that
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human CD4+ T cells accumulated in the liver of a humanized

mouse model fed a high-fat high-calorie diet, and depletion of these

cells alleviated hepatic inflammation and fibrosis (36). Moreover,

IFN-g-expressing CD4+ T cells were enriched in NASH, and

methionine/choline deficient (MCD) diet feeding induced milder

steatohepatitis and decreased inflammatory macrophage infiltration

in mice deficient in IFN-g compared to the control mice (37, 38). It

should be noted that whether an altered subset of immune cells is a

cause or a consequence of NAFLD progression is difficult to figure

out. The progression of NAFLD driven by immune cells is a

multistage process, involving the interactions of different immune

cells (13). Thus, further organ- and cell-specific loss-of-function

experiments, combined with appropriate animal models, are

urgently needed to decipher the complicated roles of different

immune cell types during the progression of NAFLD.

Four genes (RPL35, RPS8, RPS3A, and MRPL16) were screened

out as immune-cell-related biomarkers of NAFLD, among which

three genes (RPL35, RPS8, and RPS3A) showed consistent

expression trends in a rodent model and three independent

human datasets. Intriguingly, all biomarkers belong to the

ribosomal protein genes. Ribosomal proteins are typically small

and basic proteins containing 50-150 amino acid residues, which

play a seminal role in the structure and function of ribosomes or the

initiation, elongation, or termination phases of protein translation

(39, 40). Although human ribosomes have long been regarded as

uniform factories with little regulatory functions, increasing

evidence highlighted the expression heterogeneity of ribosomal

proteins in association with specific cellular functions (40, 41).

Indeed, ribosomal protein genes are differentially expressed across

various normal tissues and cell types and are actively involved in
D
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FIGURE 6

The ceRNA network and TF-mRNA regulatory network based on four biomarkers. (A) ceRNA network based on MRPL16, RPL35, RPS3A, and RPS8.
(B) Venn diagram overlapping the predicted transcription factors of 4 biomarkers, NASH-DEGs, and NAFL-DEGs. (C) The TF-mRNA regulatory
network based on biomarkers. (D) Key gene-drug network showing the compounds targeting the protein encoded by RPS3A.
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specific cellular functions such as cellular metabolism, cell cycle,

and signal transduction and development (39, 40). A recent study

found that ribosomal protein deficiency induced substantial

alterations in gene expression, with the effect of each ribosomal

protein varying to different extents (41).

In our results, RPS3A and RPS8 are components of the 40S

subunit in the prokaryotic ribosome, RPL35 is a component of the

60S subunit in the prokaryotic ribosome, and MRPL16 is a

component of the 39S subunit in the mitochondrial ribosome.

RPS3A belongs to the S3AE family of ribosomal proteins. In

addition to its ribosomal function, RPS3A can also perform

multiple biological functions unrelated to the ribosomes such as

cell proliferation, inflammation, and cellular metabolism (42, 43).

Several studies have reported that RPS3A is highly expressed in

some transformed cells and tumors, and plays a critical role in the

regulation of cell proliferation and transformation by exerting

extra-ribosomal functions (44–46). High expression of RPS3A

correlated with low tumor immune cell infiltration and an

unfavorable prognosis in patients with HCC (47). RPS3A over-

expressed in HBV-associated HCC could enhance hepatitis B virus

X protein (HBx)-induced NF-kB signaling via a novel chaperoning

activity for aggregation-prone HBx and thereby contribute to

hepatitis B-induced oncogenesis (48). Moreover, RPS3A positively

regulated the mitochondrial function of human periaortic adipose
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tissues and was associated with the risk of coronary artery diseases

(49). RPS8 belongs to the S8E family of ribosomal proteins. RPS8

deficiency could stimulate cellular apoptosis and significantly

inhibit cell proliferation (41). Previous studies have reported that

the mRNA expression level of RPS8 was elevated in pancreatic

cancer tissues and associated with poor prognosis (50, 51). In

addition, RPS8 was highly expressed in alcohol-associated HCC

and associated with tumor progression, thus serving as a potential

biomarker and therapeutic target for alcohol-associated HCC (52).

RPL35 belongs to the L29P family of ribosomal proteins and

interacts with eukaryotic translation elongation factor 2 thereby

regulating protein synthesis (53). RPL35 is also reported as a key

factor for promoting E2F1 protein synthesis, N-Myc protein

stability, and N-Myc-driven oncogenesis (54). Moreover, RPL35

can exert extra ribosomal functions. RPL35 promoted

neuroblastoma progression via enhanced aerobic glycolysis (55).

As for MRPL16, few studies have reported its functions to date and

only one study reported that low levels of MRPL16 significantly

indicated poor prognosis in breast cancer patients (56). Overall, the

above literature suggested that these ribosomal proteins could exert

multiple biological functions such as the regulation of immune

responses. Thus, the four ribosomal proteins might play an

important role in the pathogenesis of various diseases and could

serve as potential biomarkers of diseases other than NAFLD such as
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FIGURE 7

Validation of the immune-cell-related biomarkers in a NAFLD mouse model. (A) H&E staining of mouse liver tissue from the normal chow (NC)
group and the high-fat diet (HFD) group. The black arrow indicates infiltrated immune cells. (B) NAFLD activity score (NAS). (C) Hepatic triglyceride
(TG) concentrations. (D) Serum alanine aminotransferase (ALT) levels. (E) Relative mRNA expression level of inflammatory marker genes. (F) Relative
mRNA expression level of immune-cell-related biomarker genes. (G) Relative mRNA expression level of the predicted transcription factors. Mean ±
S.E.M., n = 12. *P<0.05, **P<0.01 vs. the NC group.
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cancers. However, it should be noted that the functional role of

these molecules is still not fully understood. Further gain/loss-of-

function experiments are required to investigate the cell-specific

functions of these immune-cell-related biomarkers in the

pathogenesis of NAFLD and other diseases.

Functional enrichment results showed that ‘ribosome’ pathway

was enriched in the groups with a high expression of MRPL16,

RPL35, RPS3A, and RPS8, while a number of immune-related

pathways were associated with a low expression of biomarker

genes. For instance, ‘chemokine signaling pathway’, ‘neutrophil

extracellular trap formation’, and ‘cell adhesion molecules’ were

associated with a low expression of RPS8 and RPL35. ‘Antigen

processing and presentation’ was associated with a low expression

of RPS8. ‘Th1 and Th2 cell differentiation’ and ‘Th17 cell

differentiation’ were associated with low-expression of RPL35.

Moreover, our results demonstrated that the expression of RPL35

and RPS8 was significantly lower in the NAS 5-7 group compared to

the NAS 0-2 group. These results further supported that these

biomarkers may play important roles in immune responses during

the progression of NAFLD.

Our study constructed a ceRNA network, which consisted of 20

lncRNA, 3 mRNA, and 14 miRNA. Some of these molecules have

been reported to be associated with immune reactions. For example,

hsa-let-7a-5p could positively regulate the important innate

immune-related genes such as TLR3, RIG-I, and MDA5, thus

promoting innate immune responses (57). LncRNA MIAT

correlated with immune infiltrates in HCC and targeted miR-411-

5p/STAT3/PD-L1 axis mediating HCC immune response (58, 59).

miR-181a-5p over-expression could alleviate Treg/Th17 immune

imbalance and block allergic rhinitis from developing into asthma

(60), while decreased miR-181a-5p expression was associated with

impaired NK cell development and function with aging (61).

However, the existence and functional role of the predicted

ceRNA network in the development and progression of NAFLD

requires further validation.

Our results also identified 20 potential drugs that may target

RPS3A, among which taxifolin and sitagliptin have been reported to

be beneficial against NAFLD. Taxifolin, also known as

dihydroquercetin, is a natural bioactive flavonoid that broadly

existed in various foods and health supplement products (62).

Recent studies found that taxifolin had antioxidant and anti-

inflammatory properties and could ameliorate steatohepatitis

induced by HFD feeding plus acute ethanol binge by inhibiting

inflammatory caspase-1-dependent pyroptosis (62). In addition,

taxifolin displays pleiotropic effects for the treatment of the

NASH continuum. It could alleviate obesity-induced hepatic

steatosis, fibrosis, and tumorigenesis in rodent models (63).

Sitagliptin is a selective inhibitor of dipeptidyl peptidase-4 (DPP-

4I), which is widely used as a hypoglycemic agent. Animal studies

showed that sitagliptin could improve NAFLD in HFD-fed rodents

(64, 65). A randomized controlled trial indicated that sitagliptin,

combined with metformin, reduced body weight, intrahepatic lipid,

and visceral adipose tissue in addition to improving glycemic
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control in patients with NAFLD and T2DM (66). Nevertheless,

whether the effects of taxifolin and sitagliptin on NAFLD were

related to RPS3A needs further investigation.

In conclusion, this study identified four ribosomal protein genes

(RPL35, RPS8, RPS3A, and MRPL16) as immune-cell-related

biomarkers associated with NAFLD progression, which may help

to better understand the role of immune-related genes and cells in

the pathogenesis of NAFLD and to develop novel diagnostic and

therapeutic strategies. However, this study did not validate the

molecular function of these biomarkers and the existence and

functional role of the ceRNA network, TF-mRNA network, and

key gene-drug network in NAFLD, which is a major limitation.

Further in vivo and in vitro experiments as well as clinical studies

are needed to elucidate the functions, the underlying mechanisms,

and the translational potential of these biomarkers.
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